

THE

andT0MI OF VERTEBRATES.

VOL. II.

$$
217.00 .0 \times 1 \quad ?
$$

546.04

970
3

> I'urks by the same Author:

LECTLRES on the COMPARATIVE ANATOMY and PHYSIOLUGY of the INVERTEBILATE ANIMALS, delivered at the loyal College of Surgeons. Second Edition (1855), inlnstrated by numerons Woodcuts 8vo. ${ }^{21] s .}$

On the CLASSIFICATION and GEOGRAPHICAL DISTribution of mammalia, boing the Lecture on Sir R. Reade's Fonndation, delivered before the University of Cambridge, in the Senate House, May 1859. To which is added an Appendix on the Gorilla, and on the Extinction and Transmutation of Species. With 9 Figures on Wood.

8 ro. $5 s$,
INSTANCES of the POWER of GOD as manifested in His Animal Creation: a Lecturedelivered before the Young Mcu*s Christian Association, November 1863. With 11 Figures...........Crown 8ro. 18,

London: LONGMANS, GREEN, and CO.

ANATOMY OF VERTEBRATES.

VOL. II.
BIRDS ANI MAMMALS.

```
RICHARD OWEN, FR.S.
```

SUPRRINTEXDENT OF TUR NATURAL IHSTORY DEPARTMENTA OF THE BRTTASH MUREVM, FOREION ASSOCLATE OF THE INSTITURE OF FRANCF, ETE,

LONDON:
LONGMANS, GREEN, AND Cい. 1866.

COXTENTS, OR SYSTEMATIC INDEX.

CHAPTER XIII.CHARACTERS OF HAMATOTIIERMA.
section fage
121. Thermogenous organic conditions 1
122. Its results 3
123. Characters and orders of the class Ares 5
CHAPTER XIV.
OSSEOL'S SYSTEM OF AVES.
124. General characters of the Skeleton 14
125. Dorsal rertebræ and sternum 14
126. Sacral vertebræ, pelvis, and tail 29
127. Cerrical vertebræ 39
128. The skull 41
129. Seapular arch and limbs 65
130. Pelvic limbs 75
CHAPTER XV.
MUSCULAR SYSTEM OF AYES.
131. General characters 84
182. Muscles of the vertebrim 86
133. Muscles of the wings 94
134. Muscles of the legs 99
135. Muscles of the skin 109
136. Locomotion of Birds 112
CHAPTER XVI.
NERVOUS SYSTEM OF AVES.
137. Myelencephalon of Birds 117
138. Nerves of Birds 121
139. Sympathetic system of Birds 127
section page
140. Organs of Touch in Birels 128
141. Organ of Taste in Birds 129
142. Organ of Smell in Birds 130
143. Organ of Hearing in Birds 133
144. Organ of Sight in Birds 135
CHAPTER XVII.
DIGESTIVE SYSTEM OF AVES.
145. Beaks of Birds 14.5
146. Tongues of Birds 1.1
147. Salivary glands of Birds 154
148. Alimentary canal of I3irds
150
150
149. Liver of Birds 174
150. Pancreas of Birds 17
CHAPTER XVIII.
ABSORBENT SYSTEM OF AVES.
151. Alsorbents of Birds 180
CHapter Xix.
Ciltellating system of ATES.
152. Blood of Birds
153. IIeart of Birds 184
154. Arteries of Birds 18.)
155. Veins of Birds 1892114
CHAPTER XX.
RESPIRATORY SYSTEM OF AYES,
156. Lungs of Birds
157. Air-cells of Birds 209
158. Air-passages in Birls 211
159. Lower laxynx in Birds 215220
Chapter xxi.crinary system and ductiess glands of ayes.160. Kidneys of Birds161. Adrenals of 13irds226
162. Spleen of Tirds 163. Peculion S 229
103. Pecular Secretions of Birds 230
(HAPTER XXII.
TEGUMENTARY SYSTEM OF AVES.
SECTION PAGB
164. Composition of the 'Tegument 231
160. Appendages of the Tegument 233
166. Development of Feathers 236
CHAPTER XXIII.
GENERATIVE SYSTEM OF AVES.
167. Male organs and semination 242
168. Female organs and ovalation 246
169. Fecundation and structure of the laid egg 251
170. Accessory genexative structures and external sexual characters 256
CHAPTER XXIVDEVELOPMENT OF AVES.
171. Development and peculiarities of the Chick 205
CHAPTER XXV.
ChARACTERS AND PRIMARY GROUPS OF THE CLASS MAMMALIA.
172. Class characters 266
173. Mammalian sub-classes 270
174. Mammalian orders 274
CHAPTER XXVI.
OSSEOUS SYSTEM OF MAMMALIA.
175. General characters of the Skeleton 297
176. General characters of the Skull 300
177. General characters of the Limbs 305
178. Special homologies of the skull-bones of Mammals 310
179. Skeleton of Monotremata 314
A. Vertebral Column 314
B. Skull 318
C. Bones of the Limbs 323
180. Skeleton of Marsupialia 328
A. Vertebral Column 328
B. Skull 334
C. Bones of the Limbs 350
181. Skeleton of Rodentia 364
A. Vertebral Columu 364
B. Skull 367
C. Bones of the Limbs 378
PAGH
SECTION 385
182. Skeloton of Insectivora 385
A. Vertebral Column 387
B. Skull 390
C. Bones of the Limbs 392
183. Skeleton of Bruta 392
A. Tertebral Column 403
B. Skull 407
C. Bones of the Limbs 415
184. Skeleton of Cetacea
415
415
A. Vertebral Column 419
B. Skull
B. Skull 426 429
C. Bones of the Limbs
C. Bones of the Limbs
185. Skeleton of Sirenia 430
A. Vertebrul Column
433
433
B. Skull
B. Skull
435
435
C. Bones of the Limbs
C. Bones of the Limbs
437
437
186. Skeleton of Proboscidia
437
437
A. Vertebral Column
A. Vertebral Column
438
438
B. Skull
B. Skull
441
441
C. Bones of the Limbs
C. Bones of the Limbs
444
444
187. Skeleton of Perissodactyla
444
444
A. Vertebral Column
A. Vertebral Column
448
448
C. Bones of the Limbs 454
188. Skeleton of Artiodactyla 457
A. Vertebral Column 457
B. Skull 465
C. Bones of the Limbs 479
189. Skeleton of Carnivora 487
A. Vertebral Column 488
B. Skull 496
C. Bones of the Limbs 506
190. Skeleton of Quadrumana 511
A. Vertebral Column 512
B. Skull 526
C. Bones of the Limbs 538
191. Skeleton of Bimana 553
A. Vertebral Column 553
B. Skull 558
C. Bones of the Limbs 572
D. Relations to Archetype 581

Table I. Synonyms of the Bones of the Head, according to their general homologies.
Table II. Synonyms of the Bones of the Head of Vertebrates, according to their special homologies.
Table III. Synonyms of the Elements of the typical Vertebre

errata.

Pree 133, note ${ }^{2}$ for 'vol. i. p. 208 , read' coxxxvi, vol. i. p. 173.

- 258, note ' for 'old ' reck ' odd.'
, 260 , note ${ }^{3}$ for ' 1 ,xix ${ }^{\circ}$ read ' Lix:"
"333, wwenty-thtee lines from top, for * met apophyses, read' 'mr-apophyses.'
"452, two lines from hottom, for ' fig. 303,' 'ead' fig. 304.'
" 479 , fifteen lincs from bottom, for "promixal,' read 'proximal."

ANATOMY OF VERTEBRATES.

-Wis:00-

CIIAPTER XIII.

CIALDCTERS OF IRAMATOTLELMA.

§ 121. Thermogenous Conditions.-Life is attended with constant molecular change; and sueh vital motion beeomes converted direetly, or through intermediate modes of chemieal or electrical force, into that of heat; the ehicf chemical action preeeding or produeing the ealorifie force being due to the introduction of oxygen by air or food into the body, where it operates in a manner analogous to combustion.

The cvolution of animal heat more directly relates to the amount of air inspired in a given period, and to the rapidity with which the oxygenated blood is conveyed to the tissues.

In these the molecular changes are governed by the nervous system, and whatever tends to paralyse the nervous foree operates in the sane degree in arresting those molceular movements on which more directly depends the evolution of heat. In this act the nervous system is accordingly eoneerned, in so far as it influences the excreise of the miscular movements.

In the Hamatothermeni, or Warm-blooded Vertebrates, the atmosphere is direetly inspired and applied to a vascular surface which, in proportion to the bulk of the boty, is much more extensive than in any of the Hamatocrya. For mechanical convenience the respiratory surface is elosely packed, in small eompass, by subdivision of the pulmonary cavity into countless minute cellis, giving to the lung a spongy texture, obliterating all trace of a visible or conspicuous cavity.

The whole of the venous blood is propelled over this extensive but eompactly disposed capillary area by succossive contractions of a special ventricle, reeciving it from a distinct auricle, and the
blood, elianged by the respiratory action, is conveyed to another distiuct auricle and propelled by a second distinct ventricle over. the entire system.

Thus a four-chambered heart and spongy lungs are the chicf anatomical characteristies by which the 'warm-blooded' are distinguished fiom the 'cold-blooded' Vertebrates, although respiration and circulation are subsidiary or auxiliary, not immediate, thermogenous functions.

Whatever tends to obstruct the flow of blood to a part of the body, as ligature of an artery, e. g., lowers in a certain degree the heat of that part ; and whatever augments such flow of blood, as, excreise, e.g., or increases the quantity of blood in a part, as where the eapillaries dilate through paralysis of the vaso-motory filaments from a ganglion of the syopathetic nerve, raises the heat of such part; temporarily, at least, in the latter case. ${ }^{1}$

In all IIcematotherma the mass of nervous matter constituting the cerebral portions of the prosencephalon is relatively larger botly to the rest of the brain and to the bulk of the body than in Ifrmutorry, although the degrees of this predominance in the warm-blooded series relate to other functions than the evolution of heat.

Coneomitantly with the adrance of the circulating and respiratory organs in I/amatotherma is that of the blood itself, in quantity, in the proportion of organic (proteine) principles to the water in it, and in deptly of colour due to the more abundant blood-dises. The volnutary musenlar fibre shows, in most IIcematotherma, by its deeper colour than in Hematorya, the influence of this more abundant, richer, and redder blood; and the longer duration and greater energy of the contractions lave relation to the limmatothemal conditions of the nervous, respiratory, aud circulating systems.

In every nuscular contraction some molecules of the fibre may be sail to be hurnt, and heat is evolved. Needles of a delicate thermo-electrical apparatus, thrust into a living musele, indicate a rise of temperature at each act of contraction. ${ }^{2}$ The heatproxlucing results of the sum of such actions is a matter of common experience, and a loss of anmal heat results from the cessation of such actions. So, Hunter writes: "When a man is asleep lie is colker than when he is awake; and I find, in general, that the difference is about one degree and a lalf' (of Falur.) ${ }^{3}$

[^0]The moleeular movements and changes in the organs of vegc－ tative life constitute a more unintermitting source of caloric．The blood which returns from the extensive seat of such operations afforded by the mucous intestinal tract is warmer than before it enters that tract：the blood of the hepatic vein after its passage through the portal circulation，and its work in the liver，shows a more marked rise of temperaturc．Urine in mammals，before its escape，is hotter than blood $;^{1}$ and the rich supply of nerves to the adrenals may relate to the calorific functions of the kidneys．

The production of heat from the actions of organic life depends on the amount of material for the support of such actions－on the （fuantity of oxidizable substance introduced as aliment into the body．The greater vigour，activity，waste，or wear and tear，in the warm－blooded machinery neeessitate，while they enable，a greater energy，and more regular and rapidly recuring perfiom－ ance of the digestive functions；and the warm－blooded differ from the cold－blooded vertebrates in the greater amount of food which they consume，and the shorter intervals between the times of eating．Warm－blooded animals exemplify this influence：－＇I weakened，says Hunter，＇a mousc by fasting，and then intro－ duced the ball of the thermometer into its belly：the ball being at the diaphragm，the qnicksilver rose to 97° ；in the pelvis to 95° ，being two degrees colder than in the strong monse．＇＂The difference of being＇fill＇or＇fasting＇in resisting cold is a matter of common experience．
§ 122．Thermogenous Results．－The more active and unremit－ ting vital combnstion，due to the above－defined adranced con－ ditions of the nervous，respiratory，circulating，digestive，and museular systems，keeps up a constant temperature，as a general rule，in the Hemutotherma，which is usually so much higher than that of the surrounding medimm as to cause the sensation of warmth to the hand touching the body．In man the mean temperature of the intcrior of the body is 100° Fahr．；in the dore， 101° ；in the $0 x, 100^{\circ}$ ；in the mouse， 99° ；in the whale， 100° In Birds ${ }^{3}$ the mean temperature ranges in different species from 106° to 112°

The heat－producing powers in healthy Itcmatothermm are more active as the surrounding medium is eooler；and cold，much below freezing，is loug resisted，and habitually，by the warm－

[^1]blooded denizens of aretic and antaretic zones. The nature of the external eovering has much influence in this resistance, whether it be the thick layer of subcutaneous fat in the whaletribe, the fur and hair of the quadruped, or the down and feathers of the bird. Save in the ease of mankind and the whalekind, the warm-blooded Vertebrate may le distinguished at a glance from the cold-hlooded one by the non-conducting, heat-preserving, nature of its clothing, which is 'hair,' as a gencral rule in Mammals, and 'feathers' in Birds.

There are, however, gradations of the heat-maintaining power in the Ifcmatotherma. Some Nlammals, e. ... the Alpine Marmot, the Hamster, the Asuirrel, the Dormice (Myporus), the Porcupinc, the Virginian Opossum, at the approach of winter-cold, seek a retreat, fall into a decp sleep, and lose from 10° to 20° Falir. of heat. In the Squirrel, e. g., the heat of the body has been fomed to sink from 98° to 78° Respiration is continned, though slowly, in these winter-sleepers. The IIclgehog (Erinaterus) and the Bat (Irspertilio, Linn.) fall into a deeper and more lasting torpor: in which breathing is suspended, and a slow and languid rirculation is the sole sign of animation. In the Bat, the heart's pulsations fall from 200 in a mirrute, as when in active wakefulness, to 30 in a minute, during torpidity; the blood being then in a dark venous state, and the temperature of the body down to 40° In this condition these Insectivera survive the season during which their allotted food is unattainable. In the tropics some allied species, e. g. the Tenrecs (Centetes) fall into a similar torpidity, without the excitement of a frecezing cold, during the season mufarourable to the presence of their food.

The fecble and inactive young Hacmatotlerma use up less oxygen than adults; and, when exposed to cold, lose their heat, and also their sensibility, differing in this latter respect firm the hybernators. The least tonch to a spine of a torpil IIedgehog romses it to draw a deep somorous mispration: the merest shake induces respiration in the torpid Bat.
In all these instances of loss of power to preserve the average mammalian temperature, the physiological conditions of the -pecies approximate more or less to those of the cold-blooded animals; and it is interesting to olscerve that the winter-slecping and torpid Mammals are those which most resemble reptiles in their ecerelrat organisation: they are also of small size. Whether the Edentata aud Mlonotremata would become torpid, and so accommodite themselven to other than their native climates is a rucetion well worthy of experimental deternination.

No approach to torpidity with loss of animal temperature has been determined to take place in any bird. The insectivorous kinds migrate-Swifts and Swallows, e. g., to and fro between England and Africa; and migration is performed by numerous other birds in relation to localities furnishing the food most appropriate for the nourishment of their newly-hatehed young. Experiments have failed to induce torpidity in birds through artifieial cold.
§ 123. Characters and Orders of Birds.-. The two Hxmatothermal classes Aves and Mrrmmalia, are defined in vol. i. p. 6; and I here proceed to a fuller exposition of the avian characteristics, and of the modifications on which the class has been divided into orders or other primary groups.

Birds constitute a class of oviparous vertebrate animals, with warm blood, a double cireulation, and a covering of feathers. They are organised for flight, and as this, the fleetest and most vigorous kind of locomotion, demands the greatest energy in the contractility of the muscular fibre, so the respiratory function

finds its highest developement in the present class. Not only the ramifications of the pulnonary artery, but many of the eapillaries of the systemic circulation, from the singular extension of the air-cells through the body, are submitted to the influence of the atmospliere, and hence Birds may be said to enjoy a double respiration.

Although the heart resembles in some particulars that of the Reptiliu, the four cavities are as distinct as in the Mommalio, hat they are relatively stronger, their valvular mechanism is more perfect, and the contractions of this organ are more forcible and frequent in Birds in accordance with their more extended respiration and their more energetic muscular actions.

As Birds exceed Mammals in the activity of those functions on which the waste and renovation of the gencral system more immediately depend, so they possess, as has been shown, a higher standard of aumal heat.

The modification of the tegrmentary covering eharacteristic of the present class is to be regarded rather as dependent upon, than oceasioning, this high degree of internal temperature, which requires for its due maintenanee against the ageney of external cold an adequate protection of the surface of the body by means of non-condueting down and imbricated feathers; and this warm clothing is more espeeially reqnired to meet the sudden variations of temperature to whieh the bird is exposed, when soaring in the higher regions of air and stooping to the earth, during rapid and cxtensive flights.

The generative product is excluded from the oriduct in an undereloped state, inclosed, in a liquid form, within a caleareous case or shell. Collision of two brittle eggs in transitu is obviated ly the female organs being developed only on the left side of the body. The ovum is subsequently perfeeted by means of incubation, for which action the bird is especially adapted by its high degree of animal heat.

Birds form the best characterised, most distinet, and natural class in the whole animal kingdom, perhaps even in organie nature. They present a constancy in their mode of generation and in their tegumentary eovering, which is not met with in any other of the rertebrate elasses. No speeies of Bird ever deviater, like the whales among Mammals, the serpents among Reptiles, and the eels anong Fishes, from the tetrapodous type characterising the vertebrate division of animals.

The anterior extremities are construeted aceording to that plan which best adapts them for the aetions of flight; and althongh, in some few instances, the developement of the wings proceeds not so far as to enable them to act upon the surromeding atmosphere with sufficient power to overeome the counteracting foree of gravity; yet, in these eases they assist, by analogons motions, the pisterior extremities: either, as in the ostrich, by beating the air while the body is earried swiftly forward by the action of the powerful legs; or, as in the penguin, by striking the water after the manner of fins, and by the resistance of the denser medium earrying the hody through the water in a manner analogous to that by which the birds of flight are borne throngh the air. In a few exeeptions, as the eassowary and apteryx, the wings are ontwardly represented by a few quills or a small claw in no instance do the anterior extremities take any share in stationary support or in prehension.
litirds are therefore biped, and. the operations of taking the fookl. cleansing the phumage, $\& \mathrm{c}$, are alnost exclusively performed
by means of the mouth, which consists of two lipless and toothless jaws, sheathed with horn. To faeilitate the prehensile and other actions thus transferred to the head, the neek is clongated, and the body gencrally inelined forward and downward from the hip-joints. The thighs are aecordingly extended forward at an acute angle from the pelvis toward the centre of the trunk, and the toes are lengthened and spread out to form an adequate base of support. The aetions of l^{1} creling, walking, hopping, ruming, seratching, burrowing, wading, and swimning, require for theciperfeet performanee different modifieations of the posterior extremities. The mandibles, again, present as many varieties of form, each corresponding to the nature of the food, and in some degree indieative of the organisation neecssary for its due assimilation. Ornithologists have, therefore, founded their divisions of the class chiefly on the modifieations of the bill and feet. Sinee, however, Birds in general are assoeiated together by eharacters so peeuliar, definite, and unvarying, it becomes in consequenee more diffienlt to separate them into subordinate groups, and these are neeessarily more arbitrary and artifieial than are those of the other vertebrate elasses.

A binary division of the elass ${ }^{1}$ may be founded on the eondition of the newly-hatelice young, which in some orders are able to run about and provide food for themselves the moment they quit the shcll (Aves precoces); while in others the young are excluded feeble, naked, blind, and dependent on their parents for support (Aves altrices).

Nitzsch ${ }^{2}$ grouped together the feathered tribes under three series, according to the great divisions of the terraqucons globe which form respectively the prineipal theatres of their actions. The first order consists of the birds of the air, Aves aerea (Lultvögelin); the second embraces the birds of the land, Aves terrestres (Erdvögeln); the third includes the birds whieh frequent the waters, Aves aquatica (Wasser-vögeln). The eagle and lark exemplify the first; the ostrich and common fowl the second; the heron and the gull the third, of these extensive divisions of the class.

Vigors ${ }^{3}$ proposed a more definite system upon a similar principle, distributing Birds into five orders. The first includes those which soar in the upper regions of the air, which huild their nests and rear their young on high cliffs or lofty trees; they are the eliief of aerial birds and form the order termed Rotitores.
from the rapacious habits and animal food of the species so grouped together.

The sccond order affects the lower regions of the air: the birds composing it are peculiarly arboreal in their habits, and are, therefore, termed ' Perchers,' Insessores.

The third order corresponds with Nitzsch's Aves terrestres, and is denominated Rasores, from their general habit of seratching up the soil in quest of foocl.

By dividing his Aves aquatice into those which wade to obtain their food, and into those which swim, we get the two remaining orders of the quinary arrangenent - viz. the Grallatores and Natatores. The merit of this systom mainly lies in the endeavour to trace the natural affinities of the scveral families, and show how they pass one into another to form a connected circular whole.

The Raptores of Vigors answers to the Accipitres of Linnæus and Cuvier; the Insessores to the Passeres and Piei of Limæus, and to the Passeres and Scansores of Cuvier; the Rasores to the Gallince of Limmous, plus the Columbe, and to the Gallinacece of Curier; the Grallatores to the Grallic of Limæus and Curier; the Natatores to the Anseres of Linneus, and the Palmipedes of Cuvier.

AVES (Birds).

Class-characters.

Animnt, vertebrated, oviparous, biped.
Pratoral limbs organised for fight.
Integument, phmose.
Blood, red, warm.
Respiration and circulation, double.
Lungs, fixed, perforated.
Nogntive Churcters, no ear-conchs, lips, teeth, epiglottis, diaphragm, fornix, corpus callosum, scrotum.

The following are the orders, with their characters and sample familics, adopted as most convenient for the purpose of the present work:-

[^2]
Order I. NATATORES.

Swimming Birds. Toes united by a membrane, fig. 2. Legs placed belind the equilibrium, and body covered with a thick coat of down bencath the feathers.
Fam. 1. Brevipennate. Ex. Penguin, Auk, Guillemot, Grebe.
2. Longipennata. Ex. Skimmer, Tern, Mew, Gull, Petrel, Albatross.
3. Totipalmate. Ex. Pelican, Gannet, Cormorant, Anhinga, Frigate Bird, Tropic Bird.
4. Lamellirostratce. Ex. Duck, Goose, Swan, Flamingo.

Welmed foot of Pelican.
Itend and wathig leg of the Curlew.

Order II. GRALLATORES.

Wading Birds. Legs long, naked from above the distal extremity of the tibia downward, fig. 4.
Fam. 1. Mucroollertyli. Ex. Coot, Rail, Crake, Sercamer, Jacana.
2. Cultrirustres. Ex. Boathill, Crane, Heron, Ibis, Stork, Tantalus, Spoonbill.
3. Longirostres. Ex. Gambet, Avocet, Snipc, Ruff, Turnstone, Sandpiper, Godwit, Curlew, fig. 3.
4. Pressirostres. Ex. Oystercateher, Thieknee, Plover, Lapwing, Bustard, Courser.

Order III. RAsorlis.

Pintado or Guinea-fowl.

Serateling Birds. Feet strong, provided with obtuse claws for seratching up grains, etc. Upper mandible vaulted; nostrils piereed in a membranous space at the base, and covered by a eartilaginous seale, fig. 5 . Nest rude. Sternum with four, rarely two, deep fissures.

Suborders.
Ginllinurei or Chomutores; Polygamous. Ex. MLegapode, Peafinwl, Partridge, Quail, Pheasant, Ganga, (irouse, Pintado, Tinamú, Turkey, Curassow, Guan.
Columbacei or Gemitores: Monogamous. Ex. Dove, Goura, \backslash iuago.

Order IY CANTORES (Oscines).

Siuging Birdr. Legs short and slender, with three toes before and one belind, the two external toes being united by a very short membrane, fig. 6. Sternum with one hind-notch on eaeh side, manubrium bifureate, fig. 15; larynx 5-museular. The brain arrives in this order at its greatest proportional size, and the organ of voice here attains its utmost complexity. Nests eomplex; eggs usually eoloured. Monogamous.
Fimi. 1. Dentirostres. E.r. Manakin, Shrike, Wren, Wagtail, W'arbler, Thrush.
2. Conirostres. Er. Paradise Bird, Crow, Starling, Bumting, Tit, Lark, Finch, Growheak.
3. Tenuirostres. Ex. Sunbird, Nuthateh, Creeper.
4. Fissirostres. Ex. Swallow, Martin.

Order Y VOLITORES.

Moring solely hy flight. Skeletou light and highly pmematic ; sternme with a simple manubrium, aul a deep keel; in amme entire, fig. 18, in mon with two hind-notches on each nifle, fig. 20:
larynx trimuscular; intestinal eæea usually absent, or large; wings powerful, in some long and pointed; legs small and weak, with few exeeptions not used in locomotion; with the back toe i short, sometimes turned forward (Cypselus), or wanting (Ceyx); the outer toe $i v$ is reversible in some (Trogon), in others united to the mid-toe $i i i$, as far as the penultimate joint, fig. 7. Many nidifieate in holes of trees, or in the earth; the eggs are white and subspherical. They are monogamous. The

head is large, and in most the beak is remarkable for its length or width, or both. The gape is wide; the food taken on the wing.

Fam. 1. Cypsclida. Ex. Sivift.
2. Trochilida. Ex. Humming-liird.
3. Caprimulyida. Ex. Nightjar.
4. Troyonide. Ex. Trogon.
5. Prionitida. E.r. Mot-mot.
6. Meropidc. Ex. Bee-eatcr.
7. Galbulide. E.x. Jacamar.
8. Coruciutce. Ex. Roller.
9. Capitonidce. Ex. Puff-bird.
10. Alcedinida. Ex. Kingfisher.
11. Bucerotidic. E.. Hornbill.

Order. VI. SCANSORES.

Climbing Birds. Toes arranged in pairs, two before and two behind, fig. 8. Most oripesit in holes of decayed trees. Larynx trimuscular. Nlonogamous.

Fam. 1. Ramphastide. Ex. Túean.

2. Bucconida. Ex. Barbet.
3. ('uculide. Ex. C'uckoo.
4. Picide. Ex. Woodpeeker.
5. Nusophayide. E.s. Touraco or Plantain-eater.
6. Coliida. E.r. Coly.
7. Psittucida. Ex. Parrot.

Order VII. RAPTORES.

Rapacious Bitds. Beak, strong, eurved, sharp-edsed, and shar 1 - p^{n} inted, fig. 9 ; legs short and rohnet, with three toes before and one behind, armed with long, strong, erooked talous, fig. 10 .

Fam. 1. Nocturnes. Ex. Owl.
2. Diurnes. Ex. IIawk, Eagle, Vulture.

An eightl group of birds lias been characterised under the name Cubsores, Coursers, or 'Running-bicds,' by the arrested developement of the wings unfitting them for flight, and by the compensating size and strength of the legs, by which they are enabled to run swiftly on the ground. This is not, however, a natural order : some of its exponents have demomstrably closer affinities to other groups of which they are winglese members, just as the Penguins and Auks bear relation to families of the Natatorial order. Thus the Nutornis is a modified Coot. The Ostrich bears the same relation to the Bustards. The extinet Dithes and Pezuphaps are most nearly allied to the Columbaceons group of Rusores. Apteryx and the allied extinct Dinornis and Pelaptery.r, bear affinity to the Megapodial family of Gullince.

[^3]In all the Cursorial genera the sternum is devoid of keel.
Struthio is the only genus of birds in which the toes are reduced to two, fig. 11.

In like manner the web-footed order is an artificial one, including derivatives from different natural groups or types; and the same may be said of the order including the birds that have the legs long and naked above the tarsal joint.

Cursorial foot of Ostrich.

Derivatively the class of Birds is most elosely connected with the Pterosaurian order of cold-blooded airbreathers. In equivaleney it is comparable rather with such a group than with the Reptilio in totality, or with the Mammalia; and, hence, the corresponding inferiority of value of the avian 'orders' to the subdivisions so called of those larger classes.

In relation to time, indications; of $A v e s$ date as far back as those of Pterosaurict, in the 'ormithichnites' or foot prints of the NewRed Sandstones, for example. ${ }^{1}$ The lithographie slates of a later mezozoic period have revealed a true feathered bircl, ${ }^{2}$ wanting only the adaptive modification of the caudal vertebre characteristic of all neozoic birds, even those of the oldest tertiary strata, in which fossil remains of representatives of nearly all the present orders of Aers have been found. ${ }^{3}$ The most recent instances of extinction of species are of the birds that have lost the power of flight; as, c.g., the gigantic Moas (Dinuruis, Prluptery,r, Aptornis, Cuemiornis) $)^{4}$ of New Zealand ; the equally gigantic Epyornis of Madagasear; the Dodo (Didus) of the Mauritius; the Solitaire (Przophaps) of Rodriguez; the Gare-fowl (H/"! impennis) of Northeru shores or islands.

Notwithstanding the characteristic powers of loemotion of the chass generally, it is amenable, most suggestively, to laws of geographical distribution and limitation.

[^4]
CHADTER NIV

```
OSSEOUS SYSTEM OF AVEN.
```

§ 124. Gronral Charucters.-The skeleton of Birds is remarkalble for the rapidity of its ossifieation and the light and elegant mechanism displayed in the adaptation of its several parts. The nseous substance is eompact, and exhihits more of the laminated and less of the fibrons disposition than in the other vertebrate classes. This is more especially the case in those parts of the skeleton which are permeated by the air. The bones which present this singular modification have a greater proportion of the phosphate of lime in their composition than is found in the osseons system of the mammalia, and they are whiter than the bones of any other animal. In the bones where the mednlla is not displaced ly the extension of the air-cells into their interior, the colour is of a duller white. In the Silk-or 'black-boned' fowl of the Tropics (Gallus Morio, Temminck), the periosteal eovering of the bones is of a dark colour: lont this is a peculiarity of the cellular rather than of the osseons texture, which does not differ in colour from that of other birds; indeed the thin aponeurosis eovering the lateral tendons of the gizzard of the Silk-fowl has the same dark lue as the membrane which invests the bones.
§ 125. Dorsal Vertebre.- The modifications of the eommon vertchrate type of skeleton required by the exigencies of the present class are extreme. Anchylosis so fetters the vertebral column that from no part can a single segment with all the elements be detached withont using the saw. The skull inchudes four, the saerum a greater number, of vertelre, of more or less of which the hemal portions alone retain freedom. 'The remaining segments: may be clawified as 'cervical,' 'dor:al,' and 'eandal': in the first and last the pleurapophysis, if present, is confluent with the nemral arch: in the dursal series, the pleur- and ham-apophyes are flexibly artionlatel, but the hemal sjinos are comate. and reprecouted by a single lumy plate.

In fig. 12, is given a sketch of three dorsal segment*, 1, 2, 3, with the hemal arches, 52,58 , of two others. In the first and second dorsals the plcurapophyses (i and 2) terminate in a free pointed end, like the ' false floating ribs,' of Anthropotomy; in the third, the pleurapophysis, $p l, 3$, articulates with the hemapophysis, h; and this with the expanded spine, $h s$, whieh, in connation with its homotypes, constitutes the bone called 'sternum,' f. Every suceceding dorsal segment has the hæmal areh com-

First three dorsal vertebrie and scapular arch of a bird, in diagrammatic side view. pleted by bonc.

Fig. 13, gives a diagrammatic front view of the connate dorsal or thoracie hæmal spines, c, s; the hemapophyses, d, of five corresponding segments, and also a modified pair, h, h, of the hremapophyses of an antecedent segment.

The pleurapophyses, $p l$, ", of the dorsal segment are shown in connection with the centrum, c, and neural arch, n; it is to this part of the segment that the term 'vertebra,' is commonly restrieted.

The dorsal vertebre, thus defined, rarely form more than a fourth part of the entire column, and in some of the long-necked Grallutures, as the Stork and Flamingo, fig. 14, form only an eighth part; they have not been olserved to be fewer than four (in some Sultures), nor more than nine throughout the clas: ; the lat-
 ter number obtains in the Λ_{p} teryx : the most common numbers are six or seven.

The dorsal vertebre are shorter than most of the cervicals, and with broader neural arches, in comserfuence of the greater developenent of the transerse processex; but their honties become much compressed, and in some Birds are reduced almost to the form of
vertical lamine towards the sacral region (Aptenodytes, CuturThartes); but, in the Ostrich, the bodies of the dorsal vertebre retain their breadth throughout the scries.

The bodies are united by eapsular ligaments and synovial membranes; the anterior articular eartilaginous surface is convex in

the vertical direction, and concave in the transeres; the pesterior surface is the reverse. The Penguins and Auks, however, present an exception to this rule: the posterion surface of the second or third dorsal vertebra is coneave, to which the opposed end of the succecting vertehra presents a corresponding convexity; the ' onsthoeodian' ball-and-socket-joint is contimed between the centroms to the last dural. ${ }^{1}$ In many Birds the bodies of some of the middle dorsal vertelnae are ancliylosed together; and in general these which are nearent the sacrum. In the Flamingo, fise

[^5]It, the ancliylosis extends from the second to the fifth dorsal vertehra. In the Sparrow-lawk, the same vertebre are consulidated into one prece, while the sixth enjoys considerable lateral motion, both upon the fiftl and seventh, which last is anclyylosed to the sacrum ; so that the body can be rapidly and extensively inffected toward either side during the pursuit of prey.

From some or most of the dorsal centrums inferior processes (hypapophyses) are sent down, for extensive and favourable origin of the flexor museles, longi colli and recti antici, of the neck. In a vulture (Gyps fulous) the hypapophysis is a low median ridge in the first and second dorsals; to this, in the third dorsal, is added a pair of outstanding depressed plates: in the fourth the pair of plates are smaller, and, with the medial ridge, are supported on a common stem: in the fifth dorsal, the hypapophysis is again reduced to a median compressed plate, but it is expanded at the end; the vertebra, which by anchylosis has become the foremost sacral, has a similar but stronger and slightly hifureate hypapophysis. In both Vultures and Eagles the parial hypapophyses are seen to be due to modified parapophyses, which deseend and are progressively lost in the median hypropophysis of the fourth and fiftlo dorsals (Harpoya, Cuv.); the sixth and seventh have only the low median ridge. The parapophysial pairs of inferior procesces are broad divergent plates in the anterior dorsals of $A p^{\prime}$ terondytes ${ }^{1}$ and $A l c u^{2}$, and subside upon the large and long compressed median hypapophysis which characterises the posterior dorsals. The unusual developement of these inferior processes relates to the size and strength of the subvertebral muscles, which combine with other museles of the trunk in the shuffling movement by which the Penguin, like the seal, makes progress, prone, upon dry land. In the anterior dorsals, the parapophysis, bexides foming the articulation for the head of the rib, sents off a museular process subject to the modifications above mentionel; the diapophysis is larger and more eonstant in character; it is extended from before backward, is horizontally flattened, and forms the surface for the joint of the tubercle of the rib at a small part of its onter border: a metapoplysial ridge is developed from the mper surface, and is frequently produced into filaments coaleseing with those of contigrows dorsals. The pmenmatic foramina are at the back part of the base of the diapophyes. The zygupplyses are wall, the front pair look upward and inward; the lack pair outward and downward; the latter often support mapophysial ridges. The neural pinin is a

[^6]VOT. II.
(.
compresed quadrate plate, its truncate summit is often thickened, sometines produced forward and backward to fix the vertebras from their lighest points; ossified tendons of spinal muscles, akso. aid the coaleced pinons and transverse processes in fixing part of the doral region, but only in birds of powerfill flight, and not in all suclu. The partial anchylowis of the dorsal region is associated in Falcons with their 'hovering' action. The plem"apoplyses on 'vertebral ribs' articulate moveably to the dorsal vertebra, as also to the anterior saeral, when developed there to form part of the compages of the 'chest.' In the first, and usually tlie second dorsal, they are fice. pointed, floating ribs, fig. $12,1,2$, fig. $13, p h$; they articulate with bony 'hemapophyses' on' sternal ribs,'ib., h, d, in the remaining dorsals. As the vertebral ribs are placed more barkward, the neck or pediele snjporting the head elongates, and this articnlates with the parapophysial surface or tubcrele, close to the anterior border of the centrom ; rarely, as in the Penguin ${ }^{1}$ and Ostrich, encroaching upon the intervertebral space. The tulnerele of the ribis, in most, supported on an clongate compressed base, and articulates by a symovial joint with the diapophys. The body of the rib, where formed by the mion of the two arti"ular procesces, is eompressed, or thin fiom side to side, but broad from within ontward; but the outer margin soon expands both forward and backward beyond the compressed part of the body of the rib; this part, as the rib extends down, subsides, the outer margin mantaining or increasing its breadth, and forming the rest of the rib, giving to it a flattened surface externally. This is the common but not constant character of the dowal pleurapophyses. These ribs are broadest in proportion to their length in the Aptery.e. ${ }^{2}$ namowest and aloul longest in the Ginillemots and Inks ${ }^{3}$; they are flemder in most Iusessores; broad and strong in Reptores. The seeond, third, and fourth ribs are partially and remarkably rxpanded in Wrood-peckers. In all birds the end of the vertebral rib articulating with a sternal one is thickened to form the sul)ronvex surface of the synovial joint. There may be several miminte premmatie foramina, but the most constant and conspieuous is below the tubercle.

An' epiplemal 'appendage, fig. 12, t, is attached to most, if not all, the moweable pheurapopllyses between the first and last, and consequently may be found in the pair of which the centrom has berome part of the saerinn. These appendages are oblong flat bones, varying in the proportions of length and breadth in different peries, and also in their mode of union to their ribs: they

$$
x . \text { pl. 52, fig. } 48 . \quad \quad{ }^{2} \text { xr. pl. 54. } \quad{ }^{3} \times m r^{\circ}
$$

are direeted upward and backward, usually overlapping the sueceeding rib. In the Apteryx they oceur in the second to the eighth pair of ribs inclusive, and are artieulated by a broad base to a fissure in the hind border a little below the middle of the rib: those belonging to the third-sixth ribs are the largest and overlap. The articulations of the appendages persist in other wingless birds, including the Penguins and Anks; also in some birds of flight: the Raptores well exemplify the coalescence of the appendage with its rib. The appendages to some of the ribs in Picus are broader than they are long: the length much exceeds the breadth in some Natatores (Uria, Larus) and Grallatores (Hematopus, Phoenicopterus, pl. 14).

The moveable hamapophyses, or sternal ribs, usually begin at the third, sometimes the second, rarely, as in the Emeu, at the fourth pair, more rarely, as in the Cassorrary, at the fifth pair, of the moveable pleurapophyses; a pair of sternal ribs may also exist answering to the segment succeeding the last of those which have the long and moveable vertehral ribs (I'ultur). The common number of such hemapophyses is six pairs, of which the first five articulate with the sternum; the last usually having its sternal end attached to the anteectent one. The hemapoplyses are longest, most slender and most numerous in the Guillemots and Auks. There are eight pairs in Phelorus, Temm.; seven pairs in Uria. In Rhea and Dinornis elephantopus but three pails of hamapophyses articulate with the sternum. The sternal ribs progressively increase in length from the first to the penultimate, and converge towards the costal border of the sternum, where they articulate with transverse elevations divided by narrow depressions. Their upper end is but little, if at all, expanded, and its articular surface is subemeave; their lower or sternal end is expanded from within outwarl, subcompressed from before backward, and here is nsually found the phemmatic foramen. In the ostrich the sternal end supports two distinct articular surfaces, each having its own capsular and synorial articulation with part of the costal eminence. ${ }^{1}$ The joint between the pleur- and hemapophyses is also synovial and capsular. This is the main centre npon which the respiratory movements linge, the augles between the vertebral and sternal ribs and between these and the stermm, becoming more open in inspiration when the sternum is depressed, and the contrary when the sternum is approximated to the dorsal region in expiration. In some birds, chiefty of the terrestrial or aquatic kinds, the vertebral and sternal portions of one or

[^7]more of the last pairs of thonatic ribs are uncomected with eat of other, in the skeleton : such sternal ribs resembling the alodominal hamapophyses in santians, or the 'intersections,' ossified, of the rectus abdominis musele in llammals.

The morlifications of the stermum in Birds relate to their ficulty of flight; more directly, to the adecuate origin of the muscles acting upo the pectoral limb, less directly to the mechanism of respiration needed by the conditions of the lungs; atoo, in I'meher*, to sustaining the body in sleep.

The stermum of the Bird is the bony ventral wall of the trunk,
 fig. $1 \mathrm{~s}, 6, s, r$; it is not, however, the lomologue of the plastron of the Tortoise, fig. 53, p. 63 , vol. i., but of the series of liemal spines forming the episternum and stermm of the Crocodile (fig. 56, p. 68, ib.) ; it is developed, in most Birds, from one pair of ossifice centres, which, roalesing! in the midline, numally consolidate the eartilagimons has of the keel by continuous usifieation therein.

The ehief parts to be noted in the Bird's stermmm are the 'body,' fig. 15 , a, with its notches or lioles, f, f; the 'keel,' fig. 1s, s; the 'eostal processes, fig. 1.5, d; the ' costal borders,' with their articular surfaces, fig. $15, c$; the ' eoracoid growes,' figs. 15 and 16,6 ; and the 'manubrimm, fig. 15 , e, 59 .

The borly may be almost flat, as in Aptery.er and Dinormis; or very comealse, the sides being bent upward at an acute angle, as in Aquila; it is eommonly lese concave toward the tromk. It varies greatly in the proportions of length and breadth: the latter dimension is in excess in Apterger and Dimornis: the breadth nearly equals the length in other Struthiomide, the Ilhathose. and the Pelican. The length progresively gains in other bireds, motil it becones form times the brealth of the stermum in Trimumus, fig. 14, B. Extreme length is asoociated with ordinary breadth in the stermme of the Inserines, Aukx. Ginillemots, many Waders, dimenal Riptores, and some Volitores, reachines to the $\mathrm{j}_{\mathrm{N}} \mathrm{d}^{2}$, and newsionally to the pubic bones, fig. 18 , s, p^{\prime}, and reguring removal for exposine of the alodominal civity.

Examples of an 'entire' sternal body, i. e., neither motelied now
perforated, are afforded by wifits, Humming-hirds, fig. 18, some Lagles (Aquila, Pandion, Halictus) and Petrels (Thalassidroma), in connection with excessive developement of the bone and great powers of flight; also by the Emeu, Rhea, Cassowary, and Notornis, fig. 16, where the bone stops short of the parts calnibiting the notehes or grooves in birds of flight, and retains almost the small lacertian proportions, fig. 17, a. The oblong and not very large sternum of some Coekatoos (Calyptorlynclius) is entire; in the

Balearic and Demoiselle (ranes, in the Ibin (Tontalus Ibis); in the Agani (1 sopphien), the sternmu is long, narrow, and entire. The broad sternum of the Frigate-bird (Tachypertos) and the long sternum of the wingless Juk (Alcon impronis) are also entire. ${ }^{1}$

The anterior margin of the sternal body is impressed by the articular cavitice for the coraeoids. In Notornis, fig. 16, b, Dinornis and Aptery, they are small shallow depressions, near the onter angles: they are similarly situatel, but longer and deeper, in the Rhea and Cassonary; are more extended and with a shorter interpace in the Ostrich. In birds of flight they are deep groover, with the upper or hinder border thickened and eonvex in many, affording a concaro-convex snrface for the broad end of the coracoid. They mostly meet at the midline; they are contimons, perfiorating the base of the mannbium, in some (Gallince (Perdir); and have their medial ends decussating, extending one in ardvance of the
other across the midline in some (rralle (Ardere); and in a light degree in some diurnal Raptores. The borders of the coracoid grooves show modifications characteristic of genera and suecies.' In the Nlbatross the coraenid grooves extend to the onter angles of the sternum, between h and s, fig. 13. In most Birds with a like extent of groove the upper or inner border is developed behind and beyond it into a 'enstal process:' hut the coracoid grones do not reach the outer angle in many Birds, and the angle itself is then produced to form the process, figs. 15, 19 and 20, \%. It is long and slender in some Rasores (I'rdix); short and broad in most Raptores: but, in many birds it is represented, as in the Fagles, merely by the angle between the anterior and costal border. On an average about half of the lateral margin of the sternum is adapted for articulating with the dorsal homapophyees, figs. $13, h d$ and $15, h$: but, when the sternum in long, the 'costal border', fig. I5, c, is shorter; and when the sternum is short it occupies a larger extent of the lateral margin. The part of the bird's sternum answering to that of Mammals is included between the costal borders, fig. $16, r, c$: the rest eorresponds with the 'xiphoid' prolongation. Thus the $\Lambda_{\text {pteryx }}$ Enneu, and Ostrich most resemble Manmals in the proportions of the costal and non. costal parts of the sternum ; whilst in most birds of flight the noncostal part, fig. 15, n, f, extends along that part of the great visceral cavity, which would be similarly defended were the xiphoid call-

tilage to be produced and expanded in the same degree in Man. In the Crocodile, where it is so produced, without expranding,

[^8]the costal borders are co-extended therewith, fig. 56, p. 68, vol. i. In most Gallince the lateral margins of the sternum are deeply coneave: in the Guan (Penclope) almost angularly ineised, with the costal border on the auterior slope. In the Tinamou, fig. 14, 13, the long margin beyond the short eostal border is convex: in many Waders (Platalea, Phonicopterus, fig. 14, c) and Swimmers (Procellaria, Diomedten) the lateral borders are straight and parallel, or nearly so: in Rhea, Casuarius, Dromaius, Notornis, fig. 16, they converge to the hind border: in most birds the lateral borders are moderately concave and diverge, figs. 15 and 20 . The costal border is thiekened, and divided by the transverse artieular ridges for the hemapophyses into hollows, which usually show penmatic foramina. The inodifieations of the posterior horder will be noticed in connection with the sternal characteristics of orders, or other groups, of Birds.

The part of the sternum bearing the most direet relation to the force with which the peetoral limbs are worked is the 'keel,' figs. 18 and $19, s$. In order to afford origin to the accumulated fasciculi of the peetoral minsles, which otlerwise wonld become blended together over the middle of the sternum, this osseous crest is extended downward, analogons to the cranial crest which intervenes to the temporal museles in the carnivorous mammalia; and which, in like manner, indicates the power of the bite.

The keel varies in depth, length, contour of the front and lower borders, and degree of production, freedom, or otherwise of the angle between those borders. The keel is long and deep in the wingless Auk and Penguin, relating to the mass of muscle working the fore limbs as fins in these excellent and hahitual divers: in the Pengnin hoth the free borders are straight, and meet at rather an acute angle, fig. 19. The keel is decp, descending anteriorly far below the furentum in nost Galline: it is remote from the furculum in Limosit, Ihis, Scolopax; but toucles: it in many other Grullutores (Otis, Psophia, Ciromit). It coalesces with the furculum in Grus Virgo and Grus Antigome: in the stilted Vulture (Gypogeranus); in the Frigate-hird (Tachypetes); also in the P'elican (Omocrotelus), Gannet (Sulu), and in old Commorants (Corbo), the fore part of the keel being much prodnced in these Totipalmates. The keel is thick in the fer hirds in which a fold of the windpipe penetrates it; the anterior border being excavated to admit the fold. In the larger Raptores the firont border of the stermm is rather thick and subearinate. The outer surface of the sternmen shows in many lieds a 'carinal ridge, ar 'sulicostal' ridge and a "pecteral' ridge, the latter defining the"
origin of the 'pectoralis secundus.' The subcostal ridge varies in its distance firm the costal border, being more remote in Aquilu, e.g. than in Criut: the pectoral ridge varies in presition, direction, and extent. In the Eagle it reaches from the onter end of the coracoid groose to the middle of the lase of the kecl. In the Razor-bill (Alen torde) it exteuds from the costal border to the pusterior sternal noteh; these differences relate to the form and proportion of the pectoralis secuntlus. The 'manhbrium' forms but a small portion of the stermm, and is often absent or rudinuentary: it may be compressed, spatulate, long and simple, or lifureate; the latter is its character in all Cuntores, fig. 15, e.

The parts of the sternum of the Lizard, fig. 17, homologons with parts of the sternmm of the Bird are those forming the 'coracoil groove,' ib. b, the 'costal border,' ib. c, ,, and the mediau bone, 59, passing forward to join the elavicles, ib. 58. The broad flat bone, including the first two parts, exists in all birds; the third, or 'episternal' part, is wanting as a distinct clement, but its positions and connections are repeated by the cxogenons keel and 'manubrium. The episternm, moreover, is not present in all Lizards: it is wamting in the Chameleons, e. g., in which the sternm partakes of the simplicity of that in the Notornis, fig. 16, the Apteryx and Emen.

In the $\Lambda_{\text {ptergx }}$ the anterior border of the sternum between the coracoid grooves is concave, and the posterior border has a deep and wide emargination on each side. In the Emen the coracoid grooves meet at the middle of the anterior border; and the stermm contracts posteriorly to an obtuse point. The sternum is rhomboid, also, in the (assowary: it is broader in proportion to its length, and subquadrate in the Ostrich. In Notoruis, fig. 16, the contal borkers converge posteriorly, as in Lizards, and the narrow breast-lone is contimed as a "xiphoil' part, gradnally $\begin{gathered}\text { contracting to a blint peint. The depressions, } 60, \text {, }, ~\end{gathered}$ for the peetoral miseles are separated by a narrow median tract, expranding anteriorly, 59 , and showing the beginuing of the \cdot keel.' In Bracluyptery. ${ }^{1}$ the keel is rather more prominent: two obtuse ridges diverge from its fore-part to the coraeoid grooves, between Which the fore margin is deeply concare, as in the $A_{p \text { perys }}$ There is no distinct insifie centre for the keel in Brenchypterye, any more than in its feebler rudiment in Notornis. In all these keelless sternums onsification legins, as in the Ostrich ${ }^{2}$, by a pair of centres expanding until they meet and coaleree in the

[^9]middle line, and thence, according to the stimulns of the growth and pressure of the pectoral muscles, cxteuding, as a keel, into the interspace. A separate ossification answering to the episternum in Lizards and Crocodiles is not formed : but the body of the sternum with the keel has a centre distinct from that of the long bifureate side-processes, exceptionally, in Gallince.

In the Penguins, fig. 19, the sternum is long and narrow, with a deep fissure, f, on each side of the pusterior border: the free borders of the well-developed kecl are straight, and meet at an acute angle, which alnost touches the furculum. There is a short manubrium, e, behind which the coracoid grooves, b, meet.

In the Auks aud Guillemots the sternum' is very long and narrow: the lower border of the keel is convex, the front one concave; the mambrium is short and wedge-siaped; the stermm is cutire in Alow impronis; but has a narrow notch on each side the posterion border in Alcer forla, to which the pectomal ritge extends from the costal borler; the notehes are converted into foramina in C'riu and Phuleris pygmaen. The Loons (Colymbus) lave a similar two-notched sternum, but with larger costal borders. In the (irebes (Podicopis), the sternum i. broader'; aud there is a median notch between the two lateral porterior ones. In the

Skimmers, Gulls, and Terns, the stermm has two shallow notelies on each side the posterior margin. In the Petrels and Albatross the posterior border is fecbly incised or entire and the sternmm acquires great breadth, especially in the Albators. The keel reaches the furculum in all the Longijemate family. In the fropermidre, confluence of the two bones nimally here oceurs; there is a pair of shallow posterior emarginations. In the Lamellirostrals the sternum is both large and long, boat-shaped, with extensive costal horders; the keel is of moderate depth, with almost straight fiee lorders, excasated for tracheal folds in some swans; there is a short notch or small formmen on each side the broad posterior margin in all the sifters; the manubrium enrves downward in many. The Flamingo's sternum is given in fig. 14, c. The foregoing diversities of sternal strueture in the web-footed birds indicate from how many trpes they have been derived, and shows the artificial character of the webbed-foot.

The same testimony is borne by the breast-hone of the longlegered hirds, fiom which, in some instances, the species have been detached when the truer affinities were sufficiently strongly marked, as, c. \&r., the Flamingo to the Sifters or Lamellirostrals; the Secretary Bird to the Vinltures; and the Conas to the Cuekoos. In the long and navow sternum of the Coots and Rails the two posterior notehes are deep, with the outer boundary the longest, and Brachypteryx shows a third intermerliate shallow notrl.

The Ihis and sjombill have a four-noteled sternmm; the Idjutants and Herons have a two-notched one; the notehes are short in both. Peculiarities in the breast-bone of certain Cranes have already heen noticed. The Woodeock (Scolopax) has a pair of notehes, with the onter boundary slender and shorter than the broad intermediate tract; the (dambets (Totemus), I vocets, Siundpipers (Trimfa), Curlews (N゙mmeizins), Pratincoles (Glarenla), have the fonr-notched sternmm. In the (iodwit: (Limosn, Holins), the medial motches are almost obsolete, and the lateral ones wide. The 'Thick-knces' (Otdicnemus) and lBustards (Otis) have the four-notehed stermme the noteles being sumall.

In the Gallinaceous group of Rasures, the four posterior noteles are so wide and deep as to reduce the bony parts of the sternum almost to five slender pureseses, diverging from a short and broad anterior stem, and the points of ossification are multiplied accordingly. The middle process is the broadest, and from it is developed the keel, of which, in some (Ortyx, P'erdix), it scems to be almost wholly composed. As the merlian pair of notehes
is usually deepest, the proeesses on cach side the mid one appear as unequal, styliform, terminally expanded, prongs of a fork, the outer prong being the shortest. The eostal border is very short, and is eontinued upon the costal process, which is long: the manubrium is eompressed and terminally dilated and deflected, often perforated transversely by eonfluence of the short coracoid grooves. The fowls (Gallus), pheasants (Phasiamus), partridges (Perdix, Francolinus), quails (Coturnix, Ortyx, Lophortyx), grouse (Tetrao), exemplify the gallinaceous type of the sternum.

In the Turkeys (Mfleagris), Pea-fowl (Pawo), and Kaleeges (Polyplectron, Lophophorus, Oreophasis), the sternum is more ossified, and the lateral processes are shorter and broader; in the Curassows (Crac, Ourax), they present the proportions shown in fig. 14, A. In the Gangas or Sand-grouse (Pterocles, Syrrhaptes), the outer pair of notches are chiefly present, the inner pair nearly obsolete ${ }^{1}$; in the Tinamous ${ }^{2}$ they are wanting, the outer notches are of extreme length, and the whole stermm is reduced to a trifid form, as in fig. 14, b. The sternum of Columba coronata resembles that of the Curassow, with the median pair of notches shorter and narrower. In Columba maynifica ${ }^{3}$, the four notches are more eqnal in size, and the whole sternmm is broader. In the Cotumba livia the median pair of notches are often eonverted into small foramina.

The transitional steps in the forcgoing series from the typestermum of Callines to that of the swiftest of the doves indicate the natural character of the order Rasores.

In diurnal Raptores the sternum is a large elongate parallelogram, convex outwardly both transversely and longitudiually. The maubrime is short and trihedral; the lower border of the keel is convex; the front border concave; their angle of mion rounded off. The instances where the stermum is entire have been cited: in other birds of prey the arrest of ossification is limited to very small parts of the hind border; usually a form. mon, rarely a notch (Sarcoramphus), on cach side; one of which may be filled up, wholly or $\mathrm{p}^{\text {martially. Eyton' }}$ figures two small notches on cach side the posterior border in Ilier wis bengalensis; and both hole and notch on eaclr side in C'uthertess mert. In the Nocturnal Raptores the sternum is relatisely shorter, the lieel less deep, its lower margin less convex and not thirkened, the rostal border is shorter. The pristerior margin nisnally presents two notches on cach silde, the witer one the

[^10]deepest; hut the Barn-owl (Strix flommet) has but oue on each side; while Strix protioula shows a third intervening noteh. ${ }^{1}$

In the Cfutores the sternmm, fis. lis, is hroalest behind, with the lateral margins sherhtly coneare, the costal, c, usually meeting the rest of the margin at a very open angle. The keel has a convex lower border meeting the consare fiont border at a sharp angle: the manubrimen is bifureate: the costal frocesses, d, are
 broad and flat: the posterior border has a notch, f, usually of angular form, on each side, near the lateral margin, and with this outer boundary terminally dilated.

Among the Sermesores the Toucans, barbets, Tounacos, and Woodpeckers, fig. 20, have a four-notched sternum: the Cuckoos have but one pair of short notches; many Parrots (Psittacos 1 ${ }^{\text {Ho }}$ per, Preoporns) have one pair of small foramina, and C'dyptorthymolms las the sternum entire: it is keel-less in Strigops. In most parrots the costal border is extensive; the mambrium is trihedral and truncate. None of the SFornsores have the mannbrimm bifureate; it may be motehed; in most it is small ; in some (Cucrlus, Romulherstos) obsolete.

In the Tolitores, as a rule, the posterior border of the sternum has a pair of notches on earh side: the Eurylam and IIoopoc have one notel or formen on caclo sile. The Hornbills, swifts, and IImmong-birds have the stermm entire. In none of this gronp is the manubrium bifurcate: it is wanting in Pofrorgus, Herpurctes, Todus: the costal process is wanting in some. In the Swifte (Cypselus) the stemmun coresponds in ite proportional magnitude with the superior length and power of wing which chameterizes the genus; the depth of the keel equals the breadth of the entire bone. The manubrial process is wanting, but the cortal processes are moderately long and pointed.

In the IIumming-birts, which sustain themelves on the wing dhring the greater part of the day, and hover above the plant while extracting itw juices, the sternum, r, s, fig. 18, is still

[^11]further developed as compared with the body; it approaches to a triangular form, expanding posteriorly, where the margin is entire, and convex. The depth of the keel exceeds the entire breadth of the sternum. The coracoid depressions are deeply trochlear: the manubrial process is small, and directed upward ; the costal processes are also present, but of small size: the costal border is short. In these pre-eminently volant Vertebrates, the breast-bone reaches the maximum of developement.
§ 126. Surrol Tretelire.-- In vertebrate anatomy the term 'sacrum' is applied to the centrum and neural arch of the rertebra, having its hemal arch complete, as in the thorax, but with its appendage de-
 veloped into a lind-limb (vol. i., figs. 101, D and 114). If two or more vertebre eoalese beyond the thorax, they are likewise sail to form 'a sacrum,' although hout one may be typically complete, and the rest support only stunted pleurapophyses. In all warm-blooded Vertelnates the sacrum, when present, is so characterized, and conflucnce is carried to an extreme in birds, converting a large proportion of the vertebral column into a 'sacrum,' fig. 21, s, a, c, which in the Ostriclı may include seventecn or more vertebra. Thirteen is the aterage number in Notutores, twelve in Cirullatores and Rasores, eleven in Altrices or the higher birds of flight.'

In analyzing this most complex of all compound bones, in a young Ostrich ${ }^{2}$, I find the centrum of the first sacral vertebra distinct, although its neural arch and spine have eovalesed with those of the seeond vertebra and with the ilia. Traces of the articulation between the centrum of the second and thirdsarral vertebre remain: they are obliterated in the remaining vertebete, and the bodies of all are cellular and permeated by air.

The pleurapophysis of the first sateral retains its moveable articulation to the par- and di-apophyses of its vertelra: it in longe, slender, and terminates in a free p onint. That of the second sarral vertebna is styliform, half the length of the preeceding, and terminates in a free point projecting downward and backward: it: head and tubercle, free in the roung bird, becone conflnent

[^12]in the full-grown. The third sacral has no pleurapophysis: its parapophysis is a stumpy proces; its diapophysis is longer and abuts against the ilium. In the fourth sacral both par- aud di-apophyses abut against the ilimm.

The neural arch of the fifth sacral vertebra has advanced and rests ower the interspace between its own and the preceding centrum: this interlocking relation contimes to the eleventh vertebra, where the arch restumes its normal position and conneetions. The pleurapophyses of the fifth to the elerenth sacral vertebre inchasive have undergone a corresponding change of position, and are symehondrosed by an expanded head to a rough flat surface formed by the base of the neurapophysis and by a portion of their own and of the preceding eentrum: their distal extrenities expand and coalesce, forming a broad abutment applied to the iliac bones. The diapophyses are directed upward and outwarl against the same part, and are of considerable length, especially in the ninth to the fifteenth sacral vertebre. The dilated part of the neural canal is formed by the inereased breadtl and flatness of the centroms, and by the wide expanse of the neural arches at the middle of the sacrum. In the seventh to the ninth of these arches there is a wide aperture in each between the diapophysis and the base of the spine. The outlets for the nerves are single and at the interspace of the neural arches, but those at the middle of the canal show two grooves for the separate exit of the motor and sensory roots.

The spines of all the vertebre are lofty, and already confluent with each other at the middle of the sacrum. They are compressed from before backward, consist of little more than a lacework of osseons tissue, and diverge in curves from the neural arches, throngh the interspace between the iliae lomes, with both of which their lateral margins are confluent, and which they thms serve to bind firmly together. By the peculiar eellular and pmemmatic structme of the parts, not more osseons texture is expended in performing the office of tic-beams across the elongated roof of the pelvis than is absolutely required. The last seven vertebre are seen between the narow parts of the ilia produced backward beyond the acetabula, until full-growth, when ossification extends from the summits of the spines bridging over the interval, learing only a lincar fissure on carh sile, fig. 24. In the Cassowary a few paiss of foramina similarly intieate the last threc or four sacral-vertebres.

In the Apteryx the first four sacral vertebre send ontwards parapophyses which abut against the ilia, and progressively
inerease in length and thickness. The breadth of these vertebre also gradually increases; but it diminishes in the four succeeding vertebre, in which the parapophyses are wanting: then the ninth and tenth sacral vertebree send outward each a pair of strong: parapophyses to abut against the inner surface of the ossa imominata immediately behind the acetabulum: the anchylosis of the bodies is continued through the four succeeding vertelora, which are of a very simple structure, deroid of transverse or oblique processes, becoming gradually more compressed and more extended vertically, so as to appear like mere bony lamine; the line of the articulation between the bodies of these posterior saeral vertebra is obvious, but their spincs coalesce to form a continuons bony ridge, which is closely embraced by the posterior extremities of the ilia. The formina for the nerves are piereed in the sides of the bodies of the sacral vertelrae; they are double in the anterior ones, but single in the posterior compressed vertebre, where they are seen close to the posterior margin.

The species of Dinornis show from 17 to 20 saeral vertebres. In D. robustus the pleurapopliyses of the first retain their moveable articulations: those of the second and third are anchylosed, but project freely beyond the ilia: those of the fourth to the cighth abut as parapophyses against the ilia, the last, whieh is opposite the acetabnla, being the thickest : those and the fonr following sacrals, which have no parapophyses, are very short : from the thirteenth to the twentieth sacral the parapopliysial buttresses reap pear, and the vertebree increase in length. A continuous bony roof of the pelvis extends from the sacral spines to the ilia. When vertically and longitudinally bisected, the sacrim shows the great expanse of the canal for that part of the myelon in comnection with the nerves of the large and strong linder extremities. All traces of the original joints leetween the bodies of the vertebra, with the exception of the last, are obliterated. The primitive distinetion of the neural arches is indicated by modulating transwerse folds of' the roof of the sinal canal: the motor and sensitive roots issue scparately, as in other birds.

In the Penguins (Aptenorlytes) the sacrunn forms the middle third of the upper surface of the pelvis: in Podiceps and Cotymburs the ilia eomverge to the smmmits of the pesterior sareal pines: in Cria, Diomeden, Procellaria, and the Auatida they (\%nverge to the anterior ones, fig. 22, 3 . Pairs of formina nstully indicate the salcral vertehre, forming a broader posterior sacral roof (ib. ", cr), of the pelvis: but in the Petrels ossification obliterates them. In most Grallatores the ilia come near to the neurospinal ridure, itr, h,
of the autcrion sacmal vertebre; whilst the posterion ones form a loroad midelle tract of that part of the pelsic roof': usually perforated by pairs of formmina, as in the Duck, but becoming obliterated
 more or lese in Scoloper, I'tilinopus, Psophien, Scops, Iluis, and perlaps in others with age. In most Gallinacea, including the Doves, the ilia converge to a
 racral pinese and the pace at the midulle and posterior part of the pelvis formed by the xaerum, fig. 21, a, a, is both broad and longs. In the Timamm: brasiliensis, figured hy Eyton, this part of the roof is almost wholly asifiect, as it likewise is in Oreophasis derbiamus, where a pair of obdique grooves lead forwards, decpening, to 'ilioneural' (anals beneath the anterior sa(coriliae bony roof on each side the neurospinal ridge. In Memipodius, Columba, and Gourn, the pairs of foramina in the sacral part of the pelvic roof are very small; in Crox Witu they eontinue large to a late period. The ilio-neural wrooves and canals are seen in most Gulline as in Oreophasis.

In Centores, Iolitores, Sronsores, and Roptores, the proportion of the hind-part of the pelvic roof formed by a neural expanse of the sacrom ix lese than in Gerlline: the ilioneural growses are commonly wanting. The lonny roof is entire in Nermenephe Centropus, R'sittucus, Fuloo, dquilo: and the parial foramina are very small in Comselus, Trochillns, ('assions, freqilus, and most
 and are open eanals in (!psimhere and some others. In the diumal Riftomes the pelvie roof, of which the sacrmmementoutes a broad medial tract to about a third of the hinder portion, is strongly and reer completely ossified, fig. 23. The ribs of the firet two vertebre retain their moveable joints: in the third to the wixth vertebre they abut as parapopheses against the lower border
of the ilia; the seventh to the tenth vertebre have no parapophyses; the eleventh to the fourteenth have them long and strong, thickest in the last. All these abutments, with the expansions from the neural spines, coalesce with the innominata and convert the pelvis into one complex mass of bone.

The iliac, ischial, and pubic elements are developed as distinct bones, but speedily coalesce at their point of junction around the acctabulum and usually elsewhere: their independence is longest maintained in the Cursores. ${ }^{1}$ Ossification begins in each from a single point, even in the much elongated ilium of Struthio and Dromuins. This bonc is, in fact, a single vertebral element, or rather part of one; it is homologous with the pelvic bone, 62, in figs. 43 and 101, D (vol. i.), and with 62 in fig. 28, p. 159, of my work on the 'Archetype slicleton' (cxl. vol. i.),
 where it is shown to complete the pleurapophysial element of the pelvic hemal areli; the ischium being the hæmapophysis of the same arch. The ilium in Birds, figs. 21 and 22, d, h, fig. 23, b, fir. 24, b, c, c^{\prime}, is remarkable for its developement in the direction of the axis of the vertebral column, extending its comections with many more segments than its own: it is accordingly long and narrow, thickest midway, fig. 22, f, where it contributes the upper wall of the acctabnhnm, ils, i, in front of which, d, it is mutwardly concave; behind the acetabulum, ib. g, h, it is comvex. It differs

[^13]in the proportions of the pre-acctabular and post-acetabular extensions, and in the degree of divergence of the latter from the saerum. The longest and narrowest ilia are seen in certain Nutatores (P_{0} diceps, Colymbus, fig. 34, a, l, Uria) and in Cursores (Struthio, fig. $24, b, c^{\prime}$, Dromaius $)$: the shortest and broadest ilia are seen in certain Volitores, Scunsores, and Iusessores. In the Grebe and Loon the ilia unite with the summits of the sacral spines behind the acetabula, and diverge for a broader interposed neural expansion anteriorly : in most lirds the divergence is shown at the postacetabular portions, as in fig. 22, g, g, the pre-acetabular plates d, d, converging to the summits of the sacral spines, ib. b. A few birds (Podargus, Tachypetes) retain the extent of sacral interposition which oltains at an early stage of pelvic developement in all birds. ${ }^{1}$ In the old A_{p} teryx the ilia almost meet along the summit of the sacral ridge to within a short distance of their hind end, where an epiphysial piece of bone is sometimes found wedged between this end and the anterior caudal vertebre. The anterior border of the ilium is usually more or less convex: in Tinamus, Crax, Onocrotalus, it is almost straight: in Gcococcyx, Corythaix, Scolephayus, it is cmarginate or concave, the external angle being produced outward: in Limosa it is angular; the point being formed by the commeneement of the 'gluteal ridge:' this, which is well-marked in most lirds, describes a curve, coneave downward, and terminates above or behind the acetabulum, as at f, fig. 22 , marking off the post-acetabular convex part of the ilium, g, h. This part is the longest in Grebes, Loons, fig. 34, d, and the Ostrich, fig. 24, ϵ^{\prime} : it is the shorter division in Petrels, Gulls, Cranes, and most smaller Grallatores, in the Apteryx, in most Insessores, and especially in diurnal Raptores, fig. 23, g, i : in many birds it forms lialf the length of the ilium. In some birds (Cursores) it is narrower than the fore part of the ilimm; in others, especially Geococcyx, it is broader: in most the breadth is about equal, althongl the ilium may seem broadest behind from its coalescence with the horizontal expansions from the saeral spines. The upper is divided from the onter surface of the postacetabular part of the iliun by a prominent ridge in most birds, fig. 22, g, which generally overlangs the outer surface; in Geococcy.x to a remarkable extent, like a wide pent-house, producing a deep concarity in the outer and back part of the ilium where it coalesces with the ischium. This coalescence, converting the ischiadic notch into a foramen, fig. 22, l, fig. $23, h$, is common

[^14]to most birds. It does not take place in Apteryx, Dinornis, Struthio, fig. 24, c^{\prime}. The ilium forms an angular projection above the posterior ischial junction in the Albatross, Skimmer, Duck, fig. 22, n, Ibis, Spoon-bill, Woodcock, Pigeon, most Volitores and Insessores. The principal pneumatic foramen of the ilimm is on the outer and under part of the post-acetabular division. The ilium developes an oblong articular surface on the prominence extending from the upper and back part of the acetabulum.

The ischium, fig. 24, 63, fig. 22, k, m, fig. 23, c, i, is a long, narrow, flattened bone; thickest where it forms the back part of the acetabulum, becoming thinner and broader as it extends backward, with the lower border turned slightly outward; generally placed parallel with its fellow, but diverging in the Ostrich; of nearly uniform breadth in this wingless bird, fig. 24, and in the Apteryx, but usually expanding to its hinder end, and there coalescing with the ilinm. Just beyond the acctabular part the ischium contraets, presenting a smooth and thick upper border to the ischiadic notch or foramen, fig. 22, l, fig. 23, h, and a similar lower border to the foramen or notch, ib. o, fig. 24, l, which transmits the tendon of the obturator internus muscle; it then becomes lamelliform, with thin margins, nsually increasing in depth, and often bent down at its termination to join the prbis, and circumscribe, as in fig. 24, the obturator formen, o. In the Ostrich, the ischium does not join the ilinm posteriorly, and the ischiadic notch remains open; its coalescence with the ilium, beyond the ischiadic foramen, is usually extensive, as in figs. 22 and 23.

The most singular modification of the ischia is seen in the Rhea, in which they meet below the sacrum and coalesce with each other for some extent, almost obliterating lere the bodies of the sacral vertebres.

The pubic bones, fig. 21, p, fig. 24, 64, present an analogous exceptional condition in another member of the Chrsores, viz. the Ostrich, in which they muite together at their hind curds, forming a 'symphysis,' which is curved downward and forward, fig. 24, h; in Gyps fulvus the same ends curve toward and almost touch each other. In other birds the pulsic boncs are directed backward, with usually a curve convex ontward, and terminate freely, or are united to the ischium above, as in fig. 34, b, the pelvis being thus an open one, as a rule, in Birds. The pubis forms the lower and fromt pention of the acetahohum, beyoud which it quickly contracts, exchanging it,
trihedral for a subcompressed form, and is more slender than the ischium. The shortest pubis is seen in certain Eagles, in which it terminates after forming the lower boundary of the obturator foramen; its extremity there projecting freely, as in fig. $23, d$, or being joined by ligament to the ischium, as in the Harpy Eagle, in which it is an inch in length, whilst the ilium is
 six inches long. The opposite extreme may be seen in the Guillemots and Grebes; and in the latter the pubic styles diverge from the acetabula with a slight outward bend, the interspace of their extremities being twice the breadth of the fore part of the pelvis: they are usually longer than the ischia, figs. 24 and 34 ; but in the $\Lambda_{\text {pteryx }}$ they equal that bone in length, and in the Emeu they are shorter. The pubis coalecees with the ilium and ischium at the acetabulum; usually again with the ischium, as at k, fig. 22 , to close the tendinal foramen, and, in some birds, a third time with the end of the ischium, as in fig. 24 , to circumscribe the obturator vacuity, o. In Doves, the pubis after uniting with the ischium to close the tendinal foramen, extends backward parallel witlı and close to its lower margin, sometimes contraeting a bony union therewith and obliterating the 'obturator' interspace. The pubie bomes as they extend backward in the Apteryx are nearly parallel; in the Emeu, Neomorpha, Cassicus, Podieeps, they diverge. In most birds the fore part of the acetabular portion of the pubis forms a ridge or tuberosity, figs. $24, m$, and $22, q$; in some it is produced to a greater extent (Geococeyr, Corythaix, Tinumus, Oreophasis).

In accordance with the above-stated differences in the form and proportions of sacrum, ilium, ischimm, and pulis, the pelvis of the Bird varies in its general form and proportions. From that of all cold-blooded Vertcbrates it differs in the greater number of vertebral segments entering into its composition, and in their bony
confluence; from that of Mammals by being unclosed, and by the widely perforate acctabulum, fig. 22, i.

The large size and brittle shell of the egg are the teleological conditions of the open pelvis, and the transference of the weight of a horizontal trunk upon a single pair of legs necessitates an extensive grasp of its segments. When the legs require to be pulled far and strongly back, as in diving and cursorial motions, the origins of the requisite muscles are extended far behind the limbs' centre of motion, as in the pelvis of the Grebes, Loons, Guillemots, Ostriches, Emeus; when the bird slowly stalks, or hops, or elimbs, or uses the legs chiefly in grasping and pereling, the pelvis is short and broad, especially belind, and its breadth may exceed its length (Cyclarius guanensis).

The eaudal vertebre are few, short, not produced into a conspicuous appendage, the so-ealled 'tail' of birds being due to the feathers attached to the terminal vertebre; these, in birds of flight, coalesce to the number of two or more, and form a eompressed vertically extended bone, like a plough-share, ${ }^{1}$ fig. 23, a, presenting a concave surface to the anteeedent eentrum; rising above as a sharp crest, anteriorly perforated by the termination of the neural canal; expanding below and there perforated by the hemal eanal which terminates by one inferior and two lateral orifices. This compound bone, ' os cn soc de eharrue,' supports the coceygeal oil-glands, and gives attaehment to the 'rectrices' or rudder-quill-feathers, which are disposed fan-wisc. In the Woodpeckers the hremal part extends far in advance of the articular surface of the eentrum, and expands into a broad subquadrate plate concave below; the neural part forms as large a vertical $p^{\text {late }}$; this relates to the use of the stiff tail-feathers in elimbing. The horizontal developement prevails in the Peacoek. Reckoning the terminal bone as one, the common number of eaudal vertebre is nine. The anterior ones have vertically extended transverse proeesses ineluding di- par- and pleur-apophysial elements; the neural arch has prezygapophyses, very small postzygapophyses, and a short and thiek neural spine. In the third or fourth vertebree caudal hamapophyses appear, increase in length, and in the fifth or sixth inclose a hemal canal. The transverse processes in many birds inerease in length to the antepenultimate; in a few (Ibis, Uria) they gradually shorten to the last; the eaudal centrums are joined by ligament and are prococlian. In the Toucan the joint between the sixth and seventlo vertebra

[^15]has a eapsule and synovial fluid, and the neural spine is shortest in the sixth, where the tail has the greatest extent of motion vertically, the transverse bend being checked by the size and length of the transverse processes. The neural spines can be brought by dorsal inflection into contact with the sacrum; and in this motion the side-muscles, which at first tend rather to oppose the clevators, become, as the motion proceeds, themselves elevators, and complete it by a jerk; this throwing up the tail upon the back, as if operated on by a spring, is a conspicuous characteristic of the living bird. ${ }^{1}$ In most birds of flight the eaudal series are halitually curved upward, as in fig. 23 ; in the few birds that eannot fly the tail is straight, and the terminal centrum is not expanded. In the Apteryx there are nine eandal vertebrec, which are deeper, and project farther below the posterior portions of the iliac bones than in the other birds: as they recede, they increase in lateral and diminisl in vertical extent ; the spinal canal is eontinued through the first five, and they are all moveable upon each other, excepting the last two, homologous with the expanded terminal mass in other birds, but which here exceeds the rest only in its greater length, and gradually diminishes to an obtuse point. In the Ostrich the corresponding vertebra is expanded for the support of the caudal plumes, but in the Apteryx it offers the same inconspicuous developement as in the Rhea and Emeu. In the 'rumpless' breed of domestic fowl the coecyx is reduced to a single stumpy boue. In some brevipennate sea-birds I have found as many as cleven free caudal vertebre; only in the extinct Archeopteryx of the upper oolitic period was the tail a conspicuous appendage to the trunk, formed by about twenty elongate vertebree, each of whieh supported a pair of small and slender quillfeathers.

The terminal vertebrax, ungrasped by the pelvis in the embryo bird, may equal in number those of the ancient feathered fossil; and if such vertebre participated in the ratio of growth of other parts of the skeleton, without subsequent stunting and confluence, they would more or less repeat the strange and mique feature in the skeleton of Archeopteryx; but the metamorphosis of the tail which las taken plaee in the bird's skeleton in the transition from the mesozoic to the neozoic life-pcriods of the class, is amalogous to that from the protoccreal to the homocercal type of tail, which marks the progress in fishes from the palaozoic to the mesozoie periods. ${ }^{2}$

[^16]§ 127. Cervical Vertebra.-As the prehensile functions of the hand are transferred to the beak, so those of the arm are performed by the neck of the bird; this portion of the spine is therefore composed of numerous, elongated, and freely moveable vertebre, and is never so short or so rigid but that it can be made to apply the beak to the coccygeal oil-gland, and to every part of the body for the purpose of oiling and cleansing the plumage. In birds that seek their food in water it is in general remarkably elongated, whether they support themselves on the surface by means of short and strong natatory fect, as in the Swan, or wade into rivers and inarshes on elevated stilts, as in the Flamingo, fig. 14.

The articular surfaces of the bodics of the cervical vertebres, like those of the dorsal series, are coneave in one direction and convex in the other, so as to lock into each other, and in such a manner that the superior vertebre move more freely forward, the middle ones baekward, while the inferior ones again bend forvard; producing the ordinary signoid curve observable in the neck of the bird.

This mechanism is most readily seen in the long-necked waders which live on fish and seize their prey by darting the bill with sudden velocity into the water. In the common Heron, for example (Ardea cinereu), the hcad can be bent forward on the atlas or first vertebra, the first upon the second in the same direction, and so on to the sixth, between whieh and the fifth the forward inflection is the greatest; while in the opposite direction these vertebrex can only be brought into a straight line. From the sixth cervical vertebra to the thirteenth the neck can only be bent backward; while in the opposite direction it is also arrested at a straight line: from the fourteenth to the eighteenth the articular surfaces again allow of the forward inflection, but also limit the opposite motion to the straight line.

An inter-articular cartilage is inclosed between rednplieations of the synovial membrane in most of the joints between the bodics of the cervicals, as in the joint of the lower jaw in mammalia. The zygapophysial articulations are simply synovial. The par- and di- apophyses are at the fore part of the vertebre, and, usually at the third cerrical, coalesce with a styliforn pleurapophysis projecting backward. The vertebrarterial canal, thus forned, is large, and gives passage to both the vertebral artery and the sympathetic nerre.

The inferior processes from the cerrical centrums are of two linds; one single, developed from the mid-line, usually toward
the back part, and answering to the 'hypapophysis' in lizards; the other parial, developed from the under part of the vertebrarterial canal, answering to parapoplyses, bent or directed downward, after coalcscing with the pleurapophysis. In a Vulture (Gyps fulcus), the latter inferior processes begin at the sixth eervical, and are continued to the thirteenth; the hypapophysis begins at the sceond, and is continued to the fiftle, where it is reduced to a low ridge. In the Guillemot the hypapophysis exists as a ridge or process in all the cervicals. In the $\Lambda_{\text {pteryx }}$ the single hypapophysis for the attaelunent of the longus colli anticns is present in the last three vertebre, as in the eontiguous dor*als. The parapophysial arell for the protection of the earotid arterics is mont complete in the twelfth cervical, but the two sides of the arch are mot anchylused together ; the interspace progressively increases in the cleventh, tenth, and nintl vertebre, and the groove widens and is lost at the fifth vertebra. In many birds the parapophyses after forming the sides of a wide canal in the middle cervieals, eonverge and unite to inclose a hemal eanal, as in the lower eervieal vertehra of the Peliean, fig. 25.

The neural arch in most of the eervieals developes, in addition to the spine, ib. $n s$, zygapophyses, ib. z, and diapophyses ib. t, also anapoplyyses, or tubercles, above the posterior yygapophyses. The areh is, in some vertelra, strengthened by bony plates, one of whiel may be specified as 'interzygapophryinl,' and this may be perforated vertically, as in the second, third, and fourth cervicals of the Hornbill (Buceres), and in the third and fourth cervicals of the Vulture, and many other birds; the neural arch thms becomes remarkable for its breadtli, and the square or quadrate platform of bone from which the suall and short neural pine rises. In one or more succeeding vertcbre the incomplete 'interay gapophysial' bar projects baekward as a process or tubercle from the prezrgapophysis. The prezygraphyses look upward and inward; the postzy gapophyses downward and ontward; the neural spine is feebly developen, if at all, in the middle of the cervieal region ; it is most emspicuons in the second to the fifth, and again in the last two or thrce cervicals. In the Λ_{p} teryx it is thick and strong in the second, but progressively diminishes to the serenth, eerrical, where it is reduced to a mere tubercle; from the eleventh it progresively increases to the last eervical, in which it presents
the strong quadrate figure which characterizes the same process in the dorsal vertebre. The neural canal, ib. n, varies in form and diameter in the same vertebre. If, c.g., the sixth ecrvical of a Stork be sawed lengthwise vertically, the diameter is greatest in the middle, least at the ends; but if it be sawed lengthwise horizontally, the transverse diameter is the reverse, being narrowest at the eentre and widest at the ends. In the Ostrieh, the Swan, and many other birds, the canal widens in every direetion at its extremities; and on the dorsal or posterior aspect of the spine, the canal remains open for some extent in the intervals of the vertebræ, the myelon being there protected only by membrane and the elastic ligaments which conneet the neural spines together. This modification subserves the prevention of compression of the myelon during the frequent, varied, and exteusive inflections of the neek in birds.

The atlas and axis speedily effeet a partial coaleseenee; the body of the first, e.g., as an 'odontoid process' to that of the second, and usually presenting a pair of small facets to articulate with its own neurapophyses, which are mainly supported by the 'hypapophysis' simulating the entire eentrum of the atlas. The back part of the hypapophysis offers a flat surface to the centrum of the axis, beneath whieh it is slightly produced, being here wedged into a notch between the true bodies of the atlas and axis. The fore part of the hypapophysis combines with the neurapophyses to form the major part of the cup for the eondyle of the occiput, whieh is eompleted by the 'odontoid.' The atlantal neurapophyses usually diverge as they rise, and are joined together above by a broad plate slightly arching across from one to the other; in some (Aptenodytes, Dinornis) they do not meet: rarely is a neural spine developed. The eentrum of the axis is sometimes earinate below with a slight posterior production (Alca impenis), sometimes produced into a hypapopysis, as long as the neural spine above (Aptenorlytes, most Raptores.) Postzygapoplyses of the athas articulate with the prezygapophyses of the axis. In a Hornbill (Buceros) I lave seen complete coaleseence of the atlas and axis.
§ 128. The Skull.- The neural and hemal plates of the embryonie trace become modified in the head of the chick by the early expansion of the eerebral part of the neural axis, and by the almost contemporary appearance of the capsules of the organ of hearing, which are specdily followed by the rudiments of the eychalls. The neural plates are dilated by the primitive vesicles of the ep- mes- and pros-encephalon, the latter speedily showing its
greater size and bending down. The notochord extends into the hind part of the future basis cranii, its gelatinous axis terminating at the bend; but the blastemal eapsule-the true seat of the histologieal changes resulting in vertebral structure-is continued forward, expanding, dividing below the part of the vertical cerebral canal called 'infundibulum,' and again uniting anteriorly to form a vertical plate extending between the eye-capsules and beconing lost in the deflected fore part of the cephalic blastema. At this stage neural segments are not shown. The hamal ones appear as the so-called 'visceral arches' of the head. The foremost is incomplete below at the 'blastemie' stage, and is represented by a pair of oltuse lobes or buds beneath the eyes; the next is larger and becomes closed below; a third, a fourth, and a feeble indication of a fifth, correspond with the primitive vascular arches, and are more truly 'visceral' than 'vertebral.' Of the latter significance is that which descends on each side the heart itself, and is soon indicated by the buds of the appendages which become articulated with such "scapular" arch.

The eartilage formed round the fore part of the notochord, extends neurad, and attains great thickness at the sides of the eraminm in comection with that of the acoustic capsules; it becomes thinner as it rises, and the primitive tissue closes the expanded cranial cavity. The cartilage behind the ear-capsnle is of the hindmost neurapophysis: that in front of the eapsulc is of the next; that which is formed at the optic foramen is the third in advauce: these latter neurapophysial cartilages are formed in the blastemal walls of the eranium distinct from the notochordal eartilage. This, advancing along the base of the skull, follows the disposition of the extensions of the notochordal capsule, and bifureates into the so-ealled 'trabeculæ' (vol. i. figs. 58-60, 5, 5), which again mite to form the basis of the nemral arch and apex of the hamal arch of the formost segment of the skull; it becomes compressed between the eyes, and expands in advance of them, the end of the hromal closing up to that of the neural arch in a way which reminds one of the modification of the vertebral axis at the opposite end of the column. Here, however, the nature of the Bird overrides that of the Vertebrate, and every subsequent step in cranial developement relates to adaptive conditions of vertebral elements and appendages. Distinct cartilages in the buds or piers of the foremost hamal arel form the basis of the palatomaxillary bones. The palatine cartilage arches outward and backward, like that marked ${ }^{24}$ in fig. 60 , rol. i., and in it is developed the pterygoid. The eartilage in the sccond arch forms
the basis of the tympanie and mandible; that of the third areh forms the stylo-hyal, rarely ossified in birds, and in connection with it is developed the 'stapes.' The produet of the fourth is homologous with a branchial areh in the fish: but further evidence of such eonformity with the segmental strueture of the trunk-skeleton as is diseernible in the mueh modified anterior termination of the body is given by the ossifie centres established in the primordial eartilages; and by the speeial homologies, determinable prior to confluenee, of the bones developed therefrom, with the skull-bones of the lower cold-blooded Vertebrates, which retain their distinetness and depart less from the arehetypal arrangement.

Although, as a general rule in the elass Aves, the separate eranial bones ean be discerned only at an early period, yet in those birds in which the power of flight is abrogated, the indieations of the primitive eentres of ossification endure longer; and in the speeies here seleeted for the illustration of the eranial

segmentr, the eonstituent bones of the skull, with the exeeption of the basioccipital, 1 , the basi-pre-sphenoid, 5, 9, and the bones 2,6 , and 8 , which coalesce with the petrosal, i6, have been separated by maceration merely in the half-grown bird.

The basioceipital, figs. 26, and 27, 1 , developes the major part of the single artienlar condyle, and sends down a process, more marked in the Struthions genera, and especially in Aptormis, than in most other birds: in all respeets this prinitively distinct bone retains the charaeter of the centrom of its vertebra.

The exoeeipitals, figs. 26 and 27,2 , eontributing somewhat more to the oecipital condyle than in the Crocodile, develope, as in that reptile, the paroccipital, figs. 27 and 28,4 , as an outstanding exogenous ridge or process: but it is lower in position than in the Croeodile (vol. i. p. 135, fig. 93). The superoccipital, figs. $26,27,28,3$, as compared with
 that of the Crocodile, ib., manifests more strongly the flattening and developement in breadth, by which the spinous elements lose the formal character from whieh their name originated, and are converted from long into flat bones. It always protects the cerebellum; is absent in the Frog, where this organ is a mere rudiment ; and is present in the Crocodile in the ratio of the superior size of the eerebellum. The further developement of the ccrebellum is the condition of the superior breadth of the spine or crown of the epencephalie areh, fig. 26 , m , in the Bird.

Of the three bones above defined, 2 is developed in the back part of the cartilage inclosing the ear-capsule, and all bear the same relation thereto, in the primordial cranium, as Nos. 1, 2, 3, 4, in Chetomia (p. 131, fig. 92), and as Nos. 1, 2, 3, in the Crocodile (1. 135, fig. 93). No. 2, in the Bird, as in the Crocodile, includex, commately developed therewith, the bone 4, in the Emys. A hasal view of the eprencephalic arch is given in the young Ostrich, fig. 27, showing the proportions in which the centrum, $1 . x$, the neurapopliyses 2,2 , and the neural spine, 3 , enter into the formation of the neural canal or 'foramen magnum,' I. The connate element, 4 , stands out, like 4 in figs. 81 and 92 , as the transverse process of the neural areh.

The secoud segment of the skull has for its eentral element a loue, fige. $26,27,5$ (hisisphenoid), ossified, like some trunk-
eentrums, from three points, ${ }^{1}$ and in the Bird, as in other Ovipara, beeoming eonfluent with that, 9 , whieh stands in the same relation to the third eranial segment ; the pit for the pituitary body marks the boundary; but the essential distinetion of these eentrums is given by the neural and hæmal arehes. The neural areh of the parietal vertebra retains the same eharaeters which it first manifested in Fishes. Besides the neurapophyses, 6 (alisphenoids), impressed by the meseneephalie ganglia and transmitting the ehief part of the trigeminal nerves, besides the rastly expanded and again, as in Fishes, divided neural spine, 7 (parietal bones), the parapophysis, 8 (mastoid) is originally distinet. It has a similar proportional size to that in the Croeodile (vol. i. figs. 93, 95, 8); but owing to the raised dome of the neural areh, is relatively lower in position ; it extends apophysially downward and outward, is ussified with the petrosal, and forms a large proportion of the outer wall of the otoerane. Owing to the breadth and shortness of the bird's brain, and the displaeement of the optie lobes, the neurapophyses of the mesencephalon, 6 , converge toward each other anteriorly, and support part of the neural spine of the proseneeplialon, 11, as well as their own, 7. On eomparing a side

view of the eranium of the Bird, fig. 28, with that of the Tortoise (vol. i. fig. 91), and Croeodile (fig. 95), the greater developement of the epeneephaton brings its neural areh, 2,3 , into view, which is obscured by the growth of the apophysial part of 8 , in the coldblooded Ovipara: but the eonneetions of 8 with 2 behind, with 7 above, and with the ear-eapsule within, are the same; the latter, however, being ossified in the Bird, but retaining its gristly state in the Tortoise.

[^17]The hamal areh of the parietal vertebra, fig. $26,40,43$, is more reduced than in the Crocodile, and owes muel of its appareutly typieal character to the retention of the thyrolyals, 46, 47, borrowed from a branchial arch of the viseeral system, which arches are transitority manifested in the embryo bird. These spurions cornua project freely or are freely suspended.

The bones, 10 (orbitosphenoids), of the third neural arch coalesce with each other, and with the centrum below, protect a smaller proportion of the prosencephalon than in the Crocodile, but maintain their neurapophysial relation to it and to the optic nerves, below the exit of which they begin to ossify. The neural spines, 11 (frontal), cover a larger proportion of the hemispheres, aud, with their homotypes, 7, exhibit a marked increase of developement in couformity with that of the cerebral centres protected by their respective arches. The parapophysis of the frontal vertebra, 12 (postfirontal), is relatively smaller in the Bird than in the cold-blooded Vertebrates, and is rarely ossified from an independent centre, as it is in the Emen. The hamal arel of the frontal vertelra, receding from its typical position as the IIcmatocrya adranced in time and in developenent, is now wholly transferred to the parictal one ; its pleurapophysis (28, the 'tympanie'), which is simple, as in the Crocodile, articulates with the parietal parapophysis, 8 (mastoid), though this in some Birds unites witl that of the frontal vertebra, 12 . The bone, 28 , is the chicf and most direct osseous developement from the proximal portion of the cartilage of the tympano-mandibular visceral areln : the special appendages of the acoustic organ are developed, as in the Lizards and Snakes (vol. i. fig. 444, B, e), in connection with, but not in or from that cartilage. In the ronng Ostrich and many other birds traces of the composite character of the hamapophysis (mandibula) are long extant; and bear obviously a homological relation to the teleologically compound character of the same element in the Croeodile: the pieces, Nos. 29, $29{ }^{\prime}$, 30^{\prime} and 31, first eoalesce with each other, and then with the hamal spine (22 , 'dentary element'), the halves of which are confluent at the symphysis.

The ecutrum, (13, 'vomer') of the masal vertebra is single, and usually coalcsees with the nemrapoplyses (prefrontals), 14, and plemapoplyses (palatines), 20, of its own segment, and with the rostral production of the frontal centrum, 9 : it is elongated and pointed at its frec termination, and deeply grooved above where it receives the above-naned rostrum; indicating botli hy its form and porition that it owes its existence, as bone. to the ossification
of the under and outer part of the anterior production of the notochordal capsule. In the young Ostrich the presphenoidal rostrum intervencs betwcen the romer, 13, and prefrontals, 14. These latter bones manifest the essential neurapophysial relations to the rhinencephalon and olfactory nerves: but they carly coalesce together and with the rhinal capsules, as in the tailless Batrachians. The anterior contraction of the cranial cavity, which affects the orbito-sphenoids, influences still more the prefrontals, and, in connection with the large relative size of the crecapsules, becomes the condition of the extreme modification of the neurapophyses of the foremost cranial vertebra. The neural spine (nasals), 15 , is divided along the middle line; but in most Birds the suture becomes obliterated and the spine coalesces with its neurapophyses, with the frontal spine, and with those parts of the hromal arch of the nasal vertebra with which it comes in contact.

The pleurapophyses (palatines), 20, of this inverted areh retain their typical connections with the nasal centrum and nemrapophyses at onc end, and with the hemapophysis (maxillary), 21, at the other end, and they also support the constant element of the diverging appendage of the arch (pterygoid), 24. The hrmapophysis (maxillary), 21, resumes in birds more of its normal proportions and elongated slender form, as such : but the hamal spine(premaxillary), 22 , is largely developed though undivided, and sends upward and backward from the part eorresponding to the symphysis of the spine, a long pointed process, 22^{\prime}, which joins and usually coalesces with the neural spine, 15 , and divides the anterior outlet of the hremal canal into two apertures called the nostrils. The modification of the hemal arch of the nasal vertebra in the Lizard tribe is here repeated. The pleurapophysial appendage (pterygoid), 24, ennnects the palato-maxillary arel with the tympanic, and in the Ostrich and some other birds, also with the basisphenoid, 5 , and fig. $27, f$: the second or hemapophysial ray of the diverging appendage (malar and squamosal) is developed in all Birds, as in the squamate Saurians, combining the movenents of the hamal areh of the nasal vertehra with that of the frontal vertebra, and consisting of the two styliform ossicles (malar, 26 , and squamosal, 27), which extend from the homapophysis, fig. 28, 21, 21", to the plenrapophysis, 28 : the csscutial relationslip of the compound ray, 26 and 2 , with the nasal vertelna, is indieated ly their l,coming confluent with its homapoplysis, at $21^{\prime \prime}$, whilst they maintain an arthrodial articulation with the plenrapophywis, 2s, if the succeeding vertebra.

The bones of the splauchno-skeleton interealated with the
segments of the endoskeleton in the bird's skull are the petrosal, 16, between the neural arches of the occipital and parietal vertebre, comnate or co-ossifying with the elements of those vertebre with which it comes in contact; the selerotals, 17, interposed between the frontal and nasal neural arches; and the thyrohyals, 47, retained in connection with the debris of the homal areh of the parietal vertebra. The olfactory capsule may be represen ed by ethonoturbinal and turbinal processes in the skull; but chiefly remains cartilaginous. The dermal bone (lacrymal), 73 , is well developed and constant: one or more superorbital dermal bones are occasionally present.

As the characters of the occipital segment of the bird's eranium are so obvionsly those of the vertehral nemral arch as to compel acceptance of the interpretation of its elements according to the terms of general homology, there is à priori probability in the segmental type being continued to the front end, as it is to the hind end, of the vertebral axis, notwithstanding the modifying influcnces of the large intercalated sensc-capsules, and of the special uses to which certain of the lower bony arches are destined in the head. Developement, obedient to these demands, gives such evidence as it can in favour of the presumption, while relative position and comections afford the proof. In the foregoing description I have, therefore, explained the chief constitution of the bird's skull in the terms of general homology, and I proceed to point out some of its principal modifications in those of special homology.

The occipital condyle is single in Birds, varying from the hemispheroid to the transversely elliptic form, with sometimes a median notcl or pit, and in the extent to which it projects; being pedunculate in Dinornis, ${ }^{1}$ but sessile as a rule. The foramen nagnmm varies from a subcircular to a fill transverse ellipse, and to a vertically oval (Dinornis giganteus) form, with lateral encroachments as in Aptornis ${ }^{2}$ and Didus; ${ }^{3}$ its plane may be vertical (ib.), but as a rule is oblique from above downward and forward, thus departing further from the reptilian character. The basioccipital in the extinct Aptornis scuds down, as in the Crocodile, a deep phate below the condyle: it descends in a less degree in Dinornis, in both swelling out laterally into a pair of tuberosities, completed by ossifications in the basisphenoid cartilage which afterwards coalesce. ${ }^{4}$ As a rule the eondyle is on a level with the basis cranii. The paroccipitals in the low flat cra-

[^18]nium of Dinornis retain mueh of their crocodilian position, but they hold a lower one in the loftier domed erania of other birds: they vary in the developement of their apophysial part, standing further out, e.g., in Rhea and Struthio, than in Dromaius. The oceipital region is bounded above by the arehed ridge formed by the insertion of the museles longus colli posticus and complexus, in large and powerful birds; and is bisceted, as, e. g., in the Eagle, by a median-vertieal ridge dividing the transverse one into a pair of areles: in Dinornis a prominence between the insertions of the longus colli posticus and complexus subdivides the transverse ridge into four arehes; and, here, a lower transverse ridge, bounding the insertions of the recti cap. postici and trachelomastoidei, overarches the foramen magnum. ${ }^{2}$ In smaller and less robust birds a cercbellar prominence marks the middle of the occipital region: in some species the pressure of the brain from within, and the muscles from without, reduees the thin, bony wall in some places to its membranous lining, leaving openings in the dry skull commonly on each side of the cerebellar prominence. These have been termed 'fontanelles,' as if they were due to original arrest of eranial ossification, but the latter explanation applies to openings, usually reduced to a venous outlet, between the exoceipital and mastoid. In certain Doves, Owls, Parrots, and the Dodo, there is a median 'superoecipital' foramen, usually accompanied by a pair of venous foramina.

The basisphenoid chiefly differs in the presence or absence of 'pterapophyses.' ${ }^{2}$ They are longest in the Struthionida, fig. 27, $j,{ }^{3}$ are short and thick in Dinornis and $A p t e r y x$, and abut against the tympanic end of the pterygoids; they are shorter in Grallatores (Vanellus) and Rasores (Columba, Tinamus, Syrrhaptes), and their abutment is nearer the middle of the pterygoids; they are absent, or are too short to reach the pterygoids, in the Dodo, Owls, Diurnal Raptores, and most other Birds. In the Emou, Apteryx, and Dinornis, the basisphenoid shows a median perforation. The sides of the basisphenoid, obliqnely grooved by the Eustaelian callals (Dinornis) and excavated to form the base of the tympanie eavity, in some birds extend outward to the tym$p^{\text {ranic }}$ process of the mastoid, aud with it grasp the hinder condyle of the tympanic.

The mesencephalic fossa and the 'foramen ovale for the transit of the fifth or trigeminal nerve indieate the alisphenoid, fig. 28, 6,

[^19]and its general homology as a 'neurapophysis;' its extent and connections are shown in fig. 8, p. 22, of cxt, and in the specimen, No. 1363, of xliv; it articulates below with the basisphenoid, behind with the mastoid, 8 , and petrosal, above with the parietal, 7, and frontal, 11, in front with the orbitosphenoid, 10 , combining with it to form the foramen lacerum anterius, through which orbital portions of the fifth nerve pass; and which usually blends with the common foramina optica, encompassed in great part loy the orbitosphenoid.

The homology of 8 , figs. 25, 28, 31, with the bone so numbered, and called 'mastoid' in vol. i. figs. 75, 81, 91, 92, 93, 95, and 97, is plain; it forms part of the cavity for the otic eapsule, as in Fishes, and part of the tympanic cavity, as in the air-breathing Hematocrya. As in Reptiles, it offers the articular cavity to 28, a relation partially fulfilled in Fishes; it sends off the second, counting forward, of the great outstanding processes for the insertion of muscles from the trunk and neek; it is developed in and from the thick lateral cartilaginous mass of the primordial cranium, connately with the otic capsule (petrosal). Besides the 'mastoid process,' figs. 27, 29, 8, a second so-ealled 'tympanic process' is developed in some Birds. ${ }^{1}$ The articular cavity for the bone, 28 , is single in Apteryx, Dinornis, Struthio, and a few other birds, but double in most; in Aptornis there are three articular surfaces. ${ }^{2}$ The mastoid process varies in shape and size; in a few birls, as in Calyptorhynchus and Aptornis, it repeats the secondary character more commonly seen in Reptiles by uniting with the third cranial diapophysis, 12 , and forming an upper zygomatic arch across the temporal fossa. ${ }^{3}$ The optic foramina indicate the orbitosphenoids, which, like neurapophyses of the trunk, in certain instances, coalcsce below and divide their segment of the neural axis from the vertebral centrum. In Birds they are uplifted, as in the Perch (vol. i. fig. 85, 10), far above the representative, 9 , of their centrum. The divergence of the neural lamine above the median confluence, to support the prosencephalon, is well slown in cxl. fig. 8 , and in the specimen, No. 1363, xliv., p. 262. In the antecedent neurapophyses, 14, the tendency to median confluence increases, and they beeome confluent not only below, but above their segment, encompassing the canal, foramen, or formina, for the olfactory nerves (rlii-

[^20]neneephalic prolongations of the neural axis), and in some birds expanding above, and appearing, as in Batrachia, on the exterior of the eranium, as between 11 and 15 , in fig. 29, and at 14 , fig. 31. The eonfluent prefrontals, fig. 28, 14, support the fore part of the frontals, 11, and a greater proportion of the nasals, 15 ; they are in most birds raised far above the (hy ${ }^{\text {na- }}$ pophysial) ossifieation of the lower cortieal part of their eentrum, ealled the ' vomer,' fig. 32, 13, the large eyeballs, and their thin but deep interorbital septum, being interposed; this septum is ossified in different degrees in different birds. The typieal position of the prefrontals is retained in Apteryx and Dinornis. The eondition of the prefrontals in some fishes (Xiphias) ${ }^{1}$ will aid the eomprehension of the developement of the prefrontals between the orbits in these wingless birds. The frontals are large, triangular (fig. 29, 11), or subrhomboid, plates. The post-frontal appears as a distinet bone in some hirts (Emeu) ${ }^{2}$ fig. 31, 12; it varics mueh in length ; it bends down, and is the longest of the three eranial diapophyses in the Eagles; it eurves forward, meets, and eoalesees, with a baekward production of
 the laerymal in some Parrots, fig. 30, og.

The nasal bones rarely unite with each other in any proportion, fig. 29,15 ; in most birds they are separated by the union of the nasal proeess of the premaxillary, 22^{\prime}, with the frontal or prefrontal: save in the Emeu, fig. 31, 15, ${ }^{3}$ and some other Struthionida, the nasal bifureates anteriorly to form the hind boundary of the nostril, and the hinder prong deseends to join the maxillary, dividing the nostril from the antorbital vacuity.

The premaxillary, fig.. 28-32, 22,
 upon which the upper mandible is moulded, follows, in a minor degree, all the varieties of that mueh diversified part iṇ Birds: it

[^21]is a single bone, expands from before baekward, and divides into a superior and medial nasal process, ib. 22^{\prime}, and a pair of inferolateral maxillary proeesses, ib. 22; the interval between the nasal and maxillary processes being the fore part of the outer bony nostril. The nasal process indicates by a median slit or groove the typical duality of the bone in the Gallince and a few other birds: the maxillary process usually sends off a 'palatal' plate, fig. 32, 22.

The maxillary, figs. 27-32, 21, is a small and nsually slender bone, anteriorly expanded and engrained into the notch between the maxillary and palatal processes of the premaxillary: usually uniting also with the nasal, and in some birds with the lacrymal, 73 , and vomer, 13 ; it then bifureates posteriorly on the horizontal plane to join the malar, 26, and the palatine, 20 . The palatine process sometimes developes from its upper surface a turbinal structure. In the Rhea the palatine plate of the maxillary is perforated : in the Emcu, Ostrich, Apteryx, and in most birds, it is entire: it is of great breadth in the Night-jars (Chmimulgus, Podargus), and is both long and broad in the Apteryx. In Struthio and Rhere the maxillary sends upward a process towards the nasal, the descending maxillary process of which is wanting.

The palatines, fig. 32, 20, articulate by a lougitudinally grooved mesial surface to the vomer, 13 (Emen), more commonly to both this bone and the presphenoid, or to the latter only: they give attachment posteriorly to the pterygoids, 24 : they diverge as they extend forward, developing a ' meatal' plate mesially, which partially bounds the posterior nostril, and a 'muscular' plate externally for the attachment of the entopterygoideus; they then extend forward, parallel or converging, to join the maxillaries, and sometimes also the vomer, and there complete the roof of the mouth. In the Struthionide the 'palatal' part is short aud broad; arti-
eulates laterally with the maxillary, and, as it retrogrades, expands, mesiad, to abut upon the presphenoid (Struthio) or hind part of the vomer (Dromaius, fig. 32, 13), and to articulate with the pterygoids: the palatines nowhere meet in the median line, and the neatal process is wanting. In the Apterys the palatines coalesee anteriorly with the maxillaries, posteriorly with the pterygoids, have a straight outer and a concave inner border, from which, posteriorly, is continued the 'meatal ' plate curving inward

and forward, obliquely, about the hind part of the meatus, and applying itself mesiad to the vomer and presphenoid. In Natatores, and most Grallatores, the palatines meet each other posteriorly, for a short extent, before diverging as they advance to bound posteriorly the palatine nostril. In the Pelecunide the mesial union is extensive beneath the presphenoid and vomer. In Tinamus the palatines join behind; they there touch each other for a shorter extent in Columbide; but in most Gallinacea they are kept apart by the presphenoid. In Podargus and some other Fissirostrals the palatines are short and broad, and extensively joined together behind the small palatal nostril. In Raptores the palatines meet behind beneath the presphenoid and vomer : the meatal plate developes a ridge, deseending, to inerease the eoneavity of the entopterygoideal surface, the onter border of which also deseends; and these carinal boundaries of that surface are found in many birds. The extent of the palatine plate varies in different birds; it is largest in Struthionide, large in Raptores, and least in the Galline: in the Tinamous and Pigeons it is of moderate size. In the Emeu it has a large vacuity; ${ }^{1}$ it is perforate in Tinumus, and in some Grallatores.

The pterygoils, figs. $27,32,24$, articulate with the onter aud hinder angles of the palatines by a squanous overlapping

[^22]suture in Struthio, where they are wide apart, and pass almost parallel backward to join the pterapoplysses of the basisphenoid and the tympanies; developing a broad plate mesially to abut npon the presphenoid: their palatine ends are nearer each other, and their course to the tympanics more divergent, in the Emeu, Apteryx, Hemipode: they touch each other anteriorly in some birds; and, in a few (Podiceps, Sula, Ibis, Argala, Scolopax), have a short extent of mutual junction before diverging. In Thea the fore part of the pterygoid is slender, is attached to the vomer and presphenoid, traverses oblitpuely the upper surface of the palatine plate, with which it ultimately coalesees, and becomes engrained between the pterapoplyssis and orbital process of the tympanic before abutting upon the inner and lower condyle of that bone. In general the pterygoids are straight and slender; they diverge at an open angle in Raptores, at an acute angle in Colymius, are nearly parallel and longitudinal in Struthio, with iutermediate relative positions in other birds. In Raptores their connections are limited to the essential terminal ones with the palatines and tympanies: in some other birds they articulate, oecasionally by a distinct process, with pterapophysial extensions of the basisphenoid, limiting the movement of the tympanic, and adding strength and fixity to the upper mandible: in most birds there is a prominenee or process from the hinder border for ligamentous attachment to the basisphenoid. In Rhea there is an artieular process for the orbital plate of the tympanie. The tympanie joint is double in Pheasants and Plovers.

The bone, figs. $28-32,26$, answering to that so numbered in figs. 91, $92,93,95$, vol. i., is a straight, slender, usually triedral, style in birds, articulating with 20 by one end and with 27 by the other, and in some birds being joined by a deseending process from the lacrymal. It combines all the essential homologieal characters of the 'malar',' those, viz., derived from relative position and conncetions; and exemplifics the unimportance of configuration: showing the opposite extreme to the sealc-like shape of the bone in the Turtle, fig. 91, 26, vol. i. The malar of the Crocodile, fig. 95, 26 , offers an intermediate modification of form. The malar in the bird overlaps the maxillary by an oblique suture, as in the Reptiles.

The zygomatic conneetion between the maxillary and tympanie is completed by the bone, figs. 28-32, 27, whielh has the same slender figure as 26 , with which it early coalesees; but preserves a moveable artieulation with 28 by a convex condyle adapted to the acetabulum on the outer side of the tympanic. The two
boncs, 26 and 27, which become blended together in young Struthionide before the confluence with the maxillary is complete, extend backward in all adult birds, usually in a straight line, from the maxillary to the tympanic. In the Cassowary the zygomatie arch presents a slight expanse and outward bend of the squamosal; in Didus it shows a slight downward as well as outward bend. In some Parrots and in Hornbills (Buceros), the malo-squamosal zygomatie style, fig. 30, l, has a moveable cotyloid joint at both ends; in some Caprimulgi it is anchylosed at both ends.

In the birds in which the upper mandible is moveable, either, as in Parrots, by articulation, or as in many other birds by flexibility of the nasal process of the premaxillary, the movements of the tympanie, to and fro, upon its proximal joint, are transferred by the zygoma to the maxillary, and by the pterygoid to the palatine: and thus by the forward rotation of the tympanie the upper jaw is raised, at the same time that the lower jaw by the action of the digastricus may be depressed.

Beforc anatomy had reached its homological phase, ornithotomists called the zygromatie styles 'ossa communicantia,' and the pterygoids 'ossa homoidea, seu interarticularia;' the following bone was termed ' os quadratum.'

In the tympanie, figs. 28, 31, 28, are to be noticed the 'mastoid' and 'mandibular' ends, and the intermediate body giving attachment at its back part to the ear-drum, and sending from its fore part the 'orbital' process. The mastoid artienlar end is obliquely extended from behind forward and outward: the body slightly contracts below ; then expands and bccomes triedral at the setting off of the broad compressed angular orbital process: below this process the mandibular end is much expanded, chiefly transversely: it presents two articular surfaces; the ontcr one, elongate or reniform, partly coneave, partly convex; the inner onc a shortcr elliptic or oblong convexity; the intermediate nonarticular traet varies in different birds. On the outer side of the mandibular cnd is a hemispherie articular eavity for the 'squamosal.' In most birds the mastoid condyle is divided into two, the inner and posterior encroaching upon the paroccipital, and showing, in an interesting way, the course of retrogression of the tympano-mandibular arch from the fish to the warmblooded ovipara. Most C'ursores and Rasores, Apteryx, ${ }^{1}$ Pezus, Rhynchotis, have but one condyle, as in Lizards. The ear-drum is attached to the back part of the perticle obliquely from its outer margin above to

[^23]the inner one below, whence the membrane is continued to the basisphenoid, paroccipital, and ronnd by the mastoid to the tympanic again. A part of the periphery of the drum may show an epiphysial bony rim. In sone birds there is a well-defined flat oral surface on the outer side of the pedicle for a corresponding surface on the mastoid process: ${ }^{1}$ most show a distinct articular surface ${ }^{2}$ on the imer side of the lower part of the base of the orbital plate for the pterygoid: thus, including the squamosal pit and two mandibular condyles, there may be not fewer than seven articular surfaces in the tympanic bone of the Bird. Its orbital process is a greater developement of the anterior lamina of the Crocodile's tympanic, fig. 93,28 , vol. i. ; the size of the process is one of the chief characteristics of the tympanic in the Bird, and shows much variety of shape and proportion in the class. ${ }^{3}$ Its aplex may be truncate (Didus), ${ }^{4}$ or rounded (Dinornis), or pointed (Aquila). A large pmeumatic foranen may be situated on the imer side of the pedicle; or on the linder facet below and between the upper condyles, or in both situations.

The mandible or lower jawbone is ossified usually from nine centres; the allterior being the first to appear, forming the chief and characteristic part, fig. 25, H. iii, of the bone. It bifurcates as it extends backward to form the homologues of the dentary elements, fig. 31,32, which are thus 'connate' at their symplysis. The Pelicans are an exception, and exemplify the normal separate ossification of each dentary, becoming subsequently coufluent for a small extent anteriorly. ${ }^{5}$ The 'surangular,' ib. 29^{\prime}, specdily unites, if it be not conmate, with the 'articular,' 29 : the angular, 30, remains louger distinct, but coalesces first with the articular: the splenial element, 31, coalesces first with the dentary, and retains longest its primitive independence posteriorly.

In the Garefowl (Alca impennis), each dentary retains its liifurcate hind end distinct, the upper prong overlapping the surangular, the lower one the angular ; and these two latter elements are divided by an oblong space partly closed within by the splenial: there is also a foramen at the back part of the surangular. The splenial retains its distinctness posteriorly, and a groove on the lower margin of the ramus iudicates the extent of its forward production to its confluence with the dentary. A racnity between the angular and surangnlar remains in many birds,

[^24]e.g. Cracticus, Anthochera, Lanius, amongst Cantores, but ehiefly in the aquatic, wading, and terrestrial orders (Tetrao, Dinornis, Didus, Notornis, ${ }^{1}$ Porphyrio, Tantalus, Rhyncops, Uria). The Coots show a seeond elliptical vaeuity at the base of the eoronoid rise of the surangular. ${ }^{2}$ In Rhyncops, the long eompressed symphysial part of the mandible deseends below the level of the angular, the lower border of the mandible having a deep notch there. The symphysial part partakes in a minor degree of all the various modifications of the lower mandible. The angular is eliefly extended transversely, and to the inner side of the ramal axis, to form the surfaces adapted to the tympanic eondyles, a deep and smooth depression usually dividing them: the inner joint, in Parrots, is a longitudinal groove; the outer one is a longitudinal convexity. An angular process extends from the inner or medial side of the articular expansion; there is also, in some birds, a similar process from its back part, and this, in the Grouse tribe, especially the male Urogallus, is much elongated and bent up. The temporal muscles are inserted into an elongate rough tract, or slight elevation of the upper border of the surangular: it is rarely raised into a 'coronoid' proeess: but this is eonspicuous in the eonirostral Cantores, and especially in the Grosbeak and Crossbill. The latter bird shows a want of symmetry in the mandibular rami ; and there is a large sesamoid, wedged into the back and inner part of the joint of the lower jaw. ${ }^{3}$

Throngh the arrested developement of the hyoid areh (ceratoand stylo-liyals), the tongue of Birds is not suspended by attached inverted piers, but is slang to the cranium, when its branches are sufficiently long, ly 'thyro-hyals,' usually including the hypo-, figs. 26, 31, 46, and cerato-, ib. 47, branchial elements; they are long and slender. The basihyal, figs. 26, 31, 33, 41, $b h$, is subcylindrical and expanded at the ends; the front end usually presenting a trochlear articular surface, eonvex transversely, concave vertically, for the glossohyal, or for the ceratolyal, or for both elements. The ceratohyal, ib. 40, ch, is always short, usually extending forward from its attaclment as well as backward, and the forward produetion often unites with its fellow, so as to form the basal part of the direct support of the tongue. In this case the glossohyal, ib. 42, articulates with the eeratohyals; rarely also with the basi-hyal, $b h$, as in the (rane, fig. 33, c. The basilyyal is of

[^25]extreme length and tenuity in the Woodpeekers, $\mathrm{ib} . b h, \mathrm{D}$, and supports at its fore end the barbed glossohyal, ib.gh. Sometimes the urohyal, fig. 31, 43 , is confluent with the basilyal (Alca impennis,
 Vanellus, Columba); more often artieulated therewith, or with both basi- and thyro-hyals, fig. 33, c , ull (Grus cinerea). The 'thyrolyals' usually retain the two elements of the branelial areh above eited, and shown in figs. 26 and 31, 46 and 47 , fig. 33, $h b, c b$.

Only in a skull of the extinet Aptornis have I seen an ossified 'stylohyal:' it was anehylosed as a styloid process to the side of the inferiorly produced basisphenoid. ${ }^{1}$

The bone, figs. 26, 28, 29, 31, $i 3$, situated at the fore part of the orbit and piereed or grooved by the laerymal duet, artieulates, when not anelyylosed, to the frontal, nasal, and prefrontal ; it usually sends one proeess from its upper part arching over the upper and fore part of the orbit ; and a second proeess, from its under part, downward to abut upon the maxillary, dividing the orbital from the autorbital vaeuity.

Like the lacrymal in Fishes, this bone in some birds is eonnected with a suborbital frame extending to the post-frontal (Macrocercus, Strigops), fig. 30, o, g, and evell with the mastoid (Calyptoriynnclus, Plyctolopluss, Licmetes, Microglossus aterrimus, Lathemus).
The superorbital part of the laerymal is broad and flat, in Aquita, and articulates with a similar superorbital derm-bone: in Vultur

[^26]it is longer and more slender. In Casuarius the lacrymal coalesces with the frontal, prefrontal, and nasal, but retains its frcedom in other Struthionide. The lacrymal is very large in Dacelo and Trochilus, fig. 18, l.

The skull in the Raptores, especially in the nocturnal division, is short, broad, and high, in proportion to its length, and the cranium is large compared with the face. The occipital foramen is alnost horizontal. The superoccipital muscular depressions are well defined. The temporal fossar are not very deep, and are wide apart superiorly. The cerebral convexities are not strongly marked; the frontal region is flat. A longitudinal furrow extends along the whole upper surface of the craniun in some Owls.

The cranium of the Warblers presents a more regular spliericity, but the interorbital space is very concave. The anterior parietes of the orbits are large, from the size of the lacrymal bone and of the transverse lamina of the prefrontal ; the internal and posterior orbital parietes are defective; the optic foramina are commonly blended into one, and continuous with the larger fissures above.

In the Parrots the upper surface of the cranium is flattened or slightly convex, and greatly extended in breadth between the orbits for the articulation of the naso-premaxillary bone, fig. 30, n.

In the Toucans the cranium slightly increases in breadth to the anterior part where it is joined to the enormous bill. Its superior surface presents an equable convexity. The temporal fosse, like those of the Parrots, are small, and wholly confined to the lateral aspects of the cranium. The postcrior surface, which is absolntcly concave in the Macaws, from the backward extension of the paroccipitals, is slightly convex in the Toucans, where it is separated from the upper surface by a regularly arched ridge. The cercbellar prominence extends over the occipital foramen, the plane of which inclines forward and downward from the horizontal liue at an angle of 45° The circumference of the orbit is uninclosed by bone at the posterior part, the postorbital processes of the frontal not being developed as in most Parrots. The septum of the orbits is very incomplete. The nostrils open on the posterior part of the upper mandible, which presents a smooth entire surface formed by the thin parietes of the dilated cellular osseons tissue.

In the Helmeted Hornbill (Buceros guleatus) the outer surface of the skull is sculptured with irregular furrows and risingo,
recalling the surface of the skull in the Crocodiles. The occiput is concave, and separated by a strongly developed ridge from the temporal fosse, which almost meet at the vertex. The bony septum of the orbits is complete, and formed by two strong plates, separated by an intermediate cellular diploë, except at the posterior part. The optic foramina are distinct; cach is directed transversely outwards.

In the Woodpeckers the cranium is rounded, the temporal fosse shallow, the internal wall or septum of the orbits incompiete, but the anterior boundary is well developed. The posterior facet of the cranium is raiscd. The snperior surface is traversed by a wide furrow extending longitudinally forward, generally to the right, but sometimes also to the left, as far as the lacrymal bone. In some of the larger species of Woodpecker, as the Picus major, L., the cranial furrow is more symmetrical. In the Humningbirds it is double, the hyoidean furrows being separated at first by the cerebellic protuberance, and afterwards by a mesial longitudinal ridge.

The skull is remarkable for its length in the majority of the Waders. In the Herons and Bitterns the occipital region is low, and inclines from below upward and forward; it is separated from the upper and latcral regions by a well-developed, sharp, lambdoidal crest ; and it is divided into two lateral moieties by a slight longitudinal ridge. The temporal fosse are deep and wide, and extend npward to the sagittal line, along which an osscous crest is developed. The cranimm is expanded anteriorly to the above fossæ, for the lodgment of the cerebral hemisplieres, the interspace of which is indicated by a deep longitudinal furrow. The roof of the orbits is expanded laterally, which gives great brealth to this part of the head, but the posterior orbital walls are very imperfect, and the internal walls or septum almost wholly wanting. The optic foramina are blended with each other and with the smaller foramina, which in other birds represent the fordmen lacerum orbitale.

Woodcocks, Snipes, Curlews, and Lapwings resemble Herons in their defective bony orbits; but they want the extended superior parictes of those cavities, and differ much in the almost spherical form of the cranimm, which is smooth and devoid of the miscular ridges characteristic of the fish-feeding Gralle. In this order the premaxillary bones present some of their most eccentric forms. They are narrow, clongated, and curved downward in the Ibises and Curlews; bent upward in the contrary
dircction in the A vosets; extended in a straight line in the Snipes; singularly widened and hollowed out in the Boathills (Cancroma, Balcniceps); widened, flattened, and dilated at the extremity in the Spoonbill; thickened, rounded, and bent downwards at an obtuse angle in thic Flamingo, fig. 14.

Among the Natatores, the Divers (Colymbus), Grebes (Podiceps), and Cormorants (Carbo) show a defective condition of the bony orbits, and of the anterior parietes of the cranium; the septum of the orbits is almost cntirely wanting; in place of the posterior orbital parietes, there are two lacuma leading directly into the cranial cavity, one superior, of large size, and onc inferior, smaller ; they are, in general, separated by a narrow osscous bar, but in the Coulterneb (Fratercula arctica) this is also wanting, so that all the orbital and optic nerves escape by a common opening. In the Pctrels and Albatrosses, the internal and postcrior walls of the orbits are more complete. In the Diometca exulans the optic foramina are separated both from cach other and from the neighbouring outlet. The occipital region is low, and divided into a superior and an inferior facet, the latter being concave from side to side. The plane of the occipital foramen is almost vertical. The occipital or lambdoidal crista is well-marked, and the temporal fosse nearly approximate in the middle linc. In these Sca-birds and in the Gulls, the lateral lacunar in the bony parietes of the face arc very considerablc.

A most remarkable characteristic of the cranium of both the Brachypterous and Macropterous Sea-lirds is the presence of the two deep, elongated, semilunar glandular depressions extending along the roof of the orlits. In the aquatic birds which frequent the marshes and fresh waters, as the Anatide or Lamellirostres, these glandular pits are wanting, or very feebly marked, as in the Swans. They are, however, again met with of large size, though shallow, in the Curlews (Numenius) and Avosets (Recurvirostra) ; and are also found, though of smaller size, in the Flamingo.

The cranial cavity has but a limited range of size in the class of Birds, although an extreme one in relation to the bulk of the body: that of the smallest Humming-bird is proportionally greater than in any other animal, while that of the great Dinornis is almost crocodilian in its contracted area: the size of the cranium, small as it is in relation to the trunk and legs in the giant bird, being expanded to the requisite extent for muscular and other attaehments by a thick pneumatic cellular diploë be-
tween the outer and inner tables. ${ }^{1}$ The owls have a similar developement of diploë : in most birds the firee cranial wall is thin and compact. The cavity is closely monlded to the brain, and shows well-marked fosse for the cercbellum, medulla oblongata, optic lohes, hypophysis, cercbral hemispheres, and, in Dinornis and Apteryx, for the olfactory lobes. Some birds show also a depression rupon the petrosal, which is deep in the Heron. In Dinornis an upper transverse ridge divides the pros- from the ep-encephalic compartment, and a lower one divides the prosfrom the mes-encephalie compartment, which 'tentorial' ridges, being on nearly the same vertical parallel, almost equally bisect the cranial eavity into a wider front and narrower hind division. The roof of the prosencephalic compartment sinks a little into the interspace of the hemispheres, and is here usually grooved by the longitudinal sinus: but in a few birds it developes a bony 'falciform' ridge, which, in Buceros galeatus, e. g., bisects the fore part of the prosencephalic compartment.

The principal foramina observed in the cranium are, in the epencephalic fossa, one or more minute 'precondyloid,' the large formmen for the 'ragus' and internal jugular vein, the meatus anditorius internus; in the mesenecphalic fossa the 'foramen ovale' for the third and second division of the 'fifth,' the 'carotid,' which opens into the deep' sella,' the 'formina,' which transmit nerves to the orbit, not always distinct from the wide foramen opticum; this also being blended with its fellow in many birds; in the prosencephalic compartment, are the rhinencephalic foramina, which, in Apteryx and Dinornis, from the backward extension and interorbital position of the enormons olfactory chambers, become 'rhincncephalic fossx,' distributing thereto olfactory nerves by a 'cribriform 'plate.

The tympanic eavity is formed by the paroceipital, basi- and ali-sphenoids, petrosal, mastoid, and tympanic. It presents the stapedial canal leading to the 'fenestra ovalis;' and pmeumatic apertures by which the air from the Eustachian tube is conducted to the pericranial diploë. The 'petrosal' as the osseons capsule of the acoustic organ, and the 'stapes,' with the cartilaginons 'incus' and 'mallens,' as appendages thereof, will be noticed in connection with the sense-organs.

The orbits are large and lateral, but eneroach upon the anterior wall of the cranium, the cyeballs moulding it into a pair of coneavities looking forward and usually a little downward and out-
ward, with extreme thinning and sometimes partial loss of bone. The roof of the orbit is formed by the frontal, prefrontal, and lacrymal ; the hind wall by the frontal, ali- and orbito-sphenoids; there is no bony floor; but the eycball rotates on a sort of aircushion resting upon the palatal, the pterygoid, and the orbital process of the tympanic. The bony septum is usually more or less incomplete, and the orbital freely communicates with the temporal vaeuity. Only in a few speeies is the periphery of the orbit completed by bone, as in certain Maccaws and Coekatoos (Macrocercus, fig. 30, Plyctolophus, Calyptorhynchus); the lacrymal extending to the postfrontal as a continuous suborbital bar. In the Woodeock the large lacrymal so extends the front wall of the orbit as to cause it to look a little backward as well as outward: and the orbits are so large as to push the brain-case to the lower and back part of the cranium. In the Owls the postfrontals have the form of broad thin plates, compressed from before backward, and unusually produced downward to increase the wall of the large orbit and give it a more anterior aspect. In most diurnal Raptores the upper wall of the orbit is supplemented by a dermal oblong flat superorbital bone, ligamentously connected with the lacrymal. The orbits are smallest and worst defined in the nocturnal small-eyed $A p t e r y x$: there are no superorbital ridges, no autorbital or postorbital processes, and the interorbital septum is complete and thiek, the optic foramina being wide apart. In Dinornis the orbits are small, and also divided by the rhinal clamber: but the superorbital ridge is present and developes a strong postorbital process. The interorbital septum, as a rule, is very thin, even when entire, as in Tachypetes, Coracias, Eurystomus: it may have a small vacuity (Aquila) or a very large one (Buceros), or two or three as in most birds.

The olfactory cerebral erura emerge from the cranimm at the upper angle between the hind wall, roof, and septum of the orbit; groove the upper part of the septum as they pass forward to penetrate the prefrontal and expand into the rhinenecphalon, dispersing the olfactory nerves to the turbinal membranes. The frontal olfactory foramen, in the Raptores, is smaller than the prefiontal one. Between the Vulture and the Crocodile the difference is that the rhinencephalie crura extend along a common eanal above the interorbital space in the Reptile, while in the Bird the ossifieation of the septum divides the rhineneephalic fossa into two: but many birds resemble the Crocodile in this respect. The bones whieh hold the neurapophysial relation to the rhinencephala, anterior to the frontals, are the samc, or homo-
logous, in bothovipara: but in the Bird the secondary peripheral developments of the prefrontals are suppressed as in Batrachians and some fishes (Xiphias), ${ }^{1}$ in which they form the anterior wall of the orbit, oeenpying the anterior part of the interorbital space, joining each other at the median line by an extensive vertical cellular surface, and dividing the orbital from the rhinal cavities. In the Apteryx and Dinornis the latter cavities are so developed as to extend backward between the orbits to the cranium, the front wall of which forms the baek wall of the rhinal, instead of the orbital, eavities.

In most birds, however, the orbits intervene: the rhinal chambers are sulull, and communicate with the upper and back part of the nasal passages on each side of the prefrontal septum. The passages are partly divided by bone developed from the vomer. They usually extend obliquely backward from the outer to the inner or palatal nostrils: but in the Toucans and Hornbills the nasal passage descends vertically at the base of the huge bill. The outer nostril is formed in front by the premaxillary, behind by the nasal-each bone bifurcating to include the area, into the lower part of the circumference of which the maxillary usually enters. In the Rhea and Emen, fig. 31, the outer bony nostril is incomplete behind, the maxillary process or prong of the nasal not being developed. In the Ostrich it does not reach the maxillary. The external nostril is near the apex of the bill in the Cassowary. In the Apteryx the external nostrils are minute and subterminal; but a linear groove extends back and widens into a large triangular vacuity, on each side the base of the upper mandible in the skull. In the Petrels the nostrils are pierced at the end of a tube upon the upper mandible. In the Pelecanidce there is no outer nostril. The bony septum between the nostrils is rarely entire. The nasal passage is continued backward between the vomer and palatine, or between the presphenoid and palatine, to open, usually by a single median foramen or fissure, or by a pair of such, divided, as in Dromaius, by the vomer, fig. 32, 13, or, as in. Struthio, by the vomer and presphenoid, ulon the palate.

Amongst the cranial peculiarities in Birds may be notieed the bony style attached to the occiput in the Cormorant: the light cellular bony core or support of the thick horn or horny crest, in Casuarius galeatus; which is expanded and flattened behind in Casuarius Mooruk: the longer and narrower horn-core, re-

[^27]strieted to the space above the orbits, in Oreoplasis Derbyanus: the bony extensions of the upper part of the premaxillary in certain Hornbills, especially Buceros galeatus: the elevated base of the short and thick upper mandible in Ourax Pauxi: the multiplied superorbitals in Tinamus. Nor, perhaps, should the spherical bony cyst above the fore part of the cranium in a variety of common fowl be omitted, though this, like the stunted mandibles of some varicties of pigcon, may rather rank among the phenomena of pathology.
§ 129. Scapular Arch and Appendage.-The simplest condition of this arch is manifested in Apteryx and Dinornis. It eonsists of scapula and eoracoid, uneomplieated by connection with the hæmapophysis of any other segment: moreover, the pleur- and hæm-apophyses of the oceipital rib have coaleseed. A man must shut his eyes, and with a tight squeeze, to eseape reeognising the signifieanee of the propinquity of the seapular areh to the lyoidean one in the embryo bird. As developement proceeds, segment after segment is added to the cervical series, and the oceipital ribs, with the myelonal centres supplying their appendages recede far baek from the typical position they maintain in the Fish (vol. i. figs. $34,85,51,52$). In Dinornis, as in Murana and Anguis, the areh has no appendages. The seapula is riblike, eompressed, slightly bent, measuring but $4 \frac{1}{2}$ inches long in a species (D. robustus) with a tibia a yard long; it is barely an ineh aeross its broadest end where it coalesees with the coracoid, and the breadth of the opposite free end is but 5 lines. The coraeoid is straight, 2 inches 10 lines long, $\frac{1}{2}$ ineh broad, becomes thieker to its sternal end, which is eonvex and adapted to the small 'coraeoid' fossa at the angle of the sternum. There is no trace of glenoid eavity at the confluence of the two bones, but the confluent part is here produeed into a ridge, showing that there was no lhumerus, and that the fore-limb, or appendage of the seapular areh, was wholly absent in Dinornis.

In Apteryx the seapula is relatively more expanded where it coalesecs with the coracoid, and the bone is broader in proportion to its length, and shows a vascular perforation near the liumeral artieulation, as in the Monitor (vol. i. p. 174). The glenoid eavity is very small, but of the usual shape in Birds. In these the seapular arelı ineludes on each side a scapula, fig. 19, 51, a coracoid bone, ib. 52, and a clavicle, ib. 58-the elavicles, eoaleseing in most birds at their mesial extremities, constitute a single bone, whiel, from its peculiar form, is termed the os furcatorium or fitcutum. In the Ostrich the two elavicles are distinet from
each other, but are sevcrally anchylosed with the coracoid and scapula, so as to form with them one bone on either side. In the Frigatc-bird the clavicles coalesce with the coracoids, as well as with each other and with the sternum. In almost every other specics of bird the scapula, coracoid, and clavicle are moveably articulated to each other throughout life. In Rhea and Casuarius the acromial element or clavicle is anchylosed with, or rather is a continuons ossification from, the scapula ; but the coracoid bone is free, a condition which the bones of the shoulder present in the Chelonian Reptiles (vol. i. p. 172, fig. 106).

In the Emeu (Dromaius) it is interesting to observe that each clavicle commences by a distinct ossification, and long continues separate from the scapula; it does not reach the sternum, but holds the same relative situation as the continuous acromial or clavicular process of the scapula in the other Struthious birds. The clavicles are distinct from each other and from the coracoid in some Ground Parrots and carpophagous Doves (Columba galeata, e. g.).

The scapula, fig. 19, 51 , is broader and flatter in the Penguins (Aptenodytes) than in other birds. In the rest of the class it is a long and narrow sabre-slaped bone, increasing in thickness as it approaches the joint of the shoulder; there it is extended in the transverse direction, forming externally the posterior half of the glenoid cavity, and being intcrnally more or less produced, acromially, to meet the clavicle, while it is strongly attached in the remainder of its anterior surface to the coracoid. The blade of the scapula may expand towards the free end (Gallina); and this may be obliquely truncate (Gallince), or taper to a point (most Aves), which point may be decurved (Columba) ; it is rarely obtuse (Tetrao, Apteryx, Dinornis). The position of the scapula is longitudinal, being extended backward from the shoulder, parallel to the vertebral column, towards which, however, it presents a slight convexity. In some birds it extends over the ribs to, or even above, the fore part of the ilium; while in the Emeu and Apteryx it crosses over two ribs only. In the IIum-ming-bird (Trochitus), fig. 19, t, its posterior third is bent downward at a slight angle. In birds where the scapula is pueumatic, the pcrforations are at the base of the acromial process.

The coracoid, fig. $18, u$, figs. $16,19,20,52$, is the strongest of the bones composing the scapular arch : its expanded extremity is securely lodged below in the transverse groove at the anterior part of the sternum, from which it extends upward, outward, and forward, but sometimes almost vertically, to the shoulder-joint, where it is articulated usually at an acute angle with the scapula
and commonly also with the claviele. It thus forms the main support to the wing, and point of resistanee to the humeri during the downward stroke of the aerial oar. The humeral end of the bone is commonly bifurcate; the outer process is the strongest, and forms the fore part of the glenoid cavity (l, fig. 19), above whieh it rises, to a greater or less extent, and usually affords, on its inner side, an artieular surfaee for the elaviele: the inner process is short and eompressed, artieulates with the seapula, and is also joined by ligament to the end of the elaviele. The coracoid is perforated at the base of the inner proeess. The eoraeoid is of great breadth in the Albatross, fig. 13, h, b; and is both long and strong in the Penguin, fig. 19, 52. It is pneumatie in Aves aerece and in Rasores; in some Grallee (Psophia), and in most longipennate Palmipeds. The sternal ends of the eoraeoids join eaeh other in Tachypetes, deeussate in Herons, send up a process above the mesial end in Aptenodytes and above the lateral or outer end in Taehypetes: the outer angle of the sternal end is produeed in Raptores. The glenoid eavity resulting from the union of the eoracoid and seapula is not equal to the reeeption of the entire hcad of the humerus. In Raptores, Scansores, and Cantores, an ossicle ($O s$ humero-seapulare) lies between the scapula and humerus at the upper and baek part of the glenoid eavity. In Rasores, Grallatores, and Natatores, there is, in plaee of this bone, a strong elastie ligament or fibro-eartilage extended between the seapula and coraeoid, against whieh that part of the head of the humerus rests, which is not in eontaet with the glenoid eavity.

The elavieles, figs. $15,16,18,19,58$, are the most variable elements of the seapular apparatus. In the Ground Parrots of Australia (Pezophorus, Illiger) they are rudimentary or wholly defieient; they are slender styles in Columba galeata; they are represented by short proeesses in the Emeu, Rhea, and Cassowary; they do not eome in eontaet inferiorly in the Ostriel, although they reael the sternum. In the Toueans they are separate, and do not reach the sternum. In the Hornbills and Sereeeh Owl (Strix Clula) they are united at their inferior extremitics by eartilage. In the rest of the elass they are anehylosed together inferiorly, and so constitute one bone, the furculum or 'merrythought.' From the point of confluenee a compressed process extends downward in the Diurnal Raptores, the Conirostral Cantores, the Rasores, most of the Grallatores, and Natatores, in whieh a ligament extends from its extremity to the ento-sternum. The process itself reaehes the stcrnum, and is anchylosed therewith
in the Pelicans, Cormorants, Grebes, Petrels, Frigate-bird, and Tropic-bird; also in the Gigantic Crane, and Storks in general. In the Humming-birds, where the stcrnum is so disproportionately developed, the furculum terminates almost opposite the commencement of the keel, but at some distance before it; it is of cqual length with the eoraeoid. As the principal use of this clastic bony areh is to oppose the forees which tend to press the humeri toward the mesial plane during the downward stroke of the wing, and restore them to their former position, the piers of the arch are stronger, and the angle of their union is more open, as the powers of flight are enjoyed in greater perfection : of this adjustment the Swifts, Goat-suckers, and Diurnal Birds of Prey afford the best examples. In the Eagle the elavicles are arched both forward and outward, mueh expanded above, with an artieular surface for the fore part of the outer prong of the coracoid. The areh becomes narrower, and the bone itself weaker, as flight is feebler or less sustained; in the Gallince the \mathbf{U} - is changed to the V-shape; and at the point of eonfluence of the straight and slender piers a process is eontinued, usually eompressed, sometimes styliform (Crax), becoming almost obsolete in Hemipoolius; in the Lapwing the proeess is at right angles to the areh. In Tachypetes the upper ends of the clavicles coalcsee with the eoraenids; and the lower confluent ends expand into a triangular plate coaleseed with the sterual kecl. In the erested Pintado the apex of the fureulum is dilated and hollowed into a eup opening forward and reeciving a fold of the windpipe. ${ }^{\text {b }}$

In Birds the humerus has a smooth slaft, sub-elliptic in transverse seetion, with expanded cnds, the proximal ${ }^{2}$ one being the broadest. Lengtliwise the bone is gently sigmoid, the proximal lalf being convex palmad, the distal lalf eoncave, with the plane of the terminal expansions vertieal, as the bone extends along the side of the tronk from its scapulo-coracoid articulation backward, in its position of rest.

The head of the humerus is an elongate, semi-oval convexity with the long axis transverse from the radial to the ulnar sides (vertieal, as naturally articulated), and with the ends continued
' xliv' no. 1411, p. $2 \% 1$.
${ }^{2}$ I here avail myself of the terms indieative of aspect and position proposed by Dr. Barclay, in his Anatomical Nomenclature.'

Proximal signifies the upper, distal the lower, end of the bone, as it hangs in Man; anconal is the posterior, palmar the anterior, surface, as when the pralm of the hand is directed forward; radial is the outer, ulnar is the inner, side, according to the same position of the human arm and hand. Proximad, palmad, arc adverbial inflections, meaning towards the proximal (upper) end, and towards the palmar (anterior) side.
into the upper and lower erests. Of these, the upper one, in the natural position of the bone, is on the same side as the radius, the lower more tubcrous one is on the same side as the ulna; the one marks the 'radial'side, the other the 'ulnar' side, of the bone. The side of the humerus next the trunk answers to that ealled 'aneonal,' the opposite side to that ealled 'palmar.' The expanded, proximal part of the shaft on the palmar side, fig. 6, is coneave aeross, convex lengthwise : on the anconal side it is eonvex aeross to where the ulnar ridge bends anconad near the pneumatie orifice. The radial erest answers to the 'greater tuberosity,' and to the 'peetoral' and 'deltoidal ridges' in mammals; the 'ulnar' erest to the 'lesser tuberosity' and to the ridge for the ' latissimus dorsi,' in mammals. In a few exeeptions the shaft of the humerus is almost eylindrieal ; in still fewer (Aptenodytes) it is flat ; in the Albatross it beeomes triedral toward the distal end.

In the Vulture (V. monachus) the ulnar erest forms a thiek tuberosity at its proximal end, projeeting aneonad, and overarehing the 'pneumatie' foramen; it descends a slort way obliquely palmad, deereasing in breadth, but still thiek, convex, and terminating obtusely. The radial erest better merits the name ; it extends twiee the length of the ulnar one, down the slaft, to the palmar side, towards whieh the whole erest is slightly bent; its margin deseribes a very open or low, obtuse, angle at its middle part. A ridge upon the palmar side of its distal half indieates the boundary of the insertion of the peetoralis major into the erest. At the middle of the aneonal surfaee of the proximal part of the shaft there is a low, longitudinal ridge. The tuberosity at the proximal part of the ridge gives insertion to the middle peetoral.

At the distal part of the humerus a ridge on the radial side of the palmar surfaee, and a rising of the bone on the ulnar side of the same surfaec, diverge to the opposite angles or tuberositics of the expanded end of the bone; they inelude a shallow, sub. triangular coneavity above the artieular surfaces. These are two, and are convex. The radial surface is a narrow, subelongate convexity, extending from near the middle of the palmar surface obliquely to the lower part of the radial tuberosity, where the eonvexity subsides; it is very prominent at its palmar end, with a groove on eael side, the deeper one dividing it from the ulnar artieular eonvexity. This is of a transversely oval or elliptieal shape, most prominent palmad; all the part of the end of the humerus forming the two articular convexities is as if bent
toward the palmar aspect. The ulnar end of the ulnar convexity is continued anconad to that end of the ulnar tuberosity. An oblique, longitudinal channel divides the aneonal end of the radial tuberosity from an almost longitudinal ridge, whieh is nearer the middle of the aneonal side of the distal end of the humerus; a similar, but shorter, longitudinal ridge or rising of bone, terminates in the aneonal part of the ulnar tuberosity. Between the above almost parallel ridges the anconal surface is nearly flat transversely; it is traversed along the middle by a low, narrow, longitudinal ridge. Lengthwise the bone is here convex.

The differences in the humerus of different birds are seen chiefly in the forms and proportions of the proximal erests; the radial one in the Columbide, e.g., is shorter and more produced than in most lirds of flight. The humerus in the Swift is very short and tlick, with strong pectoral and deltoid processes, and witly a trochlear groove on the back of the outer condyle: the proximal proeesses are still further developed in the humerus of the Humming-bird: a distinct ulnar sesamoid plays upon the anconal trochlea in both. The pectoral process is much produeed and is angular in Tuchypetes: also in Sterna where it is deflected. The bone maintains its general ornithic charaeter when the proeesses have sulusided, with the abrogation of the power of flight. In the Apteryx the humerus is a slender, cylindrical, styliform bone, 1 inch 5 lines in length; slightly expanded at the two extremities, most so at the proximal end, which supports a transverse oral articular convexity, covered with smooth eartilage, and joined by a synovial and capsular membrane to the scapulocoracoid articulation. A small tuberosity projects beyond each end of the liumeral articular surface. The distal end of the humerus is artieulated by a true but shallow ginglymoid joint with the rudimental bones of the antibrachium, and both the external and internal condyles are feebly marked.

The humerus is not always developed in length in proportion to the powers of flight; for, although it be shortest in the Struthious Birds and Penguins, it is also very short in the Swifts and Humming-birds. In the latter, however, it is characterised lyy its thickness and strength, the size of its museular processes, and the consequent transverse extension of its extremities; while in the Cursores it is as attenuated as it is short, and in the Penguins the shaft is reduced to a mere lamina of bone resembling the eorresponding part in the paddle of the turtle. In the Tiasores it rarely equals lialf the length of the trunk (thorax and pelvis) ; it equals it in the Argala and Pelican ; exceeds it in the

Frigate-bird and Albatross. In this and some other sea-birds, as the Gulls, A wks, and Pctrels, the humerus presents a notable ' ectocondyloid' process on the radial side, near its distal extremity.

A sesamoid bone is found attached (like the fabella of Marsupials) to the capsular ligament and the tendons of the extensor muscles, in many of the Raptores, in the Swifts and Hum-ming-birds; it is double in the Guillemots and Penguins, fig. 19, n, n.

There is a decp depression bencatl the tubcrosity at the ulnar side of the proximal expansion of the humerus in the Penguins, Ostrich, $\Lambda_{\text {wks, }}$ and other birds which lave no air in that bone; and it is here that the air-eells are continued into the bone in the majority of the class which have the humerus pncumatic.

A section of the humerus of the Penguin ${ }^{1}$ shows it to be solid; that of the Awk (Alca) shows a small medullary eavity with dense and rather thick walls; that of a pneunatic humerus, as of the Argala, ${ }^{2}$ e.g., exposes the extreme thinness of the compact wall of a very large eavity, and the loose cancellous lacework at the extremities of the bone: osseous filaments shoot more or less obliquely across different parts of the eavity, serving to strengthen, like tic-beams, the thin walls, and also, being hollow, to convey minute blood-vessels. The proximal half of the bone is divided longitudinally by a loose cancellous partition; the decussation or anastomoses of the delicate hollow columns give an open reticulate strueture to the inner surface of the air-cavity at the two extremities of the bone, which is highly characteristic of the long bones of birds.

The radius, fig. 19, p, and ulna, ib. o, are present in all birds, and co-extended between the joints of the elbow and wrist. The antibrachium, so formed, is short where flight is abrogated; it is but one-third the length of the humerns, e.g., in the Ostrich : it is rather shorter in Guillemots, Divers (Colymbus), and Gannets (Sula) ; is about equal in length in Gallinex, Psophia, Cariama; but exceeds the length in most birds of flight. However, in some of the best flyers, e.g. the Albatross where the humerus is extremely long, and in the Swifts and Humming-birds where it is very short, the antibrachium is of the same length therewith. Its two bones are so articulated to each other and to the himerus as to be restricted to flexion and extension : searcely any degree of rotation is admitted, and this adds to the firmness and resistance required for the action of flight. Owing to the obliqnity of the

[^28]humeral tuberele for the radius, the fore-arm moves in a plane not quite perpendicular to the palmar surfaee of the humerus. When the fore-arm is flexed and the wing is folded, the distal end of the antibrachium is near or in advance of the proximal end of the humerus; the radius being superior and the ulna a little external as well as inferior.

The radius is always the more slender bone of the two, sometimes in a remarkable degree: its proximal end is expanded, subelliptie, with a coneavity for the oblique tuberele, and a thickened eonvex border next the ulna for articulation with that bone: a little beyond that artieular expansion is the tuberele for the insertion of the bieeps. The shaft here becomes sleuder, usually subeompressed, with a slight bend, convex upward from the ulna; the rest of the shaft, whieh becomes subtriedral, showing an opposite flexure toward the ulna, though very slightly marked. The distal end is rather more, though less equally, expanded, from the radial to the ulnar side: rather flattened with one or two tendinal grooves on the aneonal side, with a terminal transverse convexity for the seaphoid, produeed palmad to articulate with the ulna; with a tuberosity (Aquila) or ridge (Tachypetes) on the radial side of the expansion. The orifiee of the medullary artery in the non-pneumatie radius is on the ulnar side of the shaft about one-fourth from the proximal end.

The ulna is straight or with a single and slight curve, more marked in the shorter antibrachium of Galline than in the long one of long-winged waders and swimmers. The proximal end is most expanded, and is obliquely truneate for the articular exeavation adapted to the ulnar tubercle of the humerus: the obtuse angular produetion of the ulna, belind or aneonad of the cavity, represents in different degrees in different birds the olecranon, but is always short: an extension of the bone radiad is olliquely excavated for the head of the radius. The shaft of the ulna gradually deereases to near the distal end, where the subtriedral is exehanged for the subcylindrie shape. A ridge is developed below the liead on the ulnar side in Raptores. In birds (Tachypetes, e.g.) in whieh the ulna is pneumatic, the foramen is on the palmar surface a little below the head. On the ulnar and aneonal sides of the slaft are the two rows of quill-knobs (in Raptores) for the 'secondaries;' the aneonal row is most marked in longipennate Natatores; and is the only row in many birds. But this character of the bird's ulna is wanting in the flightless and some other birds. The distal end of the ulna slightly expands into a trochlear joint very convex from the radial to the
ulnar sidc, rather eoneave from the aneonal to the palmar side, and this chiefly at the ulnar part of the trochlea. On the radial side of this trochlea, supported by a tuberosity, is the small surface for the radius. The intcrosseous space, owing to the greater bend of the ulna, is widest in Gallince ; it is narrower and chiefly seen at the proximal half of the antibrachium in most other birds. The ulnar trochlea articulates with the two frce carpal bones, one-thc 'scapho-lunar'-bcing wedged into the radial part, the othcr-' cuneiforme '-into the ulnar part, leaving a small intermediate tract for the 'magnum' which is confluent with the base of the mid-metaearpal.

In the young Ostrich the metacarpus eonsists of three bones. The one on the radial side answers to that of the index-finger; it is very short, and supports a digit of two phalanges, the sceond phalanx being armod with a long curved and pointed claw. The sccond metacarpal is the longest and largest, its base bcing increased by the confluence therewith of the 'magnum,' whieh presents a trochlear surfaee to the two proximal carpals and to the part of the ulnar joint not occupied by them. The third metaearpal, answering to that of the digitus annularis, is bent, its extremity resting against that of the large and straight middle metaearpal, with whieh it subsequently becomes anchylosed. The middle digit consists of three phalanges; the outcr one of two phalanges. In all birds the three metaearpals, here seen to be distinct, coalesce with onc another and form a single bone, having an intcresting analogy to the metatarsus, whieh likewise consists in all birds of a coalescence of the thrce bones supporting the corresponding toes, namcly, those answering to the sccond, third, and fourth in the pentadaetyle foot.

The bones of the laaud are developed in length, but contracted in brcadtlı. The wedge-like adjustment of the frec carpals is such as to restrict the movements of the hand upon the arm to abduction and adduction, or flexion in the ulno-radial planc, requisite for the outsprcading and folding up of the wing. The land of the bird moves thus in a state of pronation, without the power of rotation or of proper flexion or cxtension, i.e. in the aneono-palmar direction ; so that the wing strikes firmly and with the full force of the depressor museles upon the air.

The following state of anchylosis commonly cxists in the meta-carpus:-The short ‘ index' metacarpal coalesces with the base of the 'medius': the slender 'annularis' metaearpal anchyloses by its two ends with those of the medius which it equals in length. The 'index' supports one phalanx, usually terminating in a point
about the middle of the 'medius' metacarpal. This supports two phalanges, fig. 19, s, s : the proximal one singularly expanded by a lamelliform growth from its whole ulnar side, excavated outwardly for the attachment of primaries: the next phalanx is smaller and ends in a point. The ' annularis ' metacarpal supports a short and slender pointed phalanx, which in the Frigate-bird is closely joined, lengthwise, to the contiguous expanded phalanx of the mid-digit.

The hand-segment is the longest of those of the pectoral limb in Swifts and Humming-birds: exceeding by three times the length of the humcrus: and the bones have a proportionate thickness. The mid-metaearpal shows a series of large impressions for the distal 'primaries' in Raptores, and also a longitudinal tendinal groove on the anconal side. The metacarpal, fig. 19, r, and phalangeal, ib. s, t, bones, in the Penguin are flattened, like the antibrachial bones.

The index digit in Struthio and the medius digit in Apteryx, support each their claw. The elaw or spur, when present in other birds, e. g. Syrian Blaekbird (Merula dactyloptera), Spur-winged Goose (Anser Gambensis), Knob-winged Dove (Didunculus), Jacana (Parra Jacana), Mound-bird (Megapodius), Screamer (Palamedea), is developed from the radial side of the metacarpus or from the index digit. The Screamer has two spurs, the homotypes of the metatarsal ones in Pavo bicalcaratus. The elaw upon the index digit of Archeopteryx was eurved and sharp; and the remains of the unique example of this ancient fossil bird make it probable that the hand had a second free unguicnlate digit, perhaps the homologue of the pollex. ${ }^{1}$

Although the instances of these weapons and the occasional use of the wings in Birds not so armed, e. g. the Swan, show them in the light of means of attack, the bones of the pectoral limb in Birds are modified mainly for volant aetion; the articulations restrict the movements of the several segments to the serviee of wings, and the proeesses for muscular attaehments relate to such development and disposition of the moving forees as flight requires.

The larger feathers whieh overlie, in a series, the humcrus, are termed, in ornithology, 'seapularies:' those still larger which overlie or are attached to the ulna are the 'secondaries' or 'wingcoverts;' those which are attached to the manus are the 'primaries,' they are the longest: a group of feathers attaehed to the stunted index digit are the 'spurious' or 'bastard ' feathers.

[^29]The primary quill-feathers being the chief direct mechanical instrument in the displacement of the air, the scgment of the limb supporting them is the longest and strongest in the most powcrful flyers, e.g. Swifts and Iummers, in which the primaries are proportionally longer and stronger than in other birds : but the various habits, habitats, and food of the feathered tribes are assoeiated with different kinds of aerial motion and call for corresponding modifications of the instrument: thus the Frigate and Tropic birds, Albatrosses, Terns, and other ablest flyers among the Natatores, contrast strangely with the above-cited Volitores in the proportionate length of the brachial and antibrachial segments of the pectoral limb: whilst the powerful Raptorial flyers show an intermediate more harmoniously balanced proportion of the several scgments. All these are relatively short and feeble in the heavier land birds which take but brief and occasional flights; and, as circumstanees have rendered this exertion less and less necessary, so the wings and their framework have wasted away to the diminutive rudiments in the Apteryx, and to zero in Dinornis.
§ 130. Bones of the pelvic limb.-The segments of this limb do not wholly correspond with those of the pectoral onc, the tarsus being absent or blended with the tibia or the metatarsus, which immediately succeeds it.

The femur, fig. 34, 65, has a eylindrical sliaft, which, when not straight, is slightly bent forward: it ncarly equals the pelvis in length in the Apteryx and some Ground-cuckoos (Geococcyx), but is usually shorter; it is very short in Dinornis elephantopus; shortest of all and most bent in Colymbus: it is always shorter than the tibia, but in a minor degree in most Rasores, Scansores, Volitores, Cantores, some Natatores (Tachypetes), and the Apteryx. The head is hemispherical, proportionally small, and largely scooped out above for the round ligament which fills up the vacuity in the acetabular wall: it is sessile, with its axis ncarly at right angles to that of the shaft: the articular surface is continued upon the upper end of the bone which expands as it recedes from the head, and usually rises above its level to form a trochanterian ridge extending from behind forward and there produced and continued a short way down the shaft. The outer (fibular) side coextensive with this ridge is rather flattened and impressed by insertionmarks of muscles. Rarely is there, as in Aptornis, a trochanter minor, situated a little below the head on the inmer (tibial) side of the bone, or represented by a round rough surface, more anterior, as in Dinornis. Assuming its eylindrical or subeylin-
drieal form below the great trochanterian ridge, the shaft at its lower half expands transversely, and, in forming the distal condyles, also from before baekwards, with a bend in that direetion. The inner condyle begins anteriorly as a ridge, expanding into a convexity which attains its greatest breadth posteriorly, where it becomes more flattened. The outer condyle, commeneing in the same manner, is indented at its broad lower end by an angular groove, which, widening, divides the baek part of the condyle into two convexities. The inner of these is the broadest and most produeed, is applied to the outer facet of the tibia, and represents the ordinary outer condyle: the more external convex ridge and the groove dividing it from the outer condyle are adapted to the heal of the fibula. This is the most charaeteristic part of the bird's femur. The space between the anterior beginnings of the condyles is the 'rotular' channel: it is usually broad and moderately concave transversely, convex lengthwise; sometimes divided from, commonly continued into, the intercondyloid fossa whiel is marked with pits for ligamentous attachment. The inner side of the inner condyle is flattened, with a tuberosity at its mid-part, and sometimes a second just above the hind part of the condyle. There is usually a tuberosity above the lind end of the fibular ridge, exterior to which the surfaee is sometimes flattened, sometimes prominent, in Dinornis impressed by a deep fossa. ${ }^{1}$ At the lower part of the outer condyle before the 'fibnlar' groove begins, there is usually a small pit. The popliteal depression is divided by a ridge from the intereondyloid one. The shaft shows intermuscular linear ridges: in Aquila one extends from the fore and outer angle of the epitrochanterian artieular surface to near the beginning of the inner condyle; a second extends from the inner and back part of the upper third of the shaft to the tuberele above the back part of the inner condyle : the third shorter 'linea aspera' is at the back part of the middle third of the shaft near its outer side. In Dinornis a ridge continued from the anterior trochanterian one bifurcates at the middle of the fore part of the shaft diverging to the beginnings of the two condyles. In Apteryx the two posterior lineæ aspere approximate at the middle of the shaft and then diverge to the eondyles: in Dinornis they expand into tuberositics, or the inner one alone is continued as a ridge, but interrupted above the condyle: the inner ridge is strongly marked and continued to the condyle in Aptornis. The orifice of the medullary artery is at the baek part of the shaft above its middle.

[^30]When the femur is pneumatic the proximal orifice is commonly autcrior, near the trochanterian ridge: but in the Ostrich it is behind: the distal orifices when present are in the popliteal fossa. Of the two condyles the outer one is most prominent posteriorly, and, when the femur is held vertically, descends the lowest. In the flexion of the leg on the thigh this puts the ligaments on the streteh; and, as they are partly elastic, the fibula enters its fossa at the conclusion of the bend with somewhat of a jerk.

The tibia, fig. 34, 66 , is the chief or longest bone of the hind limb, showing its extreme character in this respeet in most Stilt-birds, especially the Argala and Flamingo, fig. 14, and its smallest proportions in Volitores, fig. 18, and the Frigate-bird, in which the tibia is not half the length of the skull. The shaft is straight and mainly subtricdral, expanded at both ends and most so at the upper one. This presents a semi-oval surface not quite transverse to the shaft, but with the truncate margin raised toward the fore part of the bone, and more or less developed above the level of the undulating artieular part. Of this the least marked is the almost flat reniform 'entocondylar' surface for the inner condyle, feebly hollowed near its back part which projects in that direction over the shaft; it is divided from the smaller and less defined 'ectocondylar's surface for the outer femoral condyle by an 'intercondylar' convexity. In advance of these the head of the tibia extends into a 'rotular' process, usually extended transverscly and truncate. From the fore or outer part of this process there descend two vertical ridges or plates: the one from near the imer or tibial angle of the rotular process is the 'proenemial ridge,' the other from the outer or filular angle is the 'ectoenemial ridge; 'they subside more or less gradually upon the shaft, and intercept a deep triangular conearity. On the outer side of the intereondylar tuberosity is a single surface for ligamentous union with the head of the fibula, and a little way below this there is a vertieal ridge for close attachment to part of the shaft of that bone: below and behind the 'fibular' ridge is the orifice of the medullary artery. From this point the tibia maintains a uniform size usually to its lower third, where along a rough tract, in a line with the above ridge, the styliform end of the fibula terminates by close union or auehylosis. There the tibia begins to gain iu transverse breadth, exchanging the triedral for a transversely oval seetion, and it gradually expands in both directions to the distal condyles, whieh are most developed from behind forward, in advance of the shaft. The inner condyle is the largest, usually in fore-and-aft, sometimes (Aquila) in transverse, extent. A
groove commencing ncar the lower end of the fore part of the shaft leads, deepening, toward the intereondyloid space: it is bridged over by a strong ligament, whieh becomes ossified in most birds: Parrots, Hornbills, and existing Cursores are exceptions. The position-median or submedian and directionstraight or oblique-of the preeondylar groove, the presence and direction-transverse or oblique-of its bony bridge, the relative breadths, anteroposterior and transverse, of the distal end, the relative size of the intereondyloid space to the anterior parts of eondyles,-help in the determination of bird-affinities, when they have to be dedueed from a fossil tibia. ${ }^{1}$ The distal condyles commencing behind as ridges bounding an articular surface con-

eave across, increase in breadth and convexity as they curve to their anterior ends: these are more prominent than their posterior ridged beginnings, but in different degrees in different birds; and the iuner eondyle is usually the most prominent anteriorly:

[^31]thus the distal end of the tibia is like that of the femur with the back of the condyles turned forward, and without the notch in either.

Among the modifications of the proximal end of the tibia may be noted the production of the rotular process in the axis of the shaft two inches above the knee-joint in the Divcrs (Colymbus), fig. $34, k$; both pro- and ecto-cnemial ridges descend from the fore part of the base of this process, the former extending halfway down the shaft of the tibia. In the Albatross the pro- and ecto-cnemial ridges are much devcloped; but are still more so in the extinct Cnemiornis, without corresponding production of the rotular or 'epicnemial' process. In the Ostrich this proeess cxtends forward, without rising above the lcvel of the proximal surface, and contracting to its termination there divides into small pro- and ecto-cnemial processes; the latter the shortest and tubcrous. The distal condyles are less produced anteriorly, commence more abruptly and are more produced postcriorly, than in other birds: their articular surfaces are so continuous as to leave no 'intercondylar' space; there is no tendinal groove or bridge: but a tuberosity above the middle of the confluent condyles. The articular surface of these being concave in onc direction, convex in the other, forms a 'trochlea,' and the same in the conjoincd parts of the distal condyles in other birds. It limits the movements of the next segment of the limb to onc plane.

The fibu7a, fig. 34, 67, is a styliform bone ending in a point below at various distances down the tibia in different birds. The articular head is subcompressed, convex in the longer axis, slightly curved backward, hollowed on the inner (tibial) side: rather convex externally: the shaft shows the rough linear tract for attachment to the tibia: and there are sometimes tuberositics for tendinal insertions on the opposite side.

The femur is ossified from one centre: the tibia has an epiphysis for the distal condyles; the proximal end of the metatarsus is ossified from one centre, forming an epiphysis which caps the cnds of the three metatarsals that coalesce, first with cach other, then with the epiphysis, to form the single compound bone.

The trochlear cpiphysis of the tibia most resembles the astragalus in those maminals (Ruminants, e.g.) in which the motatarsals coalesce. The term 'tarso-metatarse' applied by some ornithotomists to the present segment, fig. 34, 68, implies the tarsal homology of the epiphysis; the same might, more probably, be predicable of the distal one of the tibia; but neither being demonstrated, I prefer to call the present segment the 'metatarsc.' It
consists of the foot-bones of three digits coalesced, and often of a fourth ligamentously joined thereto. This always small and short secming appendage is the distal end of the metatarsal of the 'hallux' or innermost digit of the pentadactyle foot. The three coalesced bones are the metatarsals of the second (ii), third (iii), and fourtl (iv) toes, fig. 34. In their original position the proximal end of the third metatarsal is belind those of the second and fourth which meet in front of it. A fossa below the meeting slows, afterwards, two fore-and-aft canals which diverge to outlets at the back part indicative of the breadth there of the middle metatarsal. When, as in Aquila, there are two foramina in front of, as well as two behind, the upper part of the metatarse, the interspace of the former shows the extent to which the mid-metatarsal intervened between the others anteriorly, and this structure is concomitant with a great excess of the transverse over the forc-and-aft diameter of the proximal end of the metatarse. In most birds a fore-and-aft canal also remains to indicate the primitive distinction of the outer (iv) from the middle (iii) metatarsal near their distal ends.

The metatarse, fig. 34, 6s, presents a proximal end with two articular cavities ('ento-' and 'ecto-condylar') and the intercondylar space, a slaft with its processes, grooves, and perforations, and a distal end divided (save in Struthio) into three trochlear condyles for the three principal (ii, iii, iv) toes: in most birds, also, there is a rough depression on the distal half of the inner metatarsal, for that end of the innermost or first (i) metatarsal. The proximal end varies in the proportions of its transverse and anteroposterior diameters, in the depth of its articular surfaces, and eonfiguration of the intercondylar surface. As a rule the entocondylar surface is largest and deepest; the cctocondylar surface is ncarly flat in the Eagle. A tuberosity rises from the fore part of the intercoudylar space in birds which sleep standing on oue leg (Grallce and some others): it passes into the corresponding space of the tibia, the bar anterior to which affords so much resistance to flexion of the leg as counteracts the effect of oscillations of the body: it requires a muscular effort to bring the tuberosity over that bar, and the elastic lateral ligaments are then put on the stretch; but as soon as the bar is passed the tuberosity slips into the depression above with a snap or jerk. One or more longitudinal ridges at the back of the upper end of the metatarsal are called 'calcancal;' they intercept or bound tendinal grooves which, in some instances, are bridged over by bone and converted into canals: the ridges may be expanded and
flattened.' In the Birds of Prey the metatarsal is most modified by the muscles and tendons operating npon the raptorial tocs. There are three calcaneal processes, the innermost large, the two outer ones small and approximate. The fore part shows a tuberosity for the insertion of the strong 'tibialis anticus (fig. 35, 48) : below this is the process on the inner margin extending the surface of attachment for the metatarsal of the back toe (i). The trochlear ends of the three confluent metatarsals are nearly on the same level, the inner one is the broadest, the outer one the narrowest: each is produced, at an opposite angle, so as to bound the wide concavity behind this end of the metatarsal. In the King-Vulture (Sarcoramphus), the mid-trochlea is broadest and most produced: in the SnakeVulture (Gypogeranus) with a metatarsal of stilt-like lengtl, the inner trochlea is shorter than the others and further apart. In most Owls the metatarsal is shorter in proportion to its breadth than in diurnal Raptores; a bony bridge overspans the beginning of the tendinal canal on the fore part: the outer trochlea is the shortest and is bent backward and inward. In most Cantores and Volitores the distal end of the metatarsal is little expanded, and the three trochlere are of nearly equal length: in Podargus and Dacelo the outer trochlea is the shortest. In Cypselus the trochlex terminate on the same transverse line: in Trockilus the middle one is a little more prominent. In the short and strong metatarsal of the Parrot-tribe, the middle trochlea extends wholly below the others, which are oblique and twisted, especially the outer one, backward and inward : a like twist is noticeable in most Scansores, especially the Woodpeekers and Cuckoos. In the spurred Gallince the weapon is supported on a conical process from the baek part of the metatarsal; sometimes there are two, as in P'aoo licalcaratus. In all Rasores the mid-trochlea is longest; in Pigeons and Curassows the outer (iv) is shorter or higher than the inner (ii) trochlea: in the Tinamou and Syrrhaptes it is longer. In the Apteryx and tridactyle Cursores the midtrochlea is largest, and extends by almost its whole length beyond the other two which are nearly on a level. In Struthio the inner metatarsal (ii) terminates in a point near the base of the great trochlea (iii): the outer trochlea (iv) is comparatively small and short. In Grallatores the mid-trochlea is longest, the other two of equal or nearly equal length in most: the inner (ii) trochlea is the shorter in the Demoiselhe Crane (Scops Virgo) ; the outer one

[^32](iv) in the Woodeoek (Scolopax). In the Spoonbill (Platalcea) and Flamingo (Pheenicopterus) the mid-trochlea is but little produced beyond the others. The surface for the attachment of the innermost metatarsal (i) is raised well above the trochlear end of the next (ii) in most of those Waders that have the back-toc. Amongst Nutatores the Albatross has the three trochlex nearly on the same level : in others the mid one is usually most produced: in the Gannet and Pelican the outer trochlea is the shortest and furthest from the middle one. In the Guillemot (Uriii) the inner trochlea (ii) ends at the base of the mid one, whilst the onter trochlea is of nearly equal length with the mid one: in the Grebe (Podiceps) the inner trochlea is the longest of the three: in the Loon (Colymbus) it is the shortest: the metatarsal in this bird is mueh compressed, and the outer and inner trochlea are bent backward. The Penguins show the most instructive modification of the metatarsal: it is very short and broad; but the primitive divisions are to a great degree retained, especially on the fore part of the compound bone. The stunted or abortive metatarsal supporting the backwardly directed toe consists of a trochlear articulation supported on a compressed stem, twisted, and obtuscly pointed above, with one margin thickened and rough for syndesmosis with the next anchylosed metatarsal. This bone is best developed in the Raptorial birds and the Dodo, ${ }^{1}$ in which its length may exeeed a fourth part of the length of the metatarsal segment: in Pigeons it is about the fiftly or sixth part that length : by the twist the bone forms a pulley upon which the flexor tendon of the back toe plays. In the Dodo the distal expansion is increased by an oltuse process from the outer side of the trochlea; and this character is repeated in the Columbidce. ${ }^{2}$ In Gallince the trochlea is less expanded and the twist is feebly shown: it disappears in the still smaller loose metatarsal of Apteryx, Palapteryx, ${ }^{3}$ and in many Natatores, in some of which it is represented by the ligamentous matter tying the short back toe to the metatarse.

Both this (i) and its inctatarsal are undeveloped in the larger existing Cursores, the Bustards (Otis), the Plovers (Chararlicus), the Thick-knees (Cdicnemus), the Oystercatchers (Hematopus), the Coursers (Tachydromus), and the Albatrosses (Diomediea and Inctudroma).

The toes of birds never exceed four in number, and of these, three are usually elongated and directed forward, diverging, while

[^33]one is short and directed backward. The hind toe articulates on the same plane as the others in grasping and perching birds, but on a higher level in terrestrial and aquatic kinds. By the analogy of the number of the phalanges of these toes with those in Lizards (vol. i. p. 192, fig. 122) the back toc, fig. 34, i, is the innermost, answering to ' hallux;' the inner of the front tocs, ib. $i i$, is the second; the middle one, ib. $i i i$, is the third: the outer one, ib. $i v$, is the fourth: it will be seen that the number of phalanges progressively increases from two to five. The fifth toe of the four phalanges in the Monitor is not developed in any bird. The constancy of the number of phalanges in cach toe is such that the toes retained in a tridactyle bird, c. g., Emeu, are seen to be the second, third, and fourth; those in a didactyle bird, e. g., Ostrich, to be the third and fourth : and, although the latter is much the smaller and shorter toe, it retains its superior number of joints. Among the very few exceptions to this rule may be cited the outer toe of the Caprimulgus and of the Swift, which has but four phalanges; in the Swift, also, the innermost toe is directed forward like the rest. The last phalanx in each toe is pointed, and usually curved, corresponding in some measure with the shape of the claw it supports: the articular ends of the phalanges are slightly expanded and coadapted with trochlear joints limiting motion to one plane.

The chief of the sesamoid bones in the hind limb is the patella : it is of unusual size in the Penguin, is ossified from two centres, and articulates with the procnemial process of the tibia: it coexists with the long rotular process in the Loon, fig. 34, l; it is large and of an angular form in the Musk-duck (Biziura) : in the Mcrganser the patella is largest and decply notched; in the Coot it is elongate. In most aerial birds a patclla is wanting. A calcaneal sesamoid is wedged into the outer and back part of the ankle-joint in the Apteryx, and plays upon the back part of the tibial trochlea in the Turkey, Guan, Curassow, and some other Rasores.

Ossification normally extends into the tendons of some of the muscles in most birds: e. g., of the decp seated spinal ones of the back (Uria Troile and many others); of the muscles of the foot and tocs (Galline). The bony plates at the corneal margin of the sclerotic tunic of the eye, and the columclliform stapes of the ear, are appendages to sense-organs. Mr. William Home Clift discovered small ossifications at the attachenents of the semilunar valves of the aorta and pulmonary artery in some Birds. ${ }^{1}$

CHAPTER XV.

MUSCULAR SYSTEM OF AVES.

§ 131. General Cluaracters.-The muscular system of Birds is remarkable for the distinetness and density of the fasciculi or visible fibres, the deep red eolour of those chiefly employed in vigorous action, and their marked separation from the tendons, which are of a pearly shining colour, and have a peculiar tendency to ossification. This high degree of developement results from the rapid circulation of very warm and rich blood, highly oxygenated through the extent of the respiratory system. The encrgy of the muscular contraction in this class is in the ratio of the activity of the vital functions, but the irritability of the fibre rapidly goes after death. The elementary fibres are much smaller and less sharply angular than in Reptiles; the blood-vessels being more abundant and occupying more space in their intervals.

These characteristic properties are manifested in the greatest degree in the muscles of the Volitores, and of those Cantores that take their food on the wing, as the Hirundinide ; in those of the Diurnal Raptores and the long-winged Palmipedes, as the Albatross, Tropic Bird, \&c. In the more heavy and slow-moving Herbivorous families, the museles resemble those of the Reptilia in their softness and pale colour. In birds of flight the mechanical disposition of the muscular system is admirably adapted to the aerial loconotion of this class: the principal masses being collected below the centre of gravity, beneath the sternum, bencath the pelvis, and upon the thighs, they act like the ballast of a vessel and assist in maintaining the steadiness of the body daring flight, while at the same time the extremities require only long and thin tendons for the communication of the muscular influence to them, and are thereby rendered light and slender.
§ 132. Ahuscles of the vertebrce.-The museles of the cervical region are the most developerd, as might be expected from the size and mobility of this part of the spine; the muscles which are situated on the dorsal and lumbar regions are, on the other hand, very indistinct, fceble, and but slightly earncous; they are not, how-
ever, entirely wanting. In the Strathious and short-winged sea birds, in which the dorsal vertebre are unfettered by anchylosis, these muscles are more fleshy and distinct, most so in the Apteryx, and will here be describcd as seen in that bird. ${ }^{1}$

The sacro-lumbalis is the most external or lateral of the muscles of the back, and extends from the anterior border of the ilium to the penultimate cervical vertebra. It arises by short tendinous and carneous fibres from the outcr half of the anterior margin of the ilium, and by a succession of long, strong, and flattened tendons from the angles of the fiftl and fourth ribs, and from the diapophyses of the third, second, and first dorsal vertebre: also by a shorter tendon from that of the last eervical vertebra; these latter origins represent the musculi accessorii ad sacro-lumbolem; to bring them into view, the external margin of the sacro-lumbalis must be raised. These accessory tendons run obliquely forward, expanding as they proceed, and are lost in the under surface of the muscle. It is inserted by a fleshy faciculus with very short tendinons: fibres into the angle of the sixth rib, and by a series of correspond-
 ing faseiculi, which become progressively longer and more tendinous, into the angles of the fifth, fourth, third and second ribs, and into the parapophyses of the first dorsal and last two cervical vertebre: the last insertion is fleshy and strong; the four anterior of these insertions are concealed by the upper and outce fleshy portions of the sacro-lumbalis, which divides into five elongated fleshy bundles, inserted successively into the diapophyses of the first three dorsal and last two cervical vertebre.

[^34]These last insertions seem to represent the continuation of the sacro-lumbatis in Man, which is termed the cervicalis descendens or ascendens.

The longissimus dorsi is blended posteriorly both with the sacro-lumbalis and the multifidus spince, and anteriorly with the outer portion of the spinalis dorsi. It extends as far forward as the thirteenth cervical vertebra. It arises from the inner or mesial half of the anterior margin of the ilium; from a strong aponcurosis attached to the spines of the cighth, seventh and sixth dorsal vertebre ; and from the diapophyses of the sixth, fifth, fourth and third dorsal vertebres. The carncous fibres continued from the second origin, or series of origins from the spinous processes, incline slightly outward as they pass forward, and are inserted into the anapophyses of the first three dorsal vertcbro, receiving accessory fibres from the spinalis dorsi. The fasciculi from the diapophyses incline inward, and are also inserted into the anapophyses of the vertclura anterior to them; they receive fibres from the iliac origin, and soon begin to form a series of oblique carncous fasciculi, which become more distinct as they are situated more anteriorly ; they are at first implanted in the vertebra next in front of that from which they rise, and then into the vertebra next but one in front: the most anterior of these tendons of insertions, to which can be traced any of the fibres of the main body of the longissimus dorsi is that which is implanted into the thirteenth cervical vertclora; it is this fasciculus which is joined by the first or most posterior of the fusciculi obliqui of the longus colli pasticus.

Obliquus colli, a series of oblique carncous fasciculi, evidently a continuation of, or part of the saue system with those in which the longissimus dorsi terminates antcriorly, is continued between the diapophysis of one cervical vertcbra to the anapopllysis or posterior zygapophysis of the next vertebra but one in advance, as far forward as the fourth cervical vertebra. This series of muscles seems to represent the transecrsatis colli, which is the anterior continuation of the longissimus dorsi in Mammalia, but it differs in being inserted into the oblique, instead of the transverse processes. In the dircetion of their fibres these fasciculi rescmble the semispinalis colli, but they are inserted into the oblique processes instead of the spines of the vertebre. There are no other muscles with which they can be compared in the Mammalia than these two, with neither of which, however, do they precisely correspond; they seem to represent the second series of oblique muscular fasciculi in the trunk of Fishes.

The fusciculi obliqui which rise from the first two dorsal and
five lower cervical vertebre are joined near their tendinous terminations by corresponding oblique fasciculi of the longus colli posticus, and the strong round tendons continued from the points of convergence of these fascicles are inscrted successively into the posterior oblique processes of the twelfth to the sixth cervical vertebra inclusive; the two fasciculi next in succession receive no accessory fibres from the longus colli posticus; the anterior one derives an extensive origin from the upper transverse processes of the eighth, seventh, and sixth cervical vertebre. It must be observed, however, that the whole of each fasciculus is not expended in the stroug round tendinous insertion above described; the portion which arises from the anterior ridge of the diapophysis passes more directly inwards than the rest, and is attached to the tendon which terminates the fasciculus immediatcly behind; at the middle of the neek these accessory fibres approach to the character of distinct origins. The tendons of insertion, moreover, severally receive accessory fleshy fibres from the base of the zygapophysis of the two vertebræ next behind; and thus they become the medium of muscular forees acting from not less than five distinct points, the power of which is augmented by each tendon being braced down by the oblique converging scries of muscles immediately anterior to it. The fasciculus from the eighth cervical vertebra, besides its insertion by the ordinary tendon, sends off externally a small pyramidal bundle of muscular fibres which soon terminates in a long and slender tendon which is inserted into the oblique process of the third cervical vertebra. Corresponding portions of muscle are detached from the two anterior fasciculi, which converge and terminate in a common slender tendon inserted into the postcrior oblique process of the fourth cervical vertebra; and thus terminates this complex muscle or series of muscles. It is partially represented by the muscle 3 , in fig. 35 (Hawk).

The longus colli posticus is most internal or medial of the superficial museles of the dorsal aspect of the thoracic and cervical regions. At its posterior part it seems to be a continuation of the longissimus dorsi; its medial and anterior part offers a strong analogy with the biventer cervicis; it is the homologue of the first, or medio-dorsal serics of oblique fibres of the muscular system in Fishes. It commences by long aud slender; but strong, subcompressed tendons from the spines of the sixth, fifth and fourth dorsal vertebre: these tendons gradually expaud as they proceed forward and downward, and send off from thicir under surface muscular fibres which continue in the same course, and
begin to be grouped into distinet fascieuli at the base of the neck: the first of these bundles joins a fasciculus of the lonyissimus dorsi, whieh is inserted into the anapophysis of the thirtenenth cervical vertebra; the succeoding fasciculi derive their origins from a broad and strong aponcurotie sheet attached to the spines of the fourth, third and second dorsal vertebre: the seeond to the eighth fasciculi inclusive are eompressed, broad, and fleshy, and are inserted in the strong round tendous described in the preceding muscle, and attached to the zygapophyses of the twelth to the sixth cervical vertebra inclusive: the ninth fasciculus, which forms the main anterior continuation of the longus colli posticus, is larger than the rest, and receives, as it advances, aceessory fibres from the spinous processes of the seventl to the third cervical vertebre inclusive, and is inserted, partly fleshy, partly by a strong tendon, into the side of the broad spine of the vertebra dentutu. A slender fasciculus is detached from the mesial and dorsal margin of the longus colli posticus, near the base of the neck, which soon terminates in a long round tendon, fig. 35, ${ }^{2} 6$: this tendon is braced down by short aponeurotic fibres to the spine of the fifth, fourth, third and second cervical vertebre inclusive, immediately beyond which it again becomes fleshy, and expands to be inserted into the occipital ridge: this portion is the digastrigue or biventer capitis of Cuvier, ib. $c, 6$.

In Raptores the carncous exceeds the tendinous part of this muscle. The displacement of the dorsal portion of the preceding muscle and the lonyissimus dorsi brings into view the spinalis dorsi, which is a well-developed and distinct muscle in the Apteryx. It arises ly two long, narrow, flattened tendons from the spines of the eighth and seventh dorsal vertebre: these pass obliquely downward and forward, exprunding as they proceed, and terminate in two fasciculi of muscular fibres: the posterior bundle passes forward beneath the anterior one, and inclining inward and upward, divides into two portions, inserted by long tendons into the slines of the second and first dorsal vertebre: it then sends a few fibres forward to join the onter and anterior fasciculus, which is partly inserted by a slender tendon into the spine of the last cervical vertebra: the rest of the fibres of the second fasciculus join the portion of the lomyissinus dorsi whieh is implanted into the posterior oblique process of the last cervieal vertebra. The three inserted tendons of the spinetis dorsi are also the mediun of attacliment of fibres continued from the muttifidus spince, bencath them.

The series of muscles called multifitus spince arises by flesly
fibres from the diapophyses of the five last dorsal vertebre, which pass upward, forward, and inward, to be inserted by four flat tendons into the spines of the seventh to the third dorsal vertebre inclusive, and by the tendons of the spinalis dorsi into the two anterior dorsal spines.

Obliquo-spinales. The removal of the multifitus spince brings into view a series of long, narrow, flat tendons, coming off from the spines of all the dorsal vertebræ, and slightly expanding as they proceed forwards and obliquely downwards and outwards; they become fleshy half-way from their origin, and are inserted into the posterior oblique and transverse processes of the six anterior dorsal vertebra, and into the posterior oblique processes of the three last cervical vertebre.
The interspinales muscles do not exist in the region of the back, unlcss we regard the preceding oblique fibres as a modified representation of them. The most posterior fasciculus of mnsenlar fibres, which is direetly extended between the spinous processes, commences at the interspace of the spines of the two last cervical vertebre, and the series is continued as far as the vertebra dentata.

Interarticulares. The muscles which form the more direct continuation of the obliquo-spinales are continued from the posterior zygapophysis of one vertebra to that of the next in front.

Obliquo-transversales. A third series of deep-seated intervertelral muscles is situated external to the preeeding, and passes obliquely between the diapophysis and the posterior zygapophysis of the vertebra in front. These fasciculi appear to be a continuation of the multifidus spince in the neck.

The intertrensversales are two series of short carneous fasciculi passing the one between the diapophyses, and the other between the parapophyses.

Levatores costarum. The first or most anterior of this series of museles seems to represent the scalenus medius; it arises from both the di- and pleur-apophysis of the, last cervical vertebra, and expands to be inserted into the first rib, and into the upper and outer part of the sccond rib. The remaining levatores successively diminish in size as they are placed backwards; they come off from the diapophyses of the first six dorsal vertebre ; those from the first and second expand to be inserted into the rib attached to the same transverse process and to the one next behind; the rest have a single insertion : the angle and the part of the rib immediately beneath are the situations of their attachments.

Complexus, fig. 35, 7. This strong triangular fleshy musele arises from the met- and di-apophyses of the fourth, third and
second cervical vertebre, and gradually expands as it advances forward to be inserted into the oceipital ridge, from the outer side of the insertion of the liventer cervicis to the mastoid process.

Recti capitis postici. These small museles are concealed by the preceding; they rise suceessively from the spines of the third, second and first ecrvical vertebres, and expand as they advance to be inserted into the occiput.

Trachelo-mastoideus. This strong, subdepressed carncous muscle arises from the diapophyses of the fifth, fourtl, third and sccond ecrvical vertebre, and is inserted into the paroccipital.

Longus colli. This large and long muscle, which appears simple when first exposed, is found to consist, when unravelled by further dissection, of a serics of closely sncceeding long, narrow fascienti, arising from the hypapophyses of the sixth dorsal to the first dorsal, and from the ten posterior cervical vertebres; and sending narrow tendons which inerease in length as they are given off more anteriorly, obliqucly forward and outward, to be inserted into the pleurapophyses of all the eervical vertebre save the first two: the highest or formost tendon is attached to the tuberele at the under part of the ring of the atlas: but this tendon is also the medium of insertion of five small fasciculi of muscular fibres arising from the diapoplyyses of the sixth, fifth, fourth, third and sceond ecrvical vertebre.

The rectus capitis anticus mojor is continued, or arises by as many distinct tendons, from the five superior tendons of insertion of the preceding muscle; these origins soon become fleshy, converge, and coalesce previous to their insertion into the base of the skull.

The rectus capitis antirus minor is a strong fleshy compressed triangular muscle arising fiom the anterior $I^{\text {mart }}$ of the body of the first four cervical vertebre, and inseried into the basioccipital.

The rectus capitis lateralis arises from the diapophyses of the sixth to the seeond cervieal vertebre inclusive; it is inserted into the lateral ridge or tuberele of the hasioceipital.

The obliquus externus abdominis arises, fleshy, from the second and third ribs, and by a strong aponeurosis from the suceeeding ribs near the attachment of the costal processes, and from those processes. The fleshy fibres are continued firom this aponeurotic origin to nearly opposite the ends of the vertebral ribs; they run almost transversely, very slightly inclined towards the pubis, to within laalf an inch of the linea alba, and there terminate, by an
almost straight, parallel line, in their aponeurosis of insertion. The fibres of this aponeurosis decussate those of the opposite side, and adhere to the tendinous intersections of the rectus beneath. The aponeurosis from the last rib passes to be inserted into a strong ligament extending between the free extremities of the pubic bones, leaving the abdomen, belind the last rib, defended only by the internal oblique and transversalis.

The obliquus internus abdominis arises from the whole of the anterior and outer surface of the pubis; aponcurotic from the upper part, fleshy for half an inch from the lower or ventral extremity: the carneous fibres run longitudinally, and cannot be distinctly defined from the intercostales on their outer border, or from the rectus abdominis on their inner or mesial border, which forms the medium of the insertion of the internal oblique.

The rectus abdominis is the medial continuation of the preceding muscle, which arises by a strong, flat, triangular tendon from the lower or rentral extremity of the pubis and from the inter-pubic ligament: it soon becomes fleshy; the earneous portion is interrupted by three broad, oblique, but distinct aponeurotic intersections, and is finally inserted into the sternum.

Transversalis abdominis. A layer of loose, dark-coloured cellular tissue divides the internal oblique from the transverse abdominal, except at its origin from the pubis, and for half an inch anterior to that part. The transversalis then proceeds to derive carneous fibres from the inner surface of the ribs near their lower third; they pass obliquely upward and forward, and terminate by a regular, slightly concave line midway between their origins and the extremities of the ribs; a strong aponeurosis $1^{\text {asses }}$ thence to the linea alba, but becomes thin at the pubie region, where a mass of fat is interposed between it and the peritoncum.

The diaplragm presents more of its mammalian character in the Apteryx ${ }^{1}$ than in any other known bird. It is perforated by vessels only, in consequence of the non-developennent of the abdominal air-cells. The origin corresponding to that of the lesser musele in Mammals is by two strong and distinet, sloort tendinous pillars from the sides of the body of the last costal vertebra; they are minited by a strong tendon or fascia, forming the anterior boundary of the aortic passage. The tendinous jillars may be traced forward for some way in the central aponeurosis, expanding without erossing; they are then lost in that aponeurosis, which is perforated by the gastric arteries and veine, divides anteriorly to

[^35]give passage to the gullet and the apex of the heart, expands over the anterior part of the thoracie air-cells, and becomes, at its lateral cireumference, the point of attachment of muscular fibres arising from the inner surface of the anterior ribs, and forming apparently a contimuation of the transversalis abdominis.

The appendico-costales' arise from the posterior edge and extremity of the costal processes, and run down to be inserted severally into the rib posterior to that to which the process affording them origin is attached. These proeesses are supported by strong triangular aponeuroses continued from their anterior and upper margins, severally, to the rib anterior to them.

The levator cauda arises from the posterior and superior extremity of the ischium ; it is inserted into the spines of the eaudal vertebre. In birds with a posteriorly expanded sacrum, that bone affords the elief origin to this musele, fig. 35, 10.

The adductor caude superior is smaller than the preeeding, with which it runs parallel; it rises below from the posterior extremity or tuber of the isclium, and is inserted into the pleurapophyses of the eandal vertebres.

The adductor cauda inferior arises from the tuber ischii and the ligament counceting this with the posterior extremity of the pubis. It is inserted into the diapophyses of the candal vertebre.

The depressor caudce arises, ib . 15 , from the under part of the middle line of pelvis; it is inserted into the inferior spines of the caudal vertebre.

In birds of flight the 'reetriees,' or rudder-quills attached to the coaleseed and modified terminal vertebres call for moving powers not developed in the Apteryx.

The quadratus coccygis, fig. 35 , 11 , arises from the diapophyses of the eoceygeal vertebro, and is inserted into the shafts of the tail-quills, which it separates and raises. On the lateral aspect the pubo-coccyyeus, ib. 12, arises from the posterior margin of the pubis, and inserted also into the shafts of the exterior rectrices; it is by means of these museles in conjunction with the quadratus and levator caude, that the Peacock raises the gorgeous plumes overlying the true tail-feathers.

The ilio-coccygeus, ib. 13, extends from the posterior margin of the ilium to the last eoceygeal vertebra, and to the small inferior tail-feathers.

On the ventral or inferior aspect of the tail, the museles are in general more feebly developed than on the opposite side, exeept

[^36]in the Woodpeckers, where the tail, ly means of its stiff and pointed quill-feathers, serves as a prop to support the bird on the perpendicular trunks of trees on which it seeks its food. In these the ischio-coccygcus, ib. 14, is of large size, extending from the lower edge of the ischiadic tuberosity, and from the diapophyses of the anterior caudal vertebre to the hæmapophyses of the posterior ones, and to the sides of the ploughshare bone.

Of the Muscles of the head, those which are attached to it for its general motions have already been deseribed; the remaining museles of this part are devoted to the movements of the jaws, the tonguc, the eye, and the car.

The muscles of the jaws are chiefly modificd in relation to the moveable condition of the upper mandible and tympauie bone, and the subscrviency of the latter to the actions of these parts.

The temporalis, fig. 35, 17, fills the temporal fossa, which consequently indicates the bulk of that musele in the dry skull. It arises from a greater or less extent of the temporal and parictal bones, and, as it passes within the zygoma, becomes closely blended with the masseter; the united museles derive an accession of fibres from the lower part of the orbit, and are inserted into the raised superior margin, representing the coronoid process ; and into the sides of the lower jaw from the articulation as far forward as the commencement of the horny bill. In the Cormorant, the osseous style, movcably articulated to the superoecipital, affords to the temporal muscles a more extensive origin. This, indeed, is its essential use, ${ }^{1}$ for the museles of the upper part of the neek are inserted into the oecipital bone, and ghide beneath the posterior or superadded fasciculi of the temporalis.

The biventer maxille, ib. 18 , arises by two portions, the one from the lateral depression, the other from the lower part of the paroecipital; they are inserted into the back part and angle of the lower jaw.

The openers and closers of the mandibles present very slight differences of bulk in relation to the developement of the parts they are destined to move; their disproportion to the bill is, on the contrary, truly remarkable in the Horn-lills, Toucans, and Pclican, and the bill is but weakly closed in these in comparison with the shorter-billed birds.

The upper mandible when movcable is acted on by three muscles on cither side. The first is of a radiated form, arises from the septum of the orbits, the fibres converging to be inscrted
into the pterygoid near its articulation with the tympanic. It draws forward the pterygoid bone, which pushes against and raises the upper jaw.

The entotympanicus, or levator tympanicus, arises from the side of the basisphenoid and is inserted into the fossa, on the inner surface of the tympanic bone: in adducting that bone it pushes forward the pterygoid, and, consequently, the upper mandible in the same way as the preeeding muscle, and assists in opening the bill.

The pterygoideus externus arises from the outer side of the orbital process of the tympanic, and is inserted into the mandible in front of the outer articular cavity. The pteryyoideus internus arises by a tendon from the fore part, and by fleshy fibres from the rest, of the depression upon the palatine bone, and is inserted into the inner part of the inflected angle of the mandible. This musele draws forward the lower jaw.

In the Cross-bill (Loxiu curvirostra) there is a remarkable want of symmetry in the muscles of the jaws on the two sides of the head corresponding to their peculiar position. Those of the side towards which the lower jaw is drawn in a state of rest (which varies in different individuals) are most developed, and act upon the mandibles with a force that euables the bird to dislodge the seeds of the fir-cones, which constitute its food. ${ }^{1}$

The articulation of the lower jaw is strengthened and its movements restrained by two strong ligaments; one of these is extended from the squamosal to the outer protuberance near the joint of the lower jaw. The second ligament extends from the lind end of the squamosal directly backward to the posterior part of the inner articular depression of the lower jaw, and guards against the backward dislocation of the lower jaw.
§ 133. Muscles of the wings.- Some of those inserted into the humerus, are prodigiously devcloped, and form the most characteristic part of the myology of the Bird. The muscles of the shoulder, however, are but small, and those of the distal segments of the wing still more fceble.

The Trapezius, fig. 35, 20, arises from the spines of the lower cervical, and a rarying number of the contiguous dorsal vertebre, and is inserted into the dorsal margin of the scapnla and the corresponding extremity of the coracoil.

The rhomboideus lies immediately beneath the preceding, and is always single; it passes in a direction contrary to the trapezius from the spines of the anterior dorsal vertebree to the dorsal edge of the seapula. It has no representative in the Apteryx.

[^37]The levator scapule arises by digitations from the pleurapophyses of the last cervical, and the first two dorsal vertebre ; it is inserted into the posterior part of the dorsal edge of the scapula, which it pulls forwards. In the Apteryx it seems to be the most anterior portion of the series of fasciculi composing the serratus magnus anticus. This muscle, fig. 35, 21, is most developed in birds of prey; it arises by large digitations from three or four of the middle ribs, and converges to be inserted into the extremity of the scapula.

The serratus parvus anticus arises by digitations from the first and second ribs, and is inscrted into the commencement of the inferior margin of the seapula. This is the largest of the muscles of the scapula in the Penguins.

A muscle, which may be regarded cither as a portion of the pectoralis minor or as the analogue of the subclavius muscle, arises from the anterior angle of the sternum, and is inserted into the external margin of the sternal extremity of the coracoid bone.

The supra-spinatus, ib. 22, arises from the anterior and outer part of the humeral end of the scapula, and is inserted behind the largely developed radial crest of the humerus.

The muscle which seems to represent both the infra-spinatus and teres major, ib. 23, has a more extensive origin from the scapula, and is inserted into the ulnar tuberosity of the humerus, where it is closely attached to the capsule of the shoulder-joint.

The subscapularis arises from the anterior part of the inner surface of the scapula, and is inserted into the ulnar humeral tuberosity. It is divided into two portions by the pectoralis minor.

The latissimus dorsi, ib. 24, is but a fecble muscle in Birds, and is constantly divided into two distinct slips. The anterior portion arises, more superficial than the trapezius, from the spines of the four or five anterior dorsal vertebre, and is inserted near the tendon of the deltoid into the outer side of the humerus. The posterior slip comes from the spines of the dorsal vertcbre above the origin of the broad abductor femoris, ib. 40, and sometimes from the anterior margin of the same muscle, and is inserted by a broad and thin tendon immediately in front of the preceding portion.

The deltoides, ib. 26, arises from the anterior part of the scapula; also in lolitores and Cantores from the acronial end of the furcnhum and the coraco-furcular liganent: a distinct fasciculus from the inuer angle of the humeral end of the scapula passes over the os humero-scapulare, or the humero-scapular liganent, to be inserted into the angle of the pectoral ridge; this portion is large
and distinct in Doves; ${ }^{1}$ where the hunero-scapular ossicle exists, a fasciculus therefrom, large in $\mathrm{O}_{\mathrm{wls}}$, appears as a distinct origin of the deltoid, the main mass of which musele is inserted into the peetoral ridge from its angle distad. The deltoid raises and retracts the wing.

Birds have the peetoralis muscle divided, as in many Mammals, into three portions, so distinct as to be regarded as separatc muscles; they all arise from the enormous sternum, and act upon the proximal extremity of the humerus.

The first or great pectoral muscle, ib. 25 , is cxtraordinarily developed, and is in general the largest muscle of the body. In birds of flight it often cquals in weight all the other muscles of the body put together. It arises from the anterior part of the outer surface of the clavicle or furculum, from the keel of the sternum, and from the posterior and external part of the lower surface of that bone; it is inserted by an extended fleshy margin into the palmar surface of the pectoral crest of the humerus. It forcibly depresses the humerus, and, consequently, forms the principal instrument in flight.

This muscle is very long and wide in the Natatores generally, but in the Penguin, its origin is limited to the external margin of the subjacent peetoral musele, which is here remarkably developed. The great pectoral is very long, but not very thick in the Rasores. In the Herons it is shorter, lut much stronger and thicker. Its size is most remarkable in the Humming-birds, Swallows, and diurnal Birds of P'rey, where it is attached to almost the whole outer surface of the sternum and its crest, and has an extended insertion. In the Ostrich its origin is limited to the anterior and external cighth part of the sternum, and it is inserted by a fecble tendon into the commencement of the pectoral crest of the humerus, to which it gives a strong rotatory motion forwards. In the Aptcryx the pectoralis major ${ }^{2}$ is represented by two thin triangular layers of muscular fibres attached to the under and lateral part of the stermum, and converging to be inserted into the proximal third of the minute lumerus.

The second pectoral musele is situated in birds of flight beneath the great pectoral; it has the form of an elongated triangle: it arises from the base of the crest of the sterum and from the mesial part of the inferior surface of that bone; it increases in size as it ascends, then again becomes suddenly contracted, passes upward and backward round tle coracoid, between tlat bonc and

[^38]the elavicle, then turns downward and outward, and is inserted, fleshy, above and in front of the great pectoral, into the upper extremity of the humeral crest.

The interspaee between the clavicle, coracoid, and seapula, through whielh its tendon passes, serves as a pulley, by means of which the direction of the foree of the carncous fibres is changed, and although these fibres ascend fiom below toward their insertion, yet they forcibly raise the humerus, and thus a lcvator of the wing is plaeed without ineonvenience on the lower part of the trunk, and the centre of gravity proportionally depressed.
In the Penguins, Guillemots, and Gulls, this musele is almost the largest of the three, occupying the whole length of the sternum. It is remarkable for the length and strength of its tendon, whieh is inserted so as to draw forwards the humerus with great forec. It is proportionally the smallest in the Raptores; and is very small and slender in the Strutlious birds.
We have already alluded to the use which the Penguin makes of its diminutive anterior extremities as water-wings, or fins; to raise these after making the down-stroke obviously requires a greater effort in water than a bird of flight makes in raising its wings in air: henee the necessity for a stronger developement of the sceond peetoral musele in this and other diving birds, in all of which the wings are the chief organs of locomotion, in that action, and consequently require as powerful a developement of the peetoral museles as the generality of birds of flight.

The third pectoral muscle, whieh is in general the smallest of the three, arises from the anterior part of the sternum at the angle between the body and keel, and also by a more extended origin, from the posterior moiety of the inferior surface of the eoracoid and the eoraeo-elavieular membrane; it is direeted forward, rising, to pass through the seapulo-coraeoid trochlea; its tendon glides through a sheath, attached to the eapsule of the shoulderjoint, and in some birds to the os humero-seapulare ; and is inserted into the radial tuberosity of the humerus which it hel ps to raise.
It is proportionally large in the Penguins and Gulls, but attains its greatest developement in the Gallinaceous order.

Above the preceding muscle there is another longer and more slender one, analogous to the coraco-brachiatis, whieh arises from the middle of the posterior surfaee of the eoraeoid; its direetion upward is less vertieal than that of the third peetoral, along the outer side of whiel it is attaehed to the anterior tuberosity of the humerus. This musele is wanting in the Struthionida, is of small size in the Heron and Goose, is mueh more developed in

VOL. II.
the Raptores and many Natotores, especially the Penguins, and attains its greatest relative size in the Rasores, where it arises from alnost the whole of the coracoideum.

Birds in general possess two ftexors 31 and one extensor, fig. 35, 27, of the fore-arn. They have also museles corresponding to pronators and supinators, but their action is limited in the feathered tribes to inflexion and extension of the fore-arm, and to adduction and abduction of the hand.

A remarkable muscle, partly analogous in its origin to the clavicular portion of the deltoid, but differently inserted, is the extensor pliece alaris, ib. 30, a, b, and forms one of the most powerful flexors of the cubit. It is divided into two portions, of which the anterior and shorter arises from the internal tuberosity of the humerus; the posterior and longer from the clavicular extremity of the eoracoid bone. In the Ostrich and Rhea, however, both portions arise from the coracoid. The posterior muselc, b, sends down a long and thin tendon which runs parallel with the linmerus, and is inserted, generally by a bifurcate extremity, into both the radius and ulna. The anterior muscle, a, terminates in a sunall tendon which runs along the edge of the aponeurotic expansion of the wing. In this situation it becomes elastic; it then resumes its ordinary tendinous structure, passes over the end of the radius, and is inserted into the short confluent metacarpal, u. It combines with the preceding muscle in bending the fore-arm; and further, in consequence of the elasticity of its tendon, puckers up the soft part of the fold of the wing.

A lesser flexor of the forc-arm, and stretcher of the alar membrane, ib. 31, arises, as a portion of the serratus magnus from the ribs, and terminates in an aponeurosis inserted into the alar membrane and fascia of the fore-arm; it is represented in fig. 35 as turned aside.

The extensor metacarpi radialis longus, ib. 39, is the first muscle which detaches itself from the external condyle of the humerns, ε, and it forms the radial border of the museular mass of the fore-arm; it terminates in a large tendon about the middle of the fore-arm, and this tendon passes along a groove of the radius, over the carpus, to the plaalanx of the metacarpal, ε, into the radial margin of whieh it is inserted. It raises the hand, draws it forward toward the radial margin of the fore-arm, and retains it in the same plane. In the Penguin this muscle is extremely feeble, and the tendon is lost in tlat of the tensor pliece aluris.

The extensor metucarpi radialis brevis, ib. 33, arises below the preecding from the ulnar edge of the radius, and is inserted into
the phalanx of the thumb immediately beyond the tendon of the preceding muscle. The two tendons are quite distinct from one another in the birds of prey, the Ostrich and Parrots, but unite at the lower end of the fore-arm in the Anatide, Phasianida, and Gruida.

The extensor carpi ulnaris, ib. 34, comes off from the inferior extremity of the outcr condyle of the humerus, passes along the middle of the exterior surface of the fore-arm, and its tendon, after passing through a pulley at the distal end of the ulna, is inserted into the ulnar phalanx. It draws the hand toward the ulnar edge of the fore-arm, and is the prineipal abductor or folder of the pinion.

The flexor metacarpi radialis, ib. 35, is a short and weak muscle, which arises from the inferior part of the ulna, descends along the internal side of that bone, winds round its lower cxtremity and the radial edge of the carpus, passes beneath the tendon of the radial extensors, and is inserted, external to the latter, high up into the dorsal aspect of the radial phalanx of the metacarpus. In the Ostrich it arises from the lower third of the ulna. In the Penguin it is wanting.

The fexor metacarpi ulnaris, ib. 36, arises beneath the forcarm from the internal pulley of the ulna, continues fleshy to the pinion, and is inserted, first into the ulnar carpal bone, then into the ulnar phalanx. The latter insertion is wanting both in the Ostrich and Penguin.

The muscles of the pinion or hand are few, and very distinct from one another; thic index or spurious wing is moved by four small muscles, viz. two extensors, an abduetor, which draws the digit forward, and an adductor. The middle digit reeeives three short museles, two of which arc extensors, and the third an abductor ; in this action it is aided by one and opposed by another of the extensors. The outer digit receives an abductor, which comes from the ulnar edge of the preceding phalanx.
§ 134. Muscles of the Legs.-The muscles of the pelvic limb are here deseribed chicfly as they cxist in the Apteryx, in which they present their full developement. The most superficial of the muscles on the outer side of the lcg is that very broad one which combines the functions of the tensor vagince and rectus femoris, but which, in the opinion of Cuvier ${ }^{1}$ and Meckel, ${ }^{2}$ is the homologue of the tensor vagince and glutceus maximus (seu externus): since,

[^39]however, it is exelusively inserted into the leg, it is here described with the other muscles moving that segment of the pelvic extremity. The removal of this muscle, of the startorius, and the biceps cruris, is requisite to bring into view the true glutai.

Glutens externus ${ }^{1}$ is smaller than the middle gluttous, but is relatively larger in the Apteryx than in birds of flight. Besides its origin from the outside of the pelvis, it overlaps part of the glutcens medius, and has its insertion into the femur at some distance below the great trochanter, all of which are marked characteristies of the glutceus mugnus. It takes its origin from the superior margin of the as innominatum, extends along an inch and a quarter of that margin, directly above the hip-joint, and is chiefly attached by distinet short tendinous threads, which run down upon the external surface of the muscle: it rises also by carneous fibres from the external surface of the os innominatum for three lines below the supcrior margin. The fibres converge and pass into a tendinous sheet, beginning on the external surface of the mnscle half-way down its course, which ends in a broad, Hlat, strong tendon, inserted into a rising on the outer side of the femur nearly an inch below the great trochanter. It abducts and raises the femur.

The glutceus modius ${ }^{2}$ is a large, triangular, strong and thick muscle, which has an origin of three inches' extent from the rounded anterior and superior margin of the ilium, and from the contiguous outer surface of the bone for an extent varying from an inch to eight lines. Its fibres converge to a strong, short, broad and flat tendon, implanted in the external depression of the great trochanter, having a bursa mucosa interposed between the tendon and the bony elevation anterior to the depression.

The sflutceus minimus ${ }^{3}$ rises below and internal to the preceding minscle from the anterior and inferior extromity, and from one inch and throe-fourths of the inferior and outer margin of the ilimm, and contiguous extemal surface, as far as the origin of the ylutaus metius; also by some fleshy fibres from the outside of the last rib. These fibres slightly converge as they pass backward to terminate in a broad flat tendon which bends over the outer surface of the femur, to be inserted into the elevation anterion to the attachment of the gletcus mugnus.

A muscle ${ }^{4}$ which mag be regarded either as a distinet accessory to, or a strip of, the preceding one, arises immediately behind it from half an inch of the outer and inferior part of the ilium; its

[^40]fibres run nearly parallel with those of the glutcus minimus, and terminate in a thin flat tendon, which similarly bends round the outer part of the femur, to be inserted into the outer and under part of the trochanter immediately below the tendon of the glutcus medius. This muscle and the preceding portion, or gluteus minimus, are described by Prof. Mayer ${ }^{1}$ under the names of glutcus quartus and gluteus quintus, in the Cassowary; one of them is absent in most Birds.

Use. All the preceding inuscles combine to draw the femur forward, and to abduct and rotate it inward.

Iliacus internus. This is a somewhat short thick muscle, of a parallelogrammic form, fleshy throughout; rising from the tuberosity of the innominatum in front of the acetabulum immediately below the glutaus minimus, and inserted at a point corresponding to the inner trochantcr, into the inner side of the femur near the head of that bone, which it thus adducts and rotates outwards. This muscle is present both in the Ostrich and Bustard.

Pyramidalis. The same kind of modification which affects the ilicus internus, viz. the displacement of its origin from the inner surface of the ilium to a situation nearly external, affects this muscle. It arises fleshy from the outer surface of the ischium for the extent of an inch, and converges to a broad flat tendon which is inserted into the trochanter femoris opposite, but close to, the tendon of the glutrous minimus, which it opposes, abducting and rotating the femur outwards.
The udductor brevis femoris ${ }^{2}$ arises from the imominatum immoliately behind the acctabulum, passes over the back part of the great trochanter, becomes partially tendinous, and is inserted into the back part of the femur in common with the following muscle.

The adductor longus ${ }^{3}$ is a long, broad and thin muscle, separated from the preceding by the ischiadic nerve and artery. The origin of this muscle extends one inch and a quarter from near the upper inargin of the immoninatum which is beliind the acetaloulum; it is joined by the preceding strip, and is inserted into the whole of the lower two-thirds of the back part of the femur.
The ulductor magnus ${ }^{4}$ is a broad and flat muscle, which has exnensive origin (two inches) from the outer cdge of the ischium and the obturator fascia; its fibres slightly diverge as they pass downward to be inserted into the back part of the lower half of the femur, and into the upper and back part of the tibia.

[^41]The obdurator internus arises from the inner side of the opposite margins of the pubis and ischium, where they form the posterior boundary of the obturator foramen, and from the corresponding part of the olturator fascia; the fleshy fibres converge in a slightly penniform manuer to the strong round tendon which glides through the notch, separated from the rest of the foramen by a short, strong, transverse, unossified liganent, and is inserted into the posterior part of the base of the trochanter. In its length and size this muscle resembles the corresponding one in the Ostrich and other Struthious birds.

The genellus is represented by a single small flesly strip arising from the margin of the obturator foramen, close to the emergence of the tendon of the nlturator internus, with which it is joined, and co-inserted into the femur.

The quadratus is a broad flesly muscle which arises from the pubis, below the obturator foramen, and which increases in breadth to be inserted into the fcmur internal and posterior to the obturator tendon.

Abductor magnus. ${ }^{1}$ The largest and most remarkable of the muscles which act upon the bones of the leg is that already alluded to as the most superficial of those on the outer side of the thigh. It has a broad, thin, triangular form, and arises from the spines of the sacrum by a strong but short aponeurosis which soon becomes fleshy; the carneous fibres converge as they descend, ${ }^{2}$ and pass into a thin aponeurosis at the lower third of the thigh: this is closely attached to the muscles beneath (vastus externus and crurcus), then spreads over the outer and anterior part of the knee-joint, is inserted into the patella, and into the anterior process of the head of the tibia.

Owing to the great antero-posterior extent of the origin of this musele, its anterior fibres are calculated to act as a flexor, its posterior ones as an extensor, of the femur : all together combine to abduct the thigh and extend the leg, unless when this is in a state of extrenc flexion, when a few of the posterior fibres glide behind the centre of motion of the knec-joiut.

Scrtorius. ${ }^{3}$ The origin of this muscle is characterised by an
: xı. vol. iii. pl. 31, 11.
${ }^{2}$ They are not divided into a superficial and deep layer, as in the Ostrich, but form a simple stratnm, as in the Cassowary. Meckel regards the rectus femoris as entirely wanting in the Cassowary, supposing, with Cuvier, the present muscle to be the analogue of the glufous maximus and tensor vagince united. IIe says that Professor Nitzsch observed a like absence of the rectus femoris in the Enen. Cuvier calls that muscle rectus anticus femoris, which is here described as the 'pectineus.'
${ }^{3} \mathrm{xr} \cdot$ vol, iii. pls. 31 and 35, r.
unusual extension, like that of the proceding, with which it is posteriorly continuous : it comes off aponeurotic, from the anterior and superior margin or labrum of the ilium; the fibres soon become fleshy, and the musele diminishes in breadth and increases in thiekness as it deseends; it is inserted by short and strong tendinous filaments obliquely into the anterior part of the tendon of the broad reetus, and into the anterior and inner part of the head of the tibia. Its insertion is partly covered by the internal head of the gastrocnemius. It bends and adduets the thigh, and extends the leg.

The homologue of the biceps flexor cruris ${ }^{1}$ is a unicipital musele, corresponding witl the abductor marfuus, by the removal of which it is exposed, in the characteristic modification of its extended origin, in relation to the great antero-posterior developement of the pelvic bones. Orig. By a broad and thin aponeurotic tendon, which at first is confluent with that of the abductor, but soon becomes distinct, from the posterior prolongation of the ilium: there is no second head from the femur. Ins. The flaslyy fibres eonverge as they deseend along the back and outer part of the thigh, and finally terminate in a strong round tendon, which glides through a loop formed, as in the common Fowl, Ostrich, \&c., by a ligament extended from the back of the outer conclyle of the femur to the head of the tibia, and is inserted into the process on the outside of the fibula. By means of the loop the weight of the hinder parts of the body is partially transferred, when the leg is bent, to the distal end of the femur ; and the biceps is enabled, by the same beantiful and simple mechanism, to effect a more rapid and extensive inflection of the ley than it otherwise eould have produced by the simple contraction of its fibres.

The semimembranosus ${ }^{2}$ arises from the side of the candal vertebra, and from the posterion end of the ischimm; it crosses the superficial or internal side of the semitendinosus. It is inserted into the fascia covering the gastrocmemins and the inside of the tibia: throngh the medium of the fascia it acts upon the tendon of the interual gustrornemins.

The semitemfinoses ${ }^{3}$ arises from the posterior and outer part of the sacrum and the aponemrosis comecting it with the irrhium: it is a flattened triangular muscle, which receives the stane acessorius muscle from the lower and posterior part of the fommr. It gradually diminishes as it descends, and having darand the

[^42]knee-joint, sends off at right angles a broad and square slicet of aponeurosis, which glides between the two origins of the gastrom cnemius internus, and is inserted into the lower part of the angular ridge continued from the inside of the head of the tibia. The terminal tendon, contimed from the apex of the musele, then runs along the outer or fibular margin of the internal head of the gastrocnemius, and becomes confluent with the tendon of that muscle.

The crorcus ' is a simple but strong musele: it commences at the upper and auterior part of the thigh by two extremities, of which the outer and upper one, representing the vastus externus, has its origin extended to the base of the trochanter; the inner and inferior comes off from the inner side of the femur, beneath the insertion of the gluteus magnus; the two portions blend into one musele mueh earlier than in the Ostrieh. It is inserted by the ligamentum patellie into the fore-part of the head of the tibia.

The gracilis ${ }^{2}$ lies on the inner side of the crurcus, but more superficially; it rises by two heads, one from the anterior and upper part of the femur, the other from the os pubis; both soon become blended together and transmit a broad thin tendon to be inserted into the lower and lateral part of the patella with the cruercus.

Two other muscles suceeed the preeeding, and rise beneath it from the imer and anterior lart of the femur; they have a similar insertion, and obviously represent the vastus internus. ${ }^{3}$ The fibres converge to a middle aponeurosis, which inereases to a strong short tendon, inserted into the upper and anterior projection of the tibia.

Popliteus. This small musele is brought into view when the superficial muscles of the leg which are inserted into the foot are removed. Its earneous fibres extend from the fibula inward and downward to the tibia. It is of relatively smaller extent than in the Cassowary.

Gustrocnemius. This eomplex and powerful musele consists, as in other Birds, of several distinet portions, the ehief of whieh correspond with the external and internal origins of the same muscle in Mammals. The gestrocnemius externus ${ }^{4}$ arises by a strong, narrow, rather flattened tendon from the ridge above the external eondyle of the femur, which, about an inch below its

[^43]origin, becomes firmly attached to the strong ligamentous loop attached by one end to the femur above the preceding tendon, and by the other to the outer ridge of the fibula. This trochlear loop is lined by synovial membrane, and supports the tendon of the biceps cruris, which glides through it. The carneous fibres of the external gastrocnemius come off from the outer side of the tendon, and from the fascia covering the outer surface of the muscles of the leg: they are continued in a somewhat pemiform arrangement two-thirds down the leg, upon the imner surface of the muscle, where they end in a strong subcompressed tendon. This joins its fellow-tendon, from the internal gustrocnemius, behind the ankle-joint, and both expand into a thiek, strong ligamentous aponeurosis, which extends over three-fourths of the posterior part of the tarso-metatarsal bone. The lateral margins of this faseia are bent down under the flexor tendons behind the joint, and become continuous with a strong ligamentous layer gliding upon the posterior surface of the distal condyles of the tilia, and attached to the tendons of the peroneus and tibictis anticus: the conjunction of the thickened tendons of the yustrocnemii with this deeper-seated layer of ligamento-tendinous substance constitutes a trochlear sheath lined by synovial memhrane, through whieh the flexor tendons of the toes glide. The synorial membrane of the ankle-joint is continued nprward, half an inch above the articular surface of the bone, between it and the fibrocartilaginous pulley. Below the joint the margins are inserted into the lateral ridges of the tarso-metatarsal bone, beeming gradually thinner as they deseend, and ending below in a thin semilmar edge direeted downward.

The gastrocnemius internus ' has two powerful heads, one from the femur, the other fiom the tibia; the first arises fleshy from the internal condyle of the femmr, expands as it descends, and reecives additional fibres from the lower edge of the "reessurins semitemanosi. About one-fifth down the thia this masenlar origin in the right leg terminated in a flattened tendon which becane attached to the imer side of the tibial portion of the gustrornemins. internus. The second head, which is separated from the preceding by the insertion of the semitendinosk, arises partly from the internal and anterior part of the strong faseia of the kanerjoint by short tendinons fibres, which alnost immediately become flesly, and partly from a well-defined triangulat surface on the imer and anterior anjeet of the head of the tibia: the fle- liy filme-
converge, receive the tendinous slip from the femoral portion, and end on the immer side of the muscle in a strong flattened tendon, about two-thirds down the leg: this joins the tendon of the gastrocnemius extermus and is inserted as deseribed above.

The soleus ${ }^{1}$ is a slender flattened muscle arising from the posterior part of the head of the tibia, the tendon of which joins that of the gastrocnemius internus, behind the tarsal joint.

The flexor perforans digitorum ${ }^{2}$ lics immediately anterior to the external gastrocnemius; it arises fleshy from the outer condyle of the femur, below the tendinous origin of that muscle, and terminates in a slender flat tendon lalf-way down the leg. Its tendon, fig. 35, 51, glides behind the tarsal joint through the sheath of the gastrocnemius, expands beneath the metatarsus and bifurcates, sending its smallest division to the imner toe, ib . 52, and its larger one to blend with the tendon of the peroneus medius.

Flexor perforatus of the outer toe. ${ }^{3}$ This arises by very short tendons from the proximal end of the fibula, and from the ligament forwing the bicipital pulley; it continues to derive a thin stratum of fleshy fibres from the fascia covering the anterior surface of the muscles of the leg: the fleshy fibres terminate halfway down the leg in a flattened tendon, which, after entering the gastrocnemial sheath, pierces the tendon of the first perforatus of the middle toe, then runs forward to the outer toe, expands into a thick ligamentous substance beneath the proximal phalanx, and sends off two tendinous attachments on each side, one to the proximal, the other to the second phalanx, and is continued to be finally inserted into both sides of the third phalanx.

Flexor perforatus digitorum ${ }^{4}$ is the strongest of the three; it arises fleshy from the posterior part of the distal extremity of the femur, above the external condyle, and also by a distinct flattened tendon, one inch in length, from the proximal end of the tibia, fig. 35, 50: this tendon, moreover, reccives the long slender tendon, ib. 41, sent off obliquely across the front of the kneejoint from the pectineus, by which its origin is extended to the pelvis. This accessory tendon perforates the inner fleshy surface of the musele, and is finally lost about half-way down the carneous part. Before the flexor perforatus is joined by the tendon of the pectineus, it subdivides posteriorly into four museular fasciculi. The anterior division receives principally the above tention, and this division of the muscle becomes wholly tendinous two-thirds dowin the leg; its tendon passes through the posterior

[^44]part of the pulley of the gastrocnemius, and expands as it passes along the metatarsus: a thick ligamentous substanee is developed in it opposite the joint of the proximal phalanx of the second toe, into the sides of which it is inserted, dividing for that purpose, and giving passage to the two other flexor tendons of that toe. The second portion of the present muscle terminates in a tendon situated behind the preceding, which passes through a distinct sheath behind the tarsal joint, expands into a sesamoid fibro-eartilage bencath the corresponding expansion of the previous tendon, whieh it perforates, and then beeomes itself the perforated tendon of the second phalanx of the seeond toc, in the sides of whieh it is inscrted. The third portion of this muscle ends in a somewhat smaller tendon than the preceding, which forms the seeond perforatus flexor of the third or middle toe. The fourth and most posterior portion soon becomes a distinct musele; its fleshy fibres eease on the inner side, one-fourth down the leg, but on the outside they are continued three-fourths down the leg; its tendon passes through the gastrocncmial pulley behind the anklejoint, and divides to form a sheath for the flexor perforatus of the fourth toe; it is then joined by the tendon of the peroneus, which passes through a pulley aeross the external malleolus, and finally becomes the perforated tendon of the first phalanx of the middle or third toc.

Pectineus (rectus anticus femoris of Curier ${ }^{1}$ and Meekel 2). This is a long, thin, narrow strip of muscle arising from the spine of the pubis, anterior to the aectabulum, and passing straight down the inner side of the thigh; it degenerates into a small round tendon near the knee, which tendon, fig. 35, 41 , traverses a pulley, formed by an oblique perforation in the strong rotular tendon of the extensors of the leg, and thus passing across the knee-joint to the onter side of the leg, finally exprands, and is lost in the fexor perforatus digitorum last deseribed. It is this musele whieh eauses the toes to be bent when the knee is bent, als in the aet of perching.

Peronens longus ${ }^{3}$ arises, tendinous from the head of the tibia, and loy carneous fibres from the upper half of the anterior margin of the tibia; these fibres pass oblicuely to a marginal tendon, which beeomes stronger and of a rounded form where it leaves the muscle. The tendon gives off a brond, thin, apomementis sheath to be inserted into the capsule of the tarmal juint: it is then eontinned through a synovial pulley on the site of the outer

[^45]malleolus, and is finally inserted or continued into the perforated tendon of the middle toe.

The tibialis anticus,' fig. 35, 48, is overlapped and concealed by the peroneus; it arises partly in eommon with that musele, and partly by separate short tendinous threads from the outer part of the head of the tibia; it gradually becomes narrower, and finally tendinons two-thirds of the way down the leg; its strong tendon glides through the oblique pulley ${ }^{2}$ in front of the distal end of the tibia, expands as it passes over the ankle-joint, and is inserted into the anterior part of the proximal end of the tarsometatarsal bone, sending off a small tendinous slip to the aponeurosis eovering the extensor tendons of the toes, and a strong tendon whieh joins the fibular side of the tendon of the following muscle.

Extensor lonyus digitorum. ${ }^{3}$ This lies between the tibialis ranticus and the front and outer faeet of the tibia, from which it derives an extensive origin; its tendon commenees half-way down the leg, runs along the anterior part of the bone, first under the broad ligamentous band representing the anterior part of the amular ligament, then through a liganentous pulley, and inelines to the inner or tibial side of the anterior surface of the metatarsal bone, where it expands and divides into three tendons. Of these the imnermost is given off fixst, and subdivides into two tendons, one of which goes to be inserted into the base of the last phalaux of the second toe; the other portion is prineipally inserted into the middle toe, but also sends off a small tendon to the inner side of the proximal phatanx of the second toe. The second tendon is inserted by distinet portions into the seeond, third, and last phalanges of the middle toe. The third tendon supplies the outer toe.

The extensor brevis digitorem ${ }^{4}$ is a small extensor musele whieh arises from the insertion of the tibialis anticus and sends its tendon to the outer side of that of the great eatensor digitorum.

Extensor pollicis brevis. ${ }^{5}$ This extensor of the small imermost toe arises from the upper and imner side of the tarso-metatarsal bone.

Peronens medius, Cuv., Accessorius flexoris digitorm, Vieq. d'Azyr. ${ }^{6}$ This strong pemiform muscle arises fleshy from nearly the whole of the outer surface of the fibula, also from the posterior $\mathrm{p}^{\text {net }}$ of the tibia and the interosseons space; the tendon of the biceps perforates its upper part in passing to its insertion. It

[^46]ends in a strong flat tendon at the lower third of the leg, which tendon runs through a particular sheath at the back part of the tarsal pulley, becomes thickencd and expanded as it adrances forwards beneath the tarsus, joins the tendon of the flexor perforatus, and forms with it the expansion which finally divides into three strong perforating tendons, which bend the last joints of the three long tocs.

In the outer, or fourth toe, both the perforans and perforatus tendons are confined by a double amnular ligament: the exterior one being continued from the adjoining toe, the inner and stronger one from the sides of the proximal phatanx of the outer toc. The second and third toes have two perforated tendons; one inserted into the sides of the first, and the other into the sides of the sccond phalanx.

The chief modification of the skelcton of the hind limb of Birds, in respect of size and proportion, is manifested in its central segment; the ossa imominata being anomalously expanded in order to include, as it were, in their grasp the whole of the very long sactum required for the support of the horizontal trimk upon a single pair of extremities. The principal molification of the muscles of the leg attached to the ossa imnominata might be expected, therefore, to be found in their origins. In the attachment of the fibres of a superficial miscle to the aponeurosis, continned from the outer part of the thigh, over the knee-joint, to the head of the tilia, we recognise the corresponding insertion of ${ }^{\circ}$ the tensor erayince femoris of Man and Mammals: and no C'omparative Anatomist appears to have thonght the ammalons developement and extensive origin of this muscle, in Sirels, to the any objection to the homology indieatel by it. imsertim. which is the attachment that mainly governs the fimetion of a musele. Sow besides the attachment to the fomoral fascia, we fimb this broad superficial muscle, and especially it:: middle and pisterion fibres, terminating in a strong tendom, implanted into the mper part of the patella, and recciving fibres from the ermens and rosti muscles which it immediately covers, and with which it concurs in constituting a quadricops astensor of the leg. Here, therefine, we perecire the normal insertion, the nomal functim, and the trne relative position of the rethes fommors. In calling this complex misele 'abductor nurgmes, it is to be understomel as inchuding the homologues of the tensor rayine fromoris and rertus femoris in Mammals.
§ 135. Museles: of the Skin.-In the Aptery, the cutanmonsystem of museles presents a distinct and extemise dowelomem
comnected with the peeuliar thiekness of the integument, and probably with the burrowing habits of this species, which thereby possesses the power of shaking of the loose carth from its plumage, while busy in the act of exeavating its chamber of retreat and nidifieation.

The whole of the neek is surrounded by a thin stratum of museular fibres, constrictor colli, ${ }^{1}$ directed for the most part transversely, and extending from an attachment along the median line of the skin at the back of the neck, to a parallel raphe on the median line of the opposite side: this muscle is strongest at its commeneement or anterior part, where the fibres take their origin in a broad faseiculus from the outer part of the oeeipital ridge; these run obliquely downward and forward on each side of the neck, but are continued uninterruptedly with those arising from the dorsal line of the skin above inentioned; the direetion of the fibres insensibly changing from the oblique to the transverse. The outer surface of this muscle is attached to the integument by a thin and dense layer of eellular tissue, devoid of fat; the under surface is more loosely connected with the subjaeent parts by a nore abundant and finer collular tissue.

Use. To brase the cervical integument, raise the neek feathers, and in combination with the following muscle to shake these parts. This musele is well developed in the emeu, and aets when the drum-like dilatation of the windpipe is sounded.

The sterno-cervicatis ${ }^{2}$ arises fleshy from the posterior incurved angular process of the sternum, from the ensiform prolongation and middle line of the outer and posterior surface of the same bone. The fibres pass forward, and, diverging in gently eurved lines, aseend upon the sides of the broad base of the neek, and are inserted by a thin but strong fascia into the median line of the dorsal integument. This muscle is a line in thickness at its origin, but becomes thinner as it expands; the anterior part is covered by the postcrior fibres of the constrictor colli.

Usc. To retract the skin of the ncek, and brace that portion which covers the base of the neck; when thesc are the fixed points, it will depress and protract the sternum, and thus aid in inspiration.

Obs. In its position and the general eourse of the fibres, tlis mnscle is analogous to that which supports and assists in emptying the crop in the common fowl; but the œesophagus presents no partial dilatation in the Apteryx.

The sterno-maxillaris ${ }^{1}$ appears at first view to be the anterior continuation of the preceding, but is sufficiently distinct to merit a separate description and name. It arises fleshy from the anterior part of the middle line of the stermum, passes directly forward along the under or anterior part of the neck, expanding as it procecds, and gradually scparatcs into two thin symmetrical fasciculi, which arc insensibly lost in the integument covering the throat and the angle of the jaw. It adheres pretty closcly to the central surface of the coustrictor coll, along which it passes to its insertion. It retracts the fore-part of the skin of the neck, and also the head. Each lateral portion acting alone would incline the head to its own side: the whole muscle in action would bend the neek; but the movements of the head and neck are more adequately and immediately provided for by the appropriate deeper-seated museles, and the immcdiate office of the present muscle is obviously connected with the skin. Ncvertheless, in so far as this muscle acts upon the head, it produces the same movements as the sterno-mastoideus in Mammalia.

The skin covering the dorsal aspect of the lower two-thirds of the neck, besides being acted upon by the constrictor colli, is braced down by a thin stratum of oblique and somewhat scattered fibres, dermo-transversalis, ${ }^{2}$ which take their origins by fascia attached to the inferior transverse processes of the sixth to the twelfth cervical vertebree inclusive; the fibres pass obliquely upward and backward, and are inserted by a thin fascia into the median line of the skin, covering the back of the neek.

The representative of the platysma myoides ${ }^{3}$ is a thin triangular layer of muscular fibres, taking their origin from the outer side of the ramus of the jaw, and diverging as they descend to spread over the throat, and mecting their fellows at a middle ruphe of insertion bencath the upper larynx and beginning of the trachea, which they thus serve to compress and support.

The dermo-spinalis arises by a thin fascia from the ends of the spinous processes of the three anterior dorsal vertebre. The fibres slightly converge to be attached to the integument covering the sequular region.

The dermo-iliacus arises fleshy from the anterior margin of the ilim. The fibres pass forward and slightly converge to be inserted into the seapular integment.

The dermo-costalis is a musele rescmbling the preceding in form. It arises fleshy, from the costal appendages of the serenth
and eighth ribs. The fibres pass forward and join those of the preceding muscle, to be inserted into the scapular integument.

The three preceding muscles are broad and thin, but welldefined; they would appear to influence the movements of the rudimentary spur-armed wing throngh the medium of the integument, as powerfully as do the rudimental representatives of the true muscles of that extremity.

There are also two miseles belonging to the eutaneous series, and inserted directly into the boncs of the wing. One of these, the dermo-ulnaris, is a small, slender, elongated muscle, which takes its origin from the fascia beneath the dermo-costalis; its fibres pass backward, and couverge to terminate in a very slender tendon which expands into a fascia, covering the back part of the ellow-joint. It extends the ellow-joint and raises the wing.

The dermo-humeralis is also a long and narrow strip, deriving its origin from scattered tendinous threads in the subeutaneous cellular tissue of the abdomen: it passes upward, outward and forward, and is inserted fleshy into the proximal part of the humerus, which it serves to depress.

The entaneous muscles which spread the phmes of the peacock and raise the hackles of the cock are unusually developed in these birds.
§ 136. Locomotion of Birds.-Upon land, the trunk is balanced horizontally on an axis traversing the acetabula perpendicularly to the plane of the medial section. The centre of gravity is brought within the base of support by the advanced position of the thigh-joints in the pelvis, and by the transference of the weight from the femoral heads by the shafts inclining forward to the heads of the tibie. The area of the base of support is adjusted to the same ond by the anterior extension and divergence of the three longest toes. On this base the stilt-like lcg . of the crane, rising like a straght slender cohmm to the capital formed by the head of the tilia, is capable, by an outward as well as baekward course of the femur to its joint-cup, of sustaining the body singly: the neek of the bird being so bent, and the head so disposed, as to throw the centre of gravity over the vertical line passing through the base of support. Thus sleep the Gralle and allied Palmipeds (Flaningos, Liserines), adjusting by reflex action the superincumbent weight as they may be swayed by the wind on the long and taper pedestal. In standing on two feet, the tibia and metatarse are usually, in Birds, bent at an open angle.

Progression on land is effeeted in most Birds by alternate ad-
vancement of the right and left leg; the body is supported and pushed forward by one as the other leg is raised and swung forward to the step in advance; the centre of gravity oscillating laterally, in a degree corresponding with the breadth of the pelvis and shortness of the legs, and which is such as to eause the 'waddle' of the Duck. The forces acting on the centre of gravity are preserved in equilibrio, during the walk, by movements of the neek and head, conspicuous in poultry; and, in Rails and Coots, also by movements of the tail. Most Cantores advance both legs at once, and progress by leaps or hops, the joints being first flexed and the body propelled by their sudden extension. In Volitores the legs merely support or suspend the body, and locomotion is wholly performed by the wings. Some birds derive assistance in rapid terrestrial progression by the flapping of the wings, and this is espeeially the ease with the Ostrich, which runs by the alternate advancement of its legs.

The act of climbing is performed by means of a peeuliar disposition of the toes, the fourth usually being bent lack like the first; but sometimes, as in Trogons, the first and seeond toe are opposed to the third and fourth. The grasp of sneh 'scausorial' foot may be aided by prehension with the beak, as in the Maceaws and Parrots; or by the prop formed by the stiff tail-feathers, as in the Woodpeekers.

Birds float by the specifie levity of their body, arising from the extension of the air-eells and the lightness of the plumare ; but to swim requires an expanse of sole, either by marginal membranes of the toes (Water-rails, Coots), or by the extension of webs between and miting the toes. In such true swinmers the under side of the trunk is boat-shaped, the down is thick and covered by elosely imbricated well-oiled feathers, the luilk of the bird being enlarged and its specifie gravity diminishes by the air intercepted in the plumage. Much of the booly is thus: sustained above the water by hydrostatie pressure, and musenlar artion is needed solely for the horizontal movements. The broal oars, aeting at the end of a long lever, strike the water backward with great force, the wels being fully expanded; but they collapse, the toes coming together, in the forward musement, and in some of the hest swimmers (Colymbus c. g.) the metatarsal is compressed to further diminish the resistance in preparing for the next effective stroke. The oar-like action of the hinder leg; is still further favoured by their lackward position in Niftutors: and by the metatarse and toes !eing placed alnont on the sime perpendicular line with the tibia, an arrangenent, huwever, which
is unfavouralle for walking. Sisans partially expand their wings to the wind while swimming, and thus move along the water by means of sails as well as oars. The act of diving is performed by the feet striking the water backward and upward, assisted by the compression of the air-cells: the habitual divers (Penguins, Awks) move in and through the water by the rapid and forcible action of wings, shortened and slaped like paddles, and beating the water as in flight.

Flight, the chief and characteristic mode of locomotion in birds, results principally from the construction and form of the anterior extremities. The form of the body has reference thereto, the trunk being an oral with the large end forward: being also short and inflexible, the muscles act with advantage, and the centre of gravity is more easily changed from above the feet as in the stationary position, to between the wings as during flight. The long and flexible neck compensates for the rigidity of the trunk, and alters the poise according to the required mode of progression, by simply projecting the head forward, or drawing it back. The head of the bird is generally small, and the beak pointed, which is a commodious form for dividing the air. The position of the great pectoral muscles tends to keep the centre of gravity at the inferior part of the trunk. The power which birds enjoy of raising and supporting themsclves in the air is aided by the lightness of the body. The large and usually air-filled cavities in the bones diminish their weight without taking away from their strength,-a hollow cylinder being stronger than a solid one of the same weight and length. But the specific levity principally depends on the great air-cells which occupy almost every part of the body. The air which birds inspire distends these cells, and is rarified by the heat of the body. Lastly, the feathers, and especially the quills, from their lightness and elastic firmness, contribute powerfully to the act of flying by the great extent which they give to the wings, the breadth of which is further increased by the expanded integument situated in the bend of the arm and in the axilla.

When a bird commences its flight it springs into the air, cither leaping from the ground, or precipitating itself from some elevated point. During this action it raises the humerus, and therewith the entire wing, as yet unfolded; it next spreads the wings horizontally by an extension or albduction of the fore-arm and hand: the greatest extent of surface of the wing being acquired, it is rapidly and forcibly depressed : the resistance of the air thus suddenly struck occasions a reaction on the body of the bird, which is
thereby raised in the same manner as in leaping from the ground. The impulse being once given, the bird folds the wings by bending the different joints, and raises them preparatory to another stroke.

Velocity of flight depends upon the rapidity with which the wing-strokes succeed each other; and the ratio of the resistance of the air is not as the velocity simply, but as the square of the velocity. A downward stroke would only tend to raise the bird in the air; to carry it forward the wings require to be moved in an oblique plane, so as to strike backward as well as downward. The turning in flight to the right or to the left is principally effected by an incquality in the vibrations of the wings. To wheel to the right the left wing must be plied with greatcr frequency or force, and vice versâ.

The outsprcad tail contributes to sustain the posterior part of the body; and, its plane being horizontal, serves chiefly by its movements to lift or lower the head. If a bird, flying in the direction of its axis, g, f, fig. 36,
 brings the tail into the position $b h$, parallel to o n, the resistance of the air will depress b toward k, and, causing the bird to rotate on its centre of gravity c, will raise the head from a towards 7 . If the tail be moved into the position $b i$, parallel to $l k$, the resistance of the air will raise the point b toward n and depress the head toward o. By partially folding the fan, or bending the tail to one side, it may be made to act like a rudder in the manifold modifications of the course of flight. In Waders and Anserines the tail, represented by the caudal quill feathers, is rery short, and the office of the rudder is transferred to the legs, which are extended backward in flight, and counterbalance the long outstretched ncek and head.

In descending from a great lieight birds usually incline the axis of the body obliquely downward, as in fig. 1 , the resistance of the air in a vertical direction upward equilibrating the force of gravity acting upon the body rertically downward, in that the motion of the bird becomes uniform without requiring any movement of the wings. 'Another mode of descent is performed with greatcr celerity by elevating the wings at an angle of nearly 4.5 above the plane of the horizon, as in fig. 37, hy which the revitance of the air, compared with the resistance to the wing when horizontal, is diminished in the ratio of the radius to the cube of
the sine of inelination, that is, as $a b$ to $d c$; eonsequently, a bird with its wings elevated at any angle to the horizontal plane

will deseend with greater velocity than when they are in the direction of $a b$. Pigeons elerate their wings in this manner until they arrive within a foot or two of the ground, when, to prevent the shock they would otherwise receive, owing to the velocity aequired during their descent, they suddenly turn their axis perpendicular, which had previously been parallel, to the direction of their motion, and by a few rapid strokes of the wing neutralise their momentum, and thus reaeh the ground with ease and safety. ${ }^{11}$

The manner of flight varies in different birds: some dart forward by jerks, elosing their wings every three or four strokes; the Woodpeekers and Wagtails show this kind of undulatory motion : most birds have an even continuous flight : the Kite and Albatross sometimes buoy themselves in the air without any pereeptible motion of the wings. The best flyers often ceonomise their forees by availing themselves of the impetus of a few rapid strokes to send along with the wings expanded, until the interval of rest requires to be broken by a fiesh effort,-a phase of flight beautifully defined by an old observer of nature:-

> Mox aëre lapsa quicto
> Radit iter liquidum, eeleres neque commovet alas.-VIrair.

[^47]
CHAPTER XVI.

NERYOUS SYSTEM OF AVES.

§ 137. Myelenceplualon of Birds.-'The myelon, with its nerves, having led to the developement of protecting arches in the embryo, soon ecascs to be eoextensive with the neural canal, shrinking from the hind part of it, as the candal vertebrex begin to be modified, and leaving there but a filamentary trace of its original condition: the neurine aecumulates in the sacral region, fig. $38, s$, as the pelvic members grow, and the central canal there expands, ib. t. The myelon becomes more slender in the dorsal region, and again expands near the base of the neck, in connection with the nerves of the wings, ib. u, v, w; then, resuming its dorsal dimension, it is continued to the brain, ib, a-e. The expansions, or at least the pelvic one, present a full transverse ellipse in seetion, the rest of the chord is cylindrical; it consists of white neurine with grey matter internally originating nerve-roots, and lining a subcentral canal.

The myelon is divisible into ventral and dorsal tracts according to their relative position to the transverse plane of the canal ; the ventral tract is actually divided by a longitudinal fissure into symmetrical halves or columns, the fissure extending from the exterior nearly to the canal from which it is separated by a very thin commissural tract uniting the rentral columms. The direal ones diverge from each other in the sacrum, forming the ravity above mentioned, called in Ornithotomy 'simus rhomboidalis,' fig. $38, s$, t, which is a 'ventricular' dilatation of the myelonal canal. The longitudinal fissure thence continued between the dorsal cohmus becomes less conspicuous than the ventral fissure, and appears to be obliterated in the neck: lut the donsal conlumns diverge in the medulla ohlongata, as in the sarmon, and again expose the myelonal canal, which is here called 'fouth ventriele,'ib. d.

The two expansions of the hid's myclon vary in relative size according to the different developement and powers of the wing: and leg*: the anterior or alar enlargenent is greatent in loblitures, especially the Suifte and llumming-birds: the posterior or
 bird (Anser).
pelvic one is greatest in most other birds, and especially in the Cursores. The alar cnlargement is due to an accession of white and grey substance, without dilatation of the myclonal canal.

In the brain of a chick at the eighth day of incubation, fig. 39, the 'fourth ventricle' is exposed by divergence of

the dorsal myelonal columns which now have the name of ' posterior pyramids:' the plate of neurine developed from them to bridge over the ventricle shows the same incipient state of the cerebellum, ib . l, as in the Batrachia: it next expands at the middle and represents the condition of the eercbellum in the Lizard, fig. 40: continuing to grow, the cercbellum, fig. 41, c, covers, at the sixteenth day of incubation, the fourth ventricle, and has a smooth exterior, as in the Croeodile and Turtle (vol. i. fig. 191). Towards the

close of incubation the cercbcllum, fig. $42, c$, presses forward toward the cere-
brum, ib. a, and seems mechanically to push aside the optic lobes, b; the multiplied grey matter of its superficies is disposed in transverse folds: small beginnings of lateral lobes are present in many birds. The white neurine, fig. $45, q$, continues to accumulate beneath the grey, $\mathrm{ib} . d$, and reduces the cavity of the originally vesicular cercbellum to a fissure, ib . n, whicl retains its primitive eonnection with the fourth ventriele, the fioor of which shows the longitudinal groove called 'calamus scriptorius.' The medulla oblongata expands, but its ventral surface, fig. $44, d$, is not sculptured so as to permit ' anterior pyramids,' ' olivary bodies,' a 'trapezium,' or a 'tubcr annulare,' to be dcfined.

The optic lobes in the embryo, fig. 39, a, are smooth vesicles of white neurine, in contact with each other, as in Reptilia: they are at first oblong, as in Batrachia; next acquire a spheroid figure, as in Lizards, fig. 40, b, and then assume their ornithic character by diverging laterally toward the lower plane of the brain, fig. 42, $44, b$: they maintain their smooth exterior, and their ventricle much reduced in capacity by internal growth of neurine.

The crura ccrcbri show their first supcradditions, forming the optic thalami, in the cight-days cmbryo, betwecn a and c, fig. 39, before expanding into the 'hemisphercs,' ib. c. These progressively increase in size until they acquire the relative dimensions and position shown in fig. 43, a.

They are usually of a cordiform shape with the apex directed forward : in the Parrot tribe they present a more elongate, dcpressed oval figure: they are devoid of convolutions; but a

shallow longitudinal depression marks off, in wome birl-, a median from a lateral tract of the upper surface of the hemixphere: in most this surface is uniformly eomex. The hemisphere preent an undulate surface below; the medial parts being in ame binds
produced, so as to cause a concavity transversely between them and the lateral borders, as shown in fig. 44. On the lower part of the side of each hemisphere there is a depression which corresponds to the 'fissura magna Sylvii,' and affords the sole indication of a division into lobes. The hemispheres are connected together by means of the round commissure, fig. $45, k$.

The mesial surfaces of the hemispheres, which are in contact
 with each other, present strix which diverge from the commissure. These surfaces are composed of an extremely thin layer of medullary substance, fig. 4., f, g, forming the internal parietes of the ventricle, and extended outwardly over the corpus striatum, ib. i. Like its homologue in Reptilia and the mammalian embryo, it does not present the alternate strix of grey and white matter, which suggested its name in Anthropotomy. This cerebral ganglion is of great relative size in Birds, constituting of itself almost the entire substance of the hemisphere, projecting into the ventricle, ib. h, not only from below, but from the anterior and outer sides of the cavity, and being covered by a smooth layer or fold of medullary matter, f, which increases in thickness anteriorly. The ventricle does not extend below the corpus striatum to form an 'inferior horn,' or 'cornu ammonis.' Λ fold of pia mater enters the bottom of the cerebral ventricle and lies free in the cavity: it is highly vascular, and developes tufts containing plexiform loops of capillaries defended by cpithelinm, the cells of which are shown at the margin of the villi magnified in fig. 46. The vessel forming the plexus choroides penetrates the ventricle beneath the posterior part of the thin internal wall, and the lateral ventricles communicate together there, and with the third ventricle. They are continued anteriorly to the root of the olfactory nerve, which is itself a eontinuation of the apex of the hemisphere.

Just above the orifice of communication there is a smooth flattened projection, rounded externally, which advances into the ventricle from the internal wall; this represents a begiming of
the fornix. The round anterior eommissure, k, is prolonged on cither side into the substance of the hemispleres.

The optic thalami, ib. l, are of small size, and not united by a soft commissure : between them is the cavity called the third ventricle, ib. m; and above and behind they give off the peduneles of the pineal gland. This body does not hang freely suspended by the pedicles, but seems to form a rounded and thickened anterior border of the valvula Vieussenii or lamelliform eommissure of the optic lobes. It adheres firmly to the confluenee of the great veins situated at the anterior orifice of the aqueduct of Sylvius : it is usually of a eonical or pyriform shape. The valve which closes the upper part of the passage from the third to the fourth ventricle, is a thin lamella of great width, in eonsequenee of the distanee at whieh the optic lobes are separated from one another. Anteriorly the third ventriele eommunicates with the infundibulum, which terminates in a large hypophysis.

Besides the cavities or ventricles above mentioned, there are also two others situated in the optic lobes, fig. 45, o, or bigeminal bodies, each of which, when laid open, is seen to be occupied by a convex body, ib. p, projecting from the posterior and internal side of the lobe; these rentricles communicate with the others in the aqueduct of Sylvius.

The brain of the Bird differs from that of the Reptile in the supcrior size of the cerebrum and cerebcllum, together with the folding of the latter, which relates probably to the higher loeomotive powers of the Bird : it differs from the brain of the Mammal in the absenee or small begiming of the fornix, and of the lateral lobes of the cerebellum : it differs from the brain of cvery other class in the lateral and inferior position of the optic lobes. In a pigeon weighing eight ounces with and seven ounces withont the feathers, or 3360 grains, the myelencephalon weighs 48 grains, the weight of the myelon being 11 grains, and that of the brain 37 grains. The proportion of the weight of the brain to the body is mucl greater in the Humming-Bird: whilst in the luge Dinornis, the brain does not exceed two inches and a half in length, and two inches in width. It thus presents a limited range of size, and much samencss of form and structure in the diferent orders of the class of Birds.
§ 138. Nerves of Birds.-The olfactory or first pair, usually of a simple rounded form, proceed from the small pyriform rlinencephalon, fig. $44, r$, continued from the apex of the hemisplicre, and usually somewhat defleeted. The nerve rims along an osscous canal, accompanied by a venous trunk above the
orbits, as far as the pituitary membrane of the ethmoturbinals, upon which its filanents are distributed in a radiated manner. In Apteryx and Dinornis, the rhinencephalon is of large relative size, and sends off the olfactory nerves by many filaments through a 'cribriform plate.'

The optic nerves, fig. 44, a, are in general of remarkable size; they arise from the whole of the outer surface of the optic lobes, and from the thalami, the two origins forming by their union the 'radix optieus,' fig. 47, d, which expands into the 'chiasma.' Here a partial decussation, ib. b, takes place. By removal of the firmly adherent neurilemma, the optic nerve is seen to be eom-

posed of parallel, longitudinal lamellæ, the margins of which are most free on one side, fig. 48, b.

The third, or oculomotorial nerve, arises behind the hypophysis from the grey matter that lies here between the crura cerebri: it eseapes, usually, by a distinct hole, fig. 56,3 , near the foramen opticum, and supplies the superior, inferior, and internal musculi recti, and the obliquus inferior: it also sends off a ciliary branch, which sometimes forms a ganglion before, sometimes after, joining the ramus ciliaris trigemini.

The fourth nerve arises from the posterior flattened band, extending over the 'valvula Vienssenii ' between the baek part of the optie lobes: its course, immediately above the supcrorbital branch of the fifth pair, is shown at fig. 56, 4*, as far as its termination in the superior oblique muscle, ib. $f^{\prime \prime}$, to which it is, as in other Vertebrates, exclusively distributed.

The fifth or trigeminal nerve, fig. 49, 5, 6, 7, has two origins; the 'portio major,' from the fore part of the base of the crus cerebelli, the ' portio ninor,' from the prepyramidal tract in adrance of the foregoing, which it joins after the reddish ganglionic swelling, fig. 49, 3 , has been formed. The two origins are less distinct than in Mammals; but the larger one is more radily
traeeable, towards the myelon, from not being crossed by a ' trapezium.'

The first or ophthalmic division, fig. 49, 5, parecs out of the cranium by a canal situated externally to the optic foramen. It is of large size, and describes in its passage through the orbit a curve corresponding to the roof of that cavity; it generally penetrates the substance of the facial bones, fig. $56,5^{* *}$, above the nasal fossa, ib. m. It divides into three branches; the first or superior is the smallest and is lost upon the pituitary membrane; the second branch is the largest of the three and the longest; it is received into an osseous canal, and terminates at the extremity of the beak in a great number of divisions; the third branch of the ophthalmie nerve is entirely distributed to the skin which covers the cireumference of the external nostrils.

The second division, fig. 49, 6 , or superior maxillary nerve, passes out of the same foramen as the inferior one, ib. 7: it passes forward along the floor of the orbit, and in this part of its course gives off two filaments, of which oue joins the ramifieations of the ophthalmic nerve, the other ascends, penetrates the sul)stance of the pterygoid muscles and the maxillary bone, to be lost on the lateral parṭs of the bill. In those Birds, as the

Base of the brain, and origins of cerebral nerves, Goose. cciniI. Anatidce and other TVater-fowl, where the upper mandible is notched on the edge, each denticulation receives four or five nervous filaments, and the nerve is proportionally of large size.

The inferior maxillary nerve separates from the superior, and proceeds obliquely downward, dispensing bameles to the pterygoid and quadrangular muscles of the jaws; the tronk proceeds. outward to the lower jaw, where it divides into two branches. an internal and an external. The internal, which is a continuation of the trunk, penetrates the maxiliary canal, and is contimed to the anterior end of that mandible. In the Ancticle it gives off nerves to the dentations along the eige of the mandible. The external branch reeedes from the internal, perforates the jaw, and is distributed on its external surface beneath the tegumentary w horny substance which sheaths the extremity of the mandible. It supplies no gustatory branch to the tongue. which is an organ of prehension, not of taste, in Birds. The non-ganglionic part uf
the third division of the fifth is traced on the left side of fig. 49, 7, passing beneath the ganglion. There is no 'otic' ganglion in Birds.

The facial nerve, or portio dura, arises immediately anterior to the acoustic from the prepyramidal tracts, enters the petrosal anterior to the acoustic, quits it to pass into the fallopian canal, sends off the 'chorda tympani' to the ramus alveolaris inferior of the trigeminal, and communicates with the sympathetic; it passes out behind the tympanic bone (as in Mammals), gives branches to the digastric and stylohyoid muscles, and combines with the glossopharyngeal, vagus, hypoglossal, and upper cervical nerves, to form the plexus supplying the anterior part of the constrictor colli muscle.

The auditory nerve, or portio mollis, is large, soft, and of a reddish colour; it is received into a depression on the petrosal, fig. 56,7 , whence it penctrates by several small foramina to the labyrinth.

The roots of the 'eighth' nerve penetrate the exoccipital by two or three foramina, and unite on their cmergence to form the ganglion, from which the glossopharyngeal and the pncumogastric trunks diverge. The glossopharyngeal is large ; it communicates more freely with the sympathetic than docs the pneumogastric in the neek; it sends off a small internal branch in front of the museles of the neck; a small posterior twig which unites with the pneumogastric, and a large inferior branch to the anterior part of the neck. The latter is a continuation of the nerve itself; it descends along the eesophagus and divides into two principal branches, of which one passes to the cerato-maxillary museles, and this branch is remarkably tortuous in the Woodpecker, in order to be accommodated to the extensile motions of the tongue; it supplies the upper larynx, and the surface of the tongue, as far as the tip. The other branch descends along the lateral parietes of the œesophagus, and sends off a twig to join the lingual nerve. The termination of the glossopharyngeal is expended upon the cesophagus.

The pucumogastric, after communicating with the glossopharyngeal, sympathetic and nintl nerres, passes down the neek, along with the jugular vein, and closely comected with the spinal nerves. The right trunk crosses the arch of the aorta, and sends off the recurrent round that vessel, the left trunk reflects its recurrent near the origin of the bronchi; the recurrents supply the lower larynx and part of the trachea, but are chiefly spent upon the osophagus. The trunks of the two pneumogastrics
converge ventrad of the osophagus and unite above the preventriculus, supplying that part, the gizzard, and ultimately communicating with the splanchnic plexus of the sympathetic. In the Eagle the pneumogastric is recruited by an 'accessorius' nerve arising bchind the third cervical.

The luypoglossal nerve (9th pair) escapes by one or two procondyloid foramina. It is very slender at its origin; passes to the front of the ncrvus vagus, partly uniting with, as it crosses over, this nerve, and in that situation it detaches a filanent to the lyyolaryngeal and long tracheal muscles. The trunk of the lyyoglossal next crosses the glossopharyngeal nerve, passing forward to supply the hyoglossal and lingual muscles.

The spinal nerves arise by motory (anterior or ventral) and sensory (posterior or dorsal) roots of nearly equal size; but the anterior have more numerous filaments. The ganglion on the postcrior root is proportionally large. In the sacral region of the spine, the antcrior and posterior roots escape by distinct foramina, and can be separately divided without laying open the bony canal, but they are deeply seated and well protected by the anchylosed processes of the sacrum and the extended iliac bones.

The eervical nerves vary with the number of the vertebred from ten to twenty-three: each nerve divides; the anterior branch supplying the muscles and the skin, the posterior branch the museles chicfly. Those of the lower ecrvicals form a plexus, supplying the scapular muscles, and communicate with the lowest cerrical nerve going to the brachial plexus. Only the last two or threc pairs, fig. $38, u^{\prime} u^{\prime \prime}$, of cervical nerves concur in the formation of this plexus, which is completed by the first pair or two of dor:al nerves v. The other dorsal nerves, after giving filaments to the intercostals and diaphragmatic muscles, pass to the skin at the sides of the trunk.

The sacrul nerves have no other peenliarity than their mode of passing out of the spinal canal : they form exclu-ively the plexnes analogous to the lumbar and sacral, fig. 38, v. The terminal spinal nerves supply the muscles and skin of the cloaca and tail.

The brachial plexus, formed by the two or three last cervical and one or two first dorsal nerves, soon becomes blended into a single fasciculus whence all the nerves of the wing are deriverl. The internal cutaneous nerve passes from the axilla along the inner and back part of the humerus, bents round the iuner (ulnar) side of the elbow joint: it upplies the skin. The mext brauch distributes filaments to the muscles 22, 24, fig. 3.5; sends off the 'circumflex' nerve which sulplies the latiosimu- dorsi,
deltoid, and shoulder joint ; and is then continued as the ' museulospiral,' supplying the brachialis internus and bieeps, and, as it passes behind the antibrachium, the extensors of the pinion; it also distribntes filaments to the skin. The next large branch from the plexus is the 'median nerve,' which sends off the 'external cutaneous' in its course along the biceps, supplying the skin on the outer or radial side of the wing. The 'ulnar' nerve is the next branch, supplying the 'ulnaris internus; ' and the continuation of the 'median' gives branches to the museles on the radius, to those on the pinion, and to the integument.

The nerves of the pelvic limbs are derived from the sacral plexus. The obturator nerve, formed by the seeond and third sacral nerves, passes through the upper part of the foramen ovale, gives off a branch to join the 'saphenus nerve,' and is distributed to the muscles around the hip-joint. The femoral nerve passes out of the pelvis in company with an artery, over the front edge of the ilium. It divides into three branches, whieh are dispersed among the muscles, fig. $35,40,42$, and integuments on the anterior and imer part of the thigh. One of these filaments represents the 'saphenus,' and descends superficially for a considerable way upon the limb.

The ischiatic nerve is derived from five or six of the nerves constituting the sacral plexus, on quitting which, even within the pelvis, it is easily separable into its primary branehes. Immediately after it passes through the ischiatic foramen it sends filaments to the muscles on the outer part of the thigh; it then proceeds under the bieeps, along the back of the thigh, about the middle of which it becomes divided into the tibial and the peroneal nerves.

The posterior tibial nerve, bcfore it arrives in the ham, separates into several branches, which pass on each side of the bloodvessels, and are chiefly distributed to the muscles, fig. 35, 46, 50, 51, on the back of the leg. Two of these branches, however, are differently disposed of; the one accompanies the posterior tibial artery down the leg, passes over the internal part of the pulley, and is lost in small filaments and anastomoses with a branch of the peroneal nerve on the inner side of the metatarsus; the other branch runs down on the peroneal side of the leg, along the deep-seated flexors of the toes, ib. 52 , passes in a sheath formed for it on the outer edge of the moveable pulley of the heel, and proceeds nnder the flcxor tendons along the metatarsal bone, to be distributed to the internal part of the two external toes.

The peroneal nerve is direeted to the outer part of the leg; it
dips above the gastroenemii muscles, and runs through the same ligamentous pulley that transmits the tendon of the bieeps musele, ib. 41 ; it then detaches some large filaments to the muscles on the anterior part of the leg, under which it divides into two branches, which proceed elose together, in eompany with the anterior tibial artery, to the fore part of the ankle-joint, at which place they separate; one passes superficially over the outer part of the joint, the other goes first under the transverse ligament which binds down the tendon of the tibialis anticus musele on the tibia, and then over the inner part of the joint, below which it divides into two branehes: the one is distributed to the inner side of the metatarse, and the tibial side of the back toe, i, and the next toe; the other turns toward the ecntre of the metatarsal bone, and penetrates the tendon of the tibialis anticus just at its insertion, and then rejoins the branch of the peroneal nerve it accompanied down the leg. They continue their course together again in the anterior furrow of the metatarsal bone; and at the root of the toes, separate once more, and proceed to the interspaces of the three anterior toes, and each divides into two filaments, which run along the sides of the toes to the claw.
§ 139. Sympathetic System.-The superior eervical ganglion is eonneeted with the glossopharyngeal nerve more closely in some birds than in others: it communicates by branches with the portio dura and second division of the fifth, and supplies the laerymal gland: a second braneh accompanies the entocarotild, supplies the harderian gland, and communicates with the first division of the fifth. 'The "cervical portion" of the sympathetic may be compared with that in the Snake in its not having a chord or prolongation aecompanying the truuk of the par vagum; it, however, eorresponds in some measure also with that of the Turtle, for in the Swan a branch is continued down the neck with each earotid artery, and in its course communicates several times with its fellow.' ' In the Pelican the carotid is a single trunk dividing into two at the upper part of the neck; a branch passes from the superion eervical ganglion with each of theere, ant becomes united into one near tlecir bifureation; it gives off branches for the supply of the carotid, and to communicate with the prolongation accompanying the vertebral artery : at the bottom of the neek it dips down in the mediau line between the auterion cervical muscles, and divides into two branches, each joining the penultimate eervical ganglion. ${ }^{2}$ The sympathetic parses dunn
the eervical vertebre in a canal with the vertcbral artery 'resembling the prolongation in the imperfect eanal in the Snakc.' (Vol. i. p. 310, fig. 206, 3.) 'Also like the chord sent from the first tloracie ganglion and placed at the side of the neek in the Turtle, and that accompanying the vertebral artery in Mammalia.' 'The sympathetie adheres to the anterior trunk of eaeh cervical nerve through a ganglion.' 'Having reached the thorax, the ganglia are connected with those of the dorsal nerves, much as in the Turtle. In the Swan and Pelican a large nerve from the first thoracic ganglion eommunicates with the pulmonary branches of the par vagum.' ${ }^{1}$ The thoracic trunk of the sympathetic is generally double between each ganglion. The anterior ones give off an anterior splanchnic nerve or plexus aecompanying the cocliae artery to the gizzard and liver, communieating with the pneumogastric; the posterior splanelnie nerve is intimately combined witl the adrenal body, and with the testis or ovarium. Intestinal branehes aecompany those of the mesenteric arteries; other branches supply the kidneys, and communieate with long branches of the spinal nerves destined for the eloaea and adjoining parts, and thus form a plexus corresponding in some degrec with that in Mammalia produced by the junetion of the hypogastric plexus with branches of two or three of the sacral nerves. The termination of the sympathetic is formed by a 'ganglion impar' near the end of the caudal vertebre. The abdominal ganglions in small birds lend themsclices favourably to the demonstration of the strueture of these centres of the sympathetic system, becoming transparent under pressure, and permitting the nerve-vesicles to be well distinguished from the nerve-chords: the latter only are represented in fig. 50, showing the finer filaments, c, that bend round the periphery of the ganglioiz, as if by resolution of and divergence from the main chords entering at a and emerging at b, b.
§ 140. Organ of Touch in Birds.-The cpithelial papillæ ${ }^{2}$ sheathed upon vascular oncs of the corium ${ }^{3}$ on the sole of the tocs of most Birds relate to mechanical rather than to sensational

[^48]ends, giving a eloser grasp of the pereh or the prey, and a firmer tread of the hard ground. The digital villi are unusually long in the Capereailzie (Tetrax urogallus) enabling it to grasp with more security the frosted branches of the Norwegian pine-trees. The integument of the toes is sparingly supplied with nerves in all Birds; but it may be supposed that the more delicately papillose slender flexible digits of the smaller nidifieators guide, by sensations analogous to touch, in the complex interweavings of the materials of such beautiful struetures as the pensile, domed, and otherwise adaptively perfected nests fabrieated by the Tailorbirds, and most Cantores.

Aetions indieative of taetile exploration have hitherto been observed to be performed by the bill, exclusively, in Birds. Although in most of the elass the horny sheath of the bill be lard, sensitive filaments of the 'fiftl' nerve (fig. 53, c) are traceable to the papillose extensions of the vascular formative surface into such sleath. In the Lamellirostrals the substance of the sheath is softer and its marginal lamellie are more abundantly supplied by the 'fifth:' from the tactile and selective aetions of the bill in those Birds, they are called 'Sifters.' The soft and slightly expanded end of the long and slender bill of some Gralle (Woodcocks, Snipes) is so organised for touch, that it is used as a probe in soft ground to detect the worms, grubs, and slugs that constitnte their food.

Peculiar productions of integument, devoid of feathers, such as the 'cere' of Birds of Prey, the 'wattles' of the Cock, and of species of Philedon, Glancopis, and other so-ealled 'wattle birds, the cephalic caruncles of the King Vulture and Turkey, \&c., have been loosely cited amongst ' organs of touch.'
§ 141. Orgun of Taste. - The gustatory sense is very imperfectly enjoyed in Birds, which, having no manducatory organs, swallow the food almost as soon as seized. The tongue is organised chiefly to serve as a prehensile instrument, and its principal modifications will be treated of in Chafter XVII. It is generally sheathed at the anterior part with horn, and is destitute of papilla except at its base, fig. 51,0, ncar the aperture of the larynx, i; these papilla are not, however, supplied by a true gustatory nerve, but by filaments of the glosenh haryngeal. No branch of the fiftl pair goes to the tongue; but the mennbranc of the palate and fauces is so supplied that the sapid qualitics of food may be there appreciated.
The tongue is proportionally largest and most fleshy in the Parrot tribe, and the forn is detained in the mouth longer in vol. 1 I.
these than in other Birds. It is triturated and comminuted by the mandibles, and turned about by the tongue, which here scems to exereise a gustatory faculty, sinee indigestible parts, as the coats of kernels, \&e., are rejected. In the Lories the extremity of the tongue is provided with numerous long and delicate papillæ or filaments projeeting forwards.

The marginal epithelial papilla of the tongue of the Toucan, fig. $51, h$, appear to test, in the way of touch, the ripeness or mellowness of fruit. Similar papill2 at the tip of the tongue of many small birds (Humming-birds, Tlurush-tribe, fig. 75, в, Fieldfare) exemplify probably the tactile rather than the gustatory faeulty.

$$
51
$$

§ 142. Organ of Smell.- The elose affinity subsisting between the eold and warm-blooded Ovipara is manifested in the olfaetory organs. The external nostrils are simple perforations, having no moveable cartilages or muscles provided for dilating or eontraeting their apertures, as in Mammalia. The extent of surfaee of the pituitary membrane is not inereased by any large aeeessory eavities, but simply by the projeetions and folds of the turbinals. The olfaetory nerve passes out of the skull, as a rule, in Birds, by a single foramen. The Apteryx and Dinornis form the exeeptions.

The external nostrils vary remarkably both in slape and position, and serve on that aeeount as zoologieal eharaeters. They are plaeed at the sides of the upper mandible in the majority of Birds, but in some speeies are situated at or above the base of the bill; the latter is the ease in the Toueans, fig. $53, d$; in the Apteryp australis they are found at the extremity of the long upper mandible.

In general they are wide and freely open to facilitate the inhalation of air during the rapid motions of the bird, but they are so narrow in the IIerons as seareely to admit the point of a pin; and in some Pelecanidue they are wanting, and the odorous partieles get aceess to the olfactory organ from the palate.

In the Rasores the nostrils are partially defended by a seale. In the Corvidce they are protceted by a bunch of stiff feathers
direeted forward. In the Petrels the nostrils are produced in a tubular form, parallel to one another for a short distance along the upper part of the mandible, with the orifices turned forwards, fig. 52, a.

The septum narium, fig. $53, e, e$, is, in general, eomplete, and is partly osseous, partly eartilaginous. It is perforated in the Swan just opposite the external nostrils, and in the
 Toucan, lower down, ib. b. The surface of the septum is rugose in this bird, and the pituitary membrane whieh covers it is highly vascular. The parietes of each of the nasal passages give attachment to three turbinal lamince. The inferior one is a simple fold adhering to the lower and anterior part of the septum narium ; it is partially ossified in some $R(\alpha-$ sores. The middle turbinal is the largest: it is of an infundibular figure, and adheres by its base to the septum and externally to the side-wall of the nose. It is convoluted with two turns and a lialf in the Anserine Birds, but in many birds it is compressed and forms only one turn and a half. The superior turbinal $t, 5^{\prime \prime}$,

fig. 56, gencrally presents the form of a bell; it is more or less ossificd at its base, hut mostly cartilaginous, and adheres to the upper part of the prefrontal. It is hollow, and divided into two compartments, which are prolonged in a tubular form; the internal one extends toward the orbit, the external terminate belind the middle turbinal in a cul-de-ac. The turbinal supports of the pitnitary membrane may be membranou*
gristly, or bony, and in different proportions. The latter is their texture in the Toucan, in which the olfactory organ is confined to the base of the huge upper mandible, fig. 53, d, e, the meatus deseribing a vertical sigmoid curve. At its commeneement it is cylindrical, then dilates forward to receive the outermost turbinal, and bends backward to admit the projection of two ethmoturbinals: after which it descends vertieally to the palate, e. The pituitary lining of the meatus is not continued or refleeted into the contiguous pucumatic strueture of the bill, a, b.

In most Birds the nasal passages communicate with the palate and pharynx by two distinct but contiguous apertures: in some, e. g., the Cormorant and Gaimet, the passages unite and terminate by a single aperture.

The olfactory nerves are distributed to the pituitary membrane of the septum narium, and of the superior and middle, or cthmo-, turbinals; the lower turbinals being supplied by the fifth nerves. The membrane is most vaseular and delicate on the ethmoturbinals; and these acquire an unusual size in the Apteryx, where they are attached to the whole outer part of the prefrontals, answering to the 'os planum,' which makes a large convex projection between and below the orbits. This bird appears to be guided by the sense of snell to the worms that form its food, the outer nostrils being at the end of the long probe-shaped bill. The olfaetory nerves are proportionally largest in the $\Lambda_{\text {pteryx, }}$ and are sent off in numerous filaments from the rhinenecphalon, by a cribriform plate, to the nosc. The extinct Dinornis had a similar developement of the organ of smell. In the Vulture the olfactory nerve is single on cach side, and continued from an olfactory ganglion, or 'rhinenecphalon,' along the upper part of the interorbital space to be distributed upon an upper and middle turbinal, the latter boing the largest. In the Turkey the olfactory nerve is one-fifth the size of that in the Vulture, and is ramificd on a small middle turbinal, there being no extension of the pituitary membrane over a superior, or etluno-turbinal. ${ }^{1}$ This result of comparative anatomy, and the observed differenees in the labits and food of the Vulture and Turkey, point to the greater importance and cxercise of the sense of smell in the carrion-eating raptorial bird. But it las been songht to invalidate the inference by certain well-known experiments. Mr. Audubon exposed the skin of a decr, stuffed with hay, and in a few minutes a Vulture flew towards and aliglited near it, attacked the seeming carcass in the usual way, and tore open the seams of the skin;

[^49]when, finding nothing eatable, the bird flew away. Henee the Ameriean ornithologist coneludes that the Vulture is led to its game by sight alone. But the truer deduction may be that, having always received impressions from sight, combined with and eonfirming those, in some casc.s the first received, from smell, the Vulture was unwilling to disbelieve its own eyes, though the odour was absent. It may often have been led by sight to the eareass of a dying beast, or one dead too soon for any putrefactive emanations to liave eseaped, and so it mistook the stuffed deer for a reeently dead one. In a eonverse experiment, a dead hog being eoneealed in a ravine, and covercd with briers and eane, ' many Vultures werc seen from time to time sailing over the spot where the putrid eareass was hid,' but nonc of them attempted to expose it: whilst several dogs found their way to it, and devoured the flesh.' ${ }^{1}$ The right infcrence from this experiment is, that the Vultures were attracted by the putrefactive effluvia; but, having always associated sight with smell, and having neither the burrowing power of the dog, nor the habit of hunting exclusively by seent, they were baffled.
§ 143. Organ of Hearing.-The gencral character of this organ resembles that in Reptilia, but, as Hunter well remarks, 'there is a neatness and precision in the structure which is not to be found in the Tricoilia.' ${ }^{2}$ The whole of the primitive cartilaginous aeonstic eapsule is ussified and confluent with contiguous elements of cranial vertebre, and there is a better defined and usually deeper fossa or ' meatus'external to the ear-drum. In most Birds a fold of integument projects from the fore part of the meatus; this is largest in the Owls, but the ear-drum is not protected by one so developed as to form a conspicuous ' conch' or ' auricle.' It mosit, in some Birds, as the Bustard, fig. 54, d, Ostrich and Owl-, particular feathers are so developed and arranged around the meatal margin, as to serve the office of an
 external car: the auricular feathers being raised and directed so as to catch and concentrate the vibrationof sound that may hare cxcited the bird's attention.

[^50]The labyrinth or internal ear consists of the 'vestibule,' three semicircular canals, and beginning of the cochlea. The vestibule is smaller in proportion to the other parts, but is longer than in Reptilia. The superior semicircular canal, fig. $55, h^{\prime}$, is usually the largest, as in the $\mathrm{Owl}_{\mathrm{wl}}$; but it is relatively smaller in most Cantores : the external canal, i, inosculates at m with the horizontal one k, but the chief communications of the canals are through the uncdium of the vestibule. The ends of the canals where the acoustic nerves enter are expanded into 'ampullæ,' ib. l, and the nerves are supported in exquisitely delicate vascular membranes lining the canals, and slightly projecting into the ampullæ.

The cochlea is represented by an obtuse osseous eonical cavity, fig. $55, n$, longer than in the Crocodile, very slightly bent, with the
 concavity directed backward. Its interior is occupied by two small cylinders of fine cartilage, each a little twisted, and united by a thin membrane at their origin and termination. They proceed from the osseous bar, which separates the two foramina, communicating respectively, the one, 'foramen rotundum,' with the vestibule, the other, 'foramen ovale,' with the tympanum. The sulcus, which is left between the cartilages, is dilated near the point, and accommodates the same branch of the auditory nerve, which is sent to the cochlca in Mammals. This nerve spreads in fine filaments upon the united extremity of the cartilaginous cylinders. The cavity is divided by the presence of the cartilages into two 'scalæ,' the anterior of which communicates with the vestibule and is not closed; the posterior scala is shorter, and would communicate with the tympanum by the foramen ovale, were it not closed by a membrane. Besides these parts the cochlea still contains a trace of the cretaccous substance which forms so conspicuous a part of the organisation of the internal ear in Fishes. The Struthious Birds manifest their closer relation to the Reptilia by having the cochlea smaller in proportion to the other parts than in the ears of birds of flight.

The cavity of the tympanum has been already described, p. 62 : besides the communications with the air-cells of the surrounding bone, it is continued by the 'enstachian' tube, fig. 55, e, to the palate: to the membrane closing the 'foramen ovale' is applied the
base of the columelliform stapes: the much larger external aperture of the tympanie cavity is closed by the ear-drum, e. This is convex outwardly, semitransparent and glistening: the proper ' membrana tympani' is lined by that of the tympanic cavity, which is continued into the eustachian tube; and is covered externally by an epithelial layer, continuous with that of the meatus: the former is more intimately united with the proper membrane. In this may be discerned an outer layer, showing more distinctly a structure of radiating fibres, and one inner, thicker, and less distinetly fibrous layer.

The margin of the ear-drum is set in a groove of bone, afforded by or attached to the tympanic anteriorly, the mastoid above, and the paroecipital behind. One or more points of ossifieation may be set up in the thick periphery of the drum, which coalesce with the above-named bones. The membrane of the restibule, passing across the foramen ovale, becomes a little thickened where it adheres to the margin of the dise of the stapes: the connection is such as to admit of a slight movement of the ossicle. From the disk the bone is continued, of a slender form, like a periele, to the cartilaginous bifurcation, and this is connected by a larger eartilaginous plate, representing the 'malleus,' to the membrana tympani, at c, fig. 55. To the latter cartilage, as to the ossified and coalesced incus and malleus of Alarsupials, is attached the chief muscle of the ear-drum, a tensor,' fig. 55, f : it arises from a depression in the basisphenoid, enters the tympanic cavity above the beginning of the eustachian tube, and by its inscrtion into and action upon the malleus, tends to push the membrane outward: it is counteracted by two small cords extended to the inner wall of the tympanum : but the muscular character of them is doubtful, and the ear-drum resumes its normal state when the tensor ceases to act. The eustachian tube, fig. 55, e, is continued from the lower and back part of the tympanic eavity, grooves the sides of the basisphenoid, as it converges toward its fellow, with which it unites, in most Birds, to terminate by a common aperture behind the posterior or palatal nares.
§ 144. Organ of Sight in Birds.- The avian peculiarities of the eye chiefly relate to the extraordinary powers of locomotion in this elass, adjusting vision to a rapid change of distance in the objects viewed, and facilitating their distinct perception through a rare medium.

There is no species of Bird in which the eyes are wanting, or rudimentary, as occurs in the other vertebrate classes.

The eyes of Birds are remarkable for their great size, both aw
compared with the brain and with the entire head, fig. 56, being analogous, in this respeet, to the eyes of some of the flying insects. Their form is admirably adapted to promote the objects above named. The anterior segment of the eye is more prominent than in any other class of animals, and is in many Birds prolonged into a tubular form,
 terminated by a very convex cornea, fig. 137, e; the Owl furnishes the best example of the disproportion between the anterior and posterior divisions of the globe, the axis of the anterior portion being twice as great as that of the other. This gives room for a greater proportion of aqueous fluid, and by removing the erystalline lens from the retina, causes a greater convergence of the rays of light, by which the nocturnal bird is enabled to diseern the objects placed near it, and to see with a weaker light. The anterior division of the eye is least eonvex in the Swimming Birds. The antero-posterior diameter is to the transverse as 19 to 26 in the Swan, and as 17 to 20 in the Duck.

The sclerotic coat, fig. 57 , b, is divisible into three layers. It is thin, flexible, and somewhat elastic posteriorly, where it presents a blnish shining appearance, but anteriorly its form is maintained by a circle of osseons plates or scales, ib. a, fig. 26, 17, interposed between the exterior and middle layers. These plates vary from thirteen to twenty in number, and are situated immediately behind the cornea, with their edges overlapping each other. They are in general thin, and of an oblong quadrate figure, becoming elougated from before backward in proportion as the bird possesses the power of changing the eonvexity of the cornea. In the Owls they extend from the cornea over the long anterior division of the eye to the posterior hemisphere, which they also contribute to form. The figure of the eye is thus maintained, notwithstanding its want of spherieity.

The bony plates are capable of a degree of motion mpon each other, which is, however, restrained within certain limits by the
attachments of their anterior and posterior edges to the sclerotic coat; and by their being bound together by a tough ligamentous substance, as it were the continuation of the sclerotic between the edges that overlap each other.

The cornea, fig. 57, c, possesses the same structure as in Mammalia, but differs with respect to form. When the posterior part of the eye is compressed by the muscles, the humours are urged forward and distend the cornea; which, at that time, becomes more prominent than in Mammalia; and under such circumstances, the eye is in a state for pereeiving near objects. When the muscles are relaxed, the contents of the eyeball retire to the posterior part, and the cornea becomes flatter: this is the condition in which we find the eye of a dead bird, but we can have no opportunity of perceiving it during life. It is only practised for the purpose of rendering objects visible that are placed at an extreme distance. From the well-known effects of form upon refracting media, it must be presumed, that the cornea is least convex when a bird which is soaring in the higher regions of the air, and invisible to us, discerns its prey upon the earth; its form will change as the bird descends with unerring flight to the spot, as is customary with many of the rapacious tribe.

On reflecting the sclerotica from the choroid, a grey substance is seen upon the fore part of the latter, like a ring: it consists of fibres showing, like those of the iris, the transverse strix, and which serve to attach the choroid to the sclerotic plates and contiguons margin of the cornea. These fibres are regarded by the
 anatomist, who first called attention to their

Section of eyeball, Falco. xXxiv: muscular nature in Birds, as helping 'to accommodate the eye to the different distances of objects,' being supposed to act upon the cornea in a manner amalogous to that of the muscles of the diaphragm upon its tendinous centre. ${ }^{1}$

The choroid coat is a looscly cellular and highly vascular membrane, devoid of 'tapetum,' and copiously covered or saturated with a black pigment. Opposite the bony circle the choroid separates into two layers; the external layer is the thinucst, and adheres at first firmly to the sclerotica, after which it is produced frecly inwards to form, or be continuons with, the iris.

The iris, fig. 57, e, is delicate in its texture, which under the lens appears composed of a fine network of interlacing fibres, hut it is remarkable for the activity and extent of it.s movements, which

[^51]seem in some Birds to be voluntary. The contraction and dilatation of the pupil, independently of any change in the quantity of light to which the eye is exposed, is most conspicuous and remarkable in the Parrot tribe, but it has been observed also in the Cassowary and other birds. ${ }^{1}$

The colour of the iris is subject to many varictics, which frequently display great brilliancy, and afford zoologists distinguishing specifie characters of Birds; although these cannot always be implicitly relied upon. The breadth of the iris varies in different species, but is greatest in Birds which take their food in the gloom, e. g., Owls and Nightjars, in order that the pupil may be proportionally enlarged to admit as much light as possible to the retina. The ciliary nerves and vessels run in the form of single trunks between the choroid and selerotica, and terminate antcriorly in several ring-shaped plexuses for the supply of the iris and of the museular circle of the cornea. The pupil is usually round : in the Goose and Dove it is elongated transversely, and in the Owls is vertically oval.

The inmer layer of the choroid is thicker than the external, and is disposed in numerous thickly set plice radiating towards the anterior part of the erystalline lens, where they terminate in slightly projecting ciliary processes, fig. $57, d$, the extremities of which adhere firmly to the eapsule of the crystalline. These processes are the most numerous, close set, and delicate in the Owl : they are proportionally larger and looser in the Ostrich.

The chief peculiarity in the cye of the Bird is the marsupium or pecten, ib. f, which is a plieated vascular membrane analogous in structure to the choroid, and equally blackened by the pigmentum; situated in the vitreous hmour anterior to the retina, and extending from the point where the optic nerve penetrates the cye to a greater or less distance forward, being in many Birds attached to the posterior part of the eapsule of the lens. As its posterior point of attachment is not to the choroid but to the termination of the optic nerve, this requires to be first deseribed.

When the optic nerve, ib. g, arrives at the selerotic, it tapers into a long conical extremity, which glides into a sheath of a corresponding figure, excavated in the substance of that membrane, and directed downward and obliquely forward. The central or inner layer of this sheath is split longitudinally, and the plieated substance of the nerve, fig. 48, passes through this fissure. A similar but longer fissure exists in the corresponding part of the ehoroid: so that the extremity of the optic nerve presents in

[^52]the interior of the eye, instead of a round disc, as in Mammalia, a white narrow streak, from the extremities and sides of which the retina is continued. Branches of the ophthalmic artery, distinct from the vessels of the choroid, and homologous with the arteria centralis retina, enter the eye between the laminæ of the retina, along the wholc extent of the oblique slit above mentioned, and immediately penetrate the folds of the marsupial membrane, upon which they form delicatc ramifications. These vessels are shown in fig. 58, representing the excised marsupium unfolded and spread out.

The marsupium is lodged like a wodge in the substance of the vitreous humour, in a vertical plane, directed obliquely forward. In those species in which the marsupium is widest, the angle

next the cornea reaches the inferior edge of the capsule of the crystalline; but where it is narrow, the whole anterior border is in contact with the same point. This contact is close in some Bird, as the Vulture, Parrot, Turkey, Cassowary, Liork, Goose, and Swan; "but in other Birds the marsupium does not extend further than two-thirds of the distance from the back part of the eye, and is attached at its anterior extremity to some of the numerous lamine of the hyaloid membranc which form the cells for the lodgment of the vitrcous humour. In these cases the marsupium can lave no influence on the movements of the lens, unless it be endowed with an erectile property, and be so far extended as to push forward the lens. There is no muscular structure in the marsupium; and its changes of form, if such occur in the living bird, must be effected by changes in the condition of the vessels of which it is almost exclusively composed.

The form of the marsupium varies in different Birds; it is broader than it is long in the Stork, Heron, Turkey, and Swan; and of the contrary dimensions: in the OwI, Ostrich, and (assi)wary. The plica of the membrane are perpendicular to the
terminal line of the optie ncrve; they are of a rounded figure in most species, but in the Ostrich and Cassowary they are compressed, and so far inclined from the plane of the mombrane, that their convergence towards its extremity gives it a resemblance to a elose-drawn purse. ${ }^{1}$ The folds vary in number, being four in the Cassowary, seven in the Great Horned Owl, eight in the Maccaw, from ten to twelve in the Duck and Vulture, fifteen in the Ostrich, sixteen in the Swan and Stork, and still more numerous in the Insessorial Birds, amounting to twenty-eight, according to Soemmerring, in the Fieldfare.

The exact functions of the marsupial membrane are still involved in obscurity. Its position is such that some of the rays of light proceeding from objects laterally situated with respect to the eye must fall upon and be absorbed by it ; and Petit accordingly supposed that it contributed to render more distinct the perception of objects placed in front of the eye.

Some physiologists have supposed that this black membrane was extended toward the centre of the eyc, where the luminous rays are most powerfully concentrated, in order to absorb the excess of intense light to which Birds are exposed in soaring aloft against the blazing suu. Others have considered it as the gland of the vitreous humour, and that, as this fluid must be rapidly consumed during the frequent and energetic use made of the visual organ by Birds, it therefore might require a superadded vascular structure for its reproduction.

The marsupinm may act as an erectile organ, and occupy a variable space in the vitreous humour: when fully injected, therefore, it will tend to push forward the lens, either directly or through the medium of the vitreons humour, which must be displaced in a degree corresponding to the increased size of the marsupium; the contrary effects will ensue when the vascular action is diminished. The nocturnal Apteryx, in which the eye is so small, slows also the exception of the absence of the marsupinm.

The retina is continued from the circumference of the base of the marsupium, and after unfolding its plica expands into a smooth layer of medullary matter, which seems to terminate at the periphery of the corpus ciliare. In the Owls not more than half the globe of the eye is lined by the retina; it ceases in fact where the eye loses the spherical form at the base of the anterior cylindrical portion.

[^53]The humours of the cye no less correspond to the peculiar vision of the Bird, and the rare medium through which it is destined to move, than the shape of the globe and the texture of its coats.

The aqueous humour is extremely abundant, owing to the extent of the anterior chamber gained by the convexity of the cornea, and its refractive power must be considerable in the higher regions of the atmosphere. The membrane inclosing it can be more readily demonstrated in Birds than in most Mammals, especially where it adheres to the free edge of the iris. The large size of the ciliary processes may have the same relation to the reproduction of the aqueous, as the marsupium is supposed to have with reference to the vitrcous, humonr.

The crystalline lens is remarkable for its flattened form, especially in the ligh-soaring Birds of Prey; it is also of a soft texture, and is without the hard nucleus found in Fishes and Reptiles. In the Cormorant and other birds which seek their food in water, the crystalline is of a rounder figure, and this is peculiarly the case in the nearsiglited Apteryx and Owls which lunt for prey in obscure light. It is inelosed in a distinct capsule, which adheres very firmly to the depression in the anterior part of the vitreous humour; the capsule is itself lodged between two layers of the membrana hyaloidea, which, as they recede from each other to pass- the one in front and the other belind the lens-leave round its circumference the sacculated eanal of Petit.

The vessels of the lens are derived from those of the marsupium, which, as before observed, are ramifications of the homologue of the arteria centralis retinæ: this is not continued as a simple branch from its origin to the marsupium; but, immediately before penetrating the coats of the eye, it breaks into mumerous subdivisions, the aggregrate of which is greater than the trunk whence they proceed, and these again unite, forming a plexus, ε, fig. 59 , elose to the external side of the optic nerve. The artery of the marsupiun proceeds from this plexus, and rums along the base of the folds, giving off at right angles a branch to each fold, which in like mamer sends off smaller ramuli, fig. 58. The plexus at the origin of the marsupial artery serves as a reservoir for supplying the blood required for the occasional futl injection of the marsupium; and a similar but larger plexus, fig. 59,4 , is formed at the origins of the ciliary arteries which suphy the erectile tissue of the ciliary processes and iris.

The ritrens homour presents few peculiarities worthy of note;
compared with the aqueous lumour, it is proportionally less in quantity than in the eyes of Manmals. The outer capsule formed by the hyaloid membrane is stronger, and can be more casily separated from the humour.

The eyeball is moved in Birds by four straight and two oblique muscles. The Recti muscles arisc from the circumference of the optic foramen, and expand, as they pass forward, to be inserted into the soft middle part of the sclerotic. We lave not been able to trace their inscrtion distinctly to the osseous circle; their aponeurosis cannot be reflected forward from the sclerotica without lacerating that inembrane.

The Obliqui both arise very near together from the anterior parietes of the orbit, and go to be inscrted, the one into the upper, the other into the lower part of the globe of the cyc; the superior obliquus does not pass through a pulley, as in Mammalia. All the muscles are proportionally short in this class, but especially so in the Owls, in which the cye, from its large size and close adaptation to the orbit, ean cnjoy but very little motion. In figs. 56 and $59, a$ is the rectus superior or attollens; b the rectus inferior or deprimens; c the rectus externus or abducens; d the rectus internus or adducens; e the obliquus superior; f the obliquus inferior; g the quertratus; h the pyramidalis.

The accessory parts of the eye in Birds are similar to those of the higher Reptiles. There are three cyelids, two of which nove vertically, and have a horizontal commissure, while the third, which is decper-seated, sweeps over the eyeball horizontally, from the inner to the outer side of the globe. The vertical, or upper and lower cyclids, are composed of the common integument, of a layer of conjunctiva, and between these of a ligamentous aponeurosis, which is continued into the orbit, and lines the whole of that cavity. The lower cyelid is the one which generally moves in closing the cye in sleep, and it is further strengthened by means of a smooth oval cartilaginous plate, which is situated between the ligamentous and conjunctive layers.

The orbicularis muscle is so disposed as by means of this plate to act more powcrfully in raising the lower than in depressing the upper eyelid. In the latter it is continued immediatcly along
the margin: in the lower eyelid the tarsal cartilage intervencs between the muscle and the ciliary margin.

The levator palpebree superioris arises from the roof of the orbit, and is inserted near the external angle of the lid. There is also an express muscle for depressing the lower cyelid, as in the Crocodilc. In the Owls and Nightjar (Caprimulyus) the eyelids are closed principally by the depression of the upper one. There are but few Birds that possess eyclashes; of these the Ostrich is an example, as also the Hornbills and the Owls, in which they are arranged in a double serics; but here they are rather to be considered as fcathers with short barbs, than true eyelashes.

The third eyclid, or membrana nictitans, is a thin membranc, transparent in some Birds, in others of a pearly white colour.

Two muscles are especially provided to effect its movements, but are so placed as to cause no obstruction to the admission of light to the cye during their actions. One of these is called the quadratus nietitantis, fig. 59, g; it arises from the selerotica at the upper and back part of the globe of the eye, and its fibres slightly converge as they descend towards the optic nerve, above which they terminate in a tendinous sheath, having no fixed insertion. The second muscle, called pyramidalis nictitantis, ib. k, arises from the lower and nasal side of the eyeball: its fibres converge toward the upper part of the optic nerve, and terminate in a small round tendon which glides through the pulley at the free margin of the quadratus; thus, winding over the nerve, it passes down to be inserted into the lower part of the margin of the thirl cyelid. By the simultaneous action of the two muscles, that nictitating lid is drawn outward and obliquely downward over the fore part of the eyeball. The tendon of the pyramidalis gains the due direction for that action by winding round the optic nerve, and it is restrained from pressing upon the nerve by the counteracting force of the quadratus, which thus auginents the porver of the antagonist muscle, while it obviates any inconvenience from pressure on the optic nerve, which its peculiar dispenition in relation to that part would otherwise occasion. The nictitating membrane returns, on the relaxation of its muscles, by virtue of its own elasticity, to the inner corner of the orbit, where it lies folded when not in usc.

The lacrymal glands are two, as in Reptiles; but the imer one is the largest, especially subserving the more frequent movements of the nictitating membranc: it is called the 'harderian gland,' fig. $56, d^{\prime}$ is situated at the imer or nasal cantlus, has a lol,
lated exterior, and emits its viseid seeretion by a short duct whieh opens beneath the third lid. The 'lacrymal gland,' fig. 59, d, lies at the posterior and external part of the eyeball; in the Goose it is of a flattened form, about the size of a pea, and pours its thimer transparent secretion, by a short wide duct, upon the iuside of the outer canthus of the eyelids. The naso-laerymal conduit commenees by two apertures at the nasal eanthns, and terminates below and a little before the middle turbinal. In the Ostrieh there is a glandular prominence at each 'punctum,' analogous to a 'earuncula laerymalis,' but this structure is not present as a rule in Birds.

Besides the two glands which serve to lubrieate and facilitate the movements of the eyeball and eyelids, there exists another gland whieh from its position in or near the orbit seems to belong to the laerymal group; but its seeretion is exelusively employed upon the pituitary membrane of the nose, and it corresponds rather to the nasal gland of Serpents. In many water and marsh Birds the gland in question is lodged in the superorbital fossa, before described, p. 61 ; but in most Birds it is situated within the orbit, either beneath the nasal or between it and the maxillary: in the Woodpeeker it is found in the suboeular air-cell. I have detected it in one or more speeies of every order of Birds. In the Anserines the gland is large, and seems to eomplete the upper margin of the orbit, fig. $56, k$, and is enclosed in a dense fibrous eapsule. It is composed of ramified follieles, with eellular walls. In the Albatross and Penguin it sends two or three duets to the nasal eavity.

CHAPTER XVII.

DIGESTIVE SYSTEM OF BIRDS.

Trie digestive function is most potent and rapid in Birds, in order to supply the waste oceasioned by their extensive, frequent and energetic motions, and in accordance with the rapidity of their circulation and their ligh state of irritability. ${ }^{1}$

The parts to be considered with refcrence to this fimction are the rostrum or beak, the tongue, the osophagus, the stomach which is always divided into a glandular and muscular portion, the intestines, and the cloaca: with these are connected the salivary glands, the proventricular follicles, the liver and pancreas.
§ 145. Beaks of Birds.-The beak consists of an 'upper mandible,' supported by the maxillary and premaxillary bones, and of a 'lower mandible' formed by the lower jaw. In place of teeth these bones are provided with a sheath of horny fibrous material, similar to that of which the claws are composed: this sheath is moulded to the shape of the osseous mandibles, being formed by a vascular substance covering these parts, and its margins are frequently provided with horny processes or lamine secreted by distinct pulps, analogous in this respect to the whalebone lamine of the Whale. In a foetus of a Perroquet nearly ready for hatching, the margins of the bill are beset with white and round tubercles, arranged in a regular order, about seventecu in the upper jaw, the foremost on the mid-line. ${ }^{2}$ These tubercles are not, indeed, implanted in the alveolar border, but form part of the sheath of the lill. Cnder each tubercle, however, there is a gelatinous pulp, like that of a tooth, but resting on the edge of the jaw-bones, and erery pulp is supplierd by ressels and nerves traversing a canal in the substance of the bone. These tubercles form the first margins of the mandilles, and their remains are indicated by canals in the horny sheath subscquently formed, which contain a softer material, and which commence from small foramina in the margin of the bone.

[^54]The different degrees of hardness and varieties of form of the beak exercise as much influence upon the nature of Birds as the number and figure of the teeth do upon that of Mammals.

The beak is hardest in those Birds which tear their prey, as Eagles and Falcons; in those which bruise hard seeds and fruits, as Parrots and Grosbeaks; and in those which pierce the barks of trees, as Woodpeckers, in the larger species of which the beak absolutely acquires the density of ivory. The hardness of the covering of the beak gradually diminishes in those Birds which take less solid nourishment, or which swallow their food entire ; and it changes at last to a soft skin in those which feed on tender substances, or which have occasion to probe for their food in muddy or sandy soils, or at the bottom of the water, as Ducks, Snipes, Woodcocks, \&c.

Cateris paribus, a short beak must be stronger than a long one, a thick one than a thin one, a solid one than one which is flexible; but the general form produces much varicty in the application of the force. A compressed beak with trenchant edges, and a hooked, sharp-pointed end, is the fit instrument for seizing and slaying prey, whether birds, beasts, or fishes; and such 'aduncate'
 beak is seen in the Frigate-bird, Tropicbird, Albatross, Petrel, fig. 52, but combined with length in these piscivorous birds. In the Raptores the beak is shorter and stronger, and in some genera a tooth-like process on either side of the upper mandible, fig. 60, adds to its destructive power: hence the Falcons, having this armature, are reckoned the more 'noble' or courageous birds of prey.

The Shrike (Lanius) and Vanga, which have their bill similarly
 armed, fig. 61, have the cruel disposition of the Hawk, but take prey proportioned to their small size: and the 'tooth' is confined to the horny sheath, fig. 61, not developed on the bone. As the beak becomes straighter and conical with the margin entire, the bird is less daring in attacks on other kinds, though occasionally predaccous when large and strong (as the
 Raven and Crow, fig. 62): but most 'conirostrals' are omnivorous, and the rest granivorous, as the 'Hardhilled Pusseres' of Ray. When the cone is attenuated and lengthened out, fig. 63 , it is adapted to extract
delicate insects from the recesses of trees and flowers: and the type 'tenuirostrals' (Trochilida) may suck up, also, the sweet juice of the nectarium.

The Fissirostrals, fig. 64, like the Humming-birds, feed on the

wing, but as their food consists of volant inseets, the form of the beak is modified accordingly, and is remarkal)le for its shortness and the wideness of its gape, fig. 64, especially in the typical families. In these the mode of eatching the prey is conformable to their distinguishing eharacters; they reccive it in full flight into the cavity of their mouths, which remain open for that purpose, and where a viscous exudation within, and a strong fence of 'vibrisse' on the exterior, assist in securing the victim.

A strong, trenchant and pointed, but elongated and straight, bill serves to eut and pierce, and eharacterises many Waders preying upon reptiles, fishes, and animals that offer some resistance: such a beak is found in the Herons and Bitterns. As it beeomes more lengthened and attenuated it is adapted to prey of a lower grade of life, and to get at these it is endowed with a specially sensitive apex. In the Tbis and Curlew such a beak is curved down, fig. 3 : in the Jabiru, fig. 65, it is bent up. Some trenchant bills are so eompressed as to resemble the
 blade of a knife; these offer least resistance in the swift pursuit of fishes, and are seen in the Awks, Puffins, and Coulternebs, in which

latter the beak may be as deep as it is long. The skimmer
(Rhyncops) has the further peeuliarity of an inequality in the length of the two mandibles, the upper one being the shortest, fig. 66, so that this sea-bird gets its food, which consists of floating marine animals, by pushing and tilting them within the action of the upper blade as it swims along.

A sharp-edged beak may be as remarkable for transverse cx-
 tension and depression, or horizontal flattening: and such a form serves for capturing fishes and reptiles: it is seen in the Boatbills of South America (Cancroma), fig. 67, and of Nubia (Balaniceps).

Of the blunt-edged bills we may first notice those which are flattened horizontally. When a bill of this description is long and strong,

as in the Pelican, fig. 68, it serves to scize large but feebly resisting fishes.

When it is long and weak, as in the Spoonbill, which derives its name from the dilated extremity of the mandibles, it is only
 available to scize amid sand, mud, or water, very small Crustaceans, Mollusks, \&c., fig. 69.

The more or less flattened bills of Ducks, the more conical ones of Geese and Swans, and that of the Flamingo, of which the extremities of the mandibles are bent downwards abruptly, fig. 70, have all transverse horny lamine arranged along their edges, which when the bird has seized any object in the water, serve, like the whalebone lamine
of the Whale, to give passage to the superfluous fluid. The aquatic habits of all these birds are in harmony with this structure. But the longlegged palmiped sifts the sand of the sea-shore by raking it up with the bill reversed, as shown in fig. 14. In the Goosanders (Mergus, fig. 71), the lateral laminæ are developed into small conieal refleeted tooth-like processes, whieh serve to hold fast the fishes on which they feed.

The bills of the Toueans and Hornbills are remarkable for their enormous size, which is sometimes equal to that of the whole bird. The substanee of the beak in these eases is extremely light and delieately eellular ; yet the osseous portions are adapted to combine, with great bulk, a due degree of strength. The
 external parietes are extremely thin, especially in the upper beak: they are elastie, and yield in a slight degree to moderate pressure, but present considerable resistance if the foree be increased for the purpose of erushing the beak: they gain thiekness at the points of the mandibles.

On making a longitudinal seetion of the upper mandible, fig. $53, a$, its base is seen to inelude a eonieal eavity about two inehes in length and one inel in diameter, with the apex directed forward. The walls of this eone consist of an osseous network, interecpting irregular angular spaces, varying in diameter from half a line to two lines. From the parietes of the cone a network of bony fibres is continued to the outer parietes of the mandible, the fibres whieh immediately support the latter being almost invariably at right angles to the part in whieh they are inserted. The whole of the mandible anterior to the cone is oceupied with a similar network, the meshes of whieh are largest in the eentre of the beak, in eonsequenee of the union which takes plaee between different small fibres as they pass from the erreumference inwards. The prineiple of the eylinder is introduced into this strueture: the smallest of the supporting pillars
are hollow. The strueture is the same in the lower mandible, ib. m, but the fibres composing the network are in general stronger than those of the upper mandible.

The air is admitted to the interior of the upper mandible from a cavity, ib. b, situated anterior to the orbit, which communieates at its posterior part with the air-cell continued into the orbit, and at its anterior part with the maxillary cavity. The nasal eavity is closed at every part except at its external and internal apertures by the pituitary membrane, and has no eommunication with the interior of the mandible. ${ }^{1}$

The horny sheath of the mandibles in the Hornbills and Toucans is so thin that it often becomes irregularly notched at the edge from use. The Hornbills have, besides, upon their enormous beak, horn-like prominences of the same structure and of different forms, the use of which is not known.

The Trogons, Touracos, Buecos, \&e., exhibit forms of the bill which are intermediate to that of the large but feeble bill of the Toucans, and the short, but hard, strong, and broad bill' of the Parrot-tribe, which is also hooked, so as to assist in elimbing, like a third foot, fig. 30.

The short, conical, and vaulted beak of the Rasores, fig. 72, serves to pick up with due rapidity the vegetable seeds and
 grains which constitute their food, as well as small insects, as ants, \&c., with whieh the young are frequently nourished. The toothbilled pigeon of the Samoan Isles has the lower mandible deeply cleft into three points near the top, and the upper mandible hooked, the better for seizing fruit and denuding. palm-nuts and other strongly coated linds.
The bills of the small Insessorial or Passerine birds present every gradation of the conical form, from the broad-based cone of the Hawfinch to the almost filamentous cone of the Hummingbird, fig. 63, and each of these forms influenees the habits of the species in the same manner as in the larger birds. The short and strong-billed Insessores live on secds and grains; those with a long and slender bill on insects or vegetable juiees. If the slender bill be short, flat, and the gape very wide, as in Swallows, the bird takes the insects while on the wing; if the bill be elongated and endowed with sufficient strengtle, as in the Hoopoes, it serves to penetrate the soil and pick out
worms, \&e. One kind of Humming-bird, feeding on spiders, has the end of the bill finely toothed.

Of all bills, the most extraordinary is that of the Cross-bill, in which the extremities of the mandibles eurve towards opposite sides and eross each other at a considerable angle-a disposition whieh at first sight seems direetly opposed to the natural intention of a bill. With this singular disposition, the Cross-bill, however, possesses the power of bringing the points of the mandibles into contact with each other ; and ean piek up the smallest seeds, and shell or husk larger kinds like other birds. But the disposition and power of the muscles is suel that the bill gains by its very apparent defeet the requisite power for breaking up the pine-eones and wrenehing out the seeds that eonstitute its usual food.
§ 146. Tongues of Birds.-The tongue, as has been already observed, ean hardly be considered as an organ of taste in Birds, since, like the mandibles, it is gencrally sheathed with horn. It is prineipally adapted to fulfil the offices of a prehensile organ in assoeiation with the beak, and it presents almost as many varieties

The ceratolyals are obsolete. The basihyal, 41, contracts as it recedes to support the urohyal, 43 , and the hyp ${ }^{0-46}$, and ccrato47, branchials are modified to form the posterior cornua or ' thyrohyals,' which are of moderate length. The tongue supported by the glossohyal is broad, and furnished with a scries of retroverted spines, fig. 75, D. In the Humming-bird the horny sheath of the glossohyal is divided at its extremity into a pencil of fine hairs. In the Toucan's tongue, fig. 51, the sheath gives off from the lateral margins stiff bristle-like proccsas which project forward: this structure is eontinued to the apex, and the tongue so provided becomes an instrument for testing the softness and ripeness of fruit, and the fituess of other objects for food, therely
acting as a kind of antenna or feeler. A similar but less developed structure is found in the tongue of the frugivorous Touraco.

In the Woodpeckers the apex of the horny sheath, fig. 74, 77, a, gives off at the sides short pointed proeesses dirceted baekward, converting it into a barbed instrument for holding fast the
 insects whieh its sharp point has transfixed, after the strong beak has dislodged them from their hiding places. The cornua (thyrohyals, ib. 46, 47) wind round the back of the head, and eonverge as they pass forward to be inserted in a eanal generally on the right side of the upper mandible, ib. e.

The tongue of the Flamingo is almost eylindrieal, slightly flattence above, and obliquely truncate anteriorly, so as to eorrespond with the form of the inferior mandible. The pointed

extremity of the truncated part is supported beneath by a sunall horny plate. Along the middle of the upper surfaee there is a moderately deep and wide longitudinal furrow; on either side of which there are from twenty to twenty-five recurved spines, from one to three lines in length. These spines are arranged in an
irregular alternate scries: the outer ones being the smallest, which may almost be considered as a distinct row. At the posterior part of the tongue there are two grouns of smaller reeumbent spines directed towards the glottis. The substance of the tongue is not muscular, but is chiefly eomposed of an abundant elastie cellular substance, permeated by an oily fat. ${ }^{1}$ Of like nature is the tongue in Anserines: but the retroverted spines are marginal, fig. 75, D. The tongue of the great Penguin is beset with horny spines like a hedgehog's skin.

In the Raptores the tongue is of a moderate length, broad, and somewhat thiek, and has a slight division at the tip. In the Vultures its sides ean be voluntarily approximated so as to form a eanal, and its margins are provided with retroverted spines. In the Raven it is bifid at the apex : it is more deeply eleft in the ' Nutcracker.'

In the Struthious Birds, in many of the Waders, and in the Pelecanide, the tongue is remarkably short, as it is likewise in the Kingfisher, fig. 75, c. In the Snipe it is as remarkable for its length and slenderness, ib. A. In the Fieldfare (Turdus pilaris) the sheath is resolved into fine filaments at the apex of the tongue, ib. B.

In the Parrots the tongue is thick and fleshy, is terminally tufted in Lories, scrves admirably to kecp steady the nut or seed upon whieh the strength of the mandibles is exerted, and is applied to the kernel so extracted, as if to asecrtain its sapid qualitics.

The following are the museles of the tongue in Birds.

1st. The Mylo-liyoideus: this is a thin layer of fibres attached to the lower and inner border of the lower jaw, and running transversely to a mesial tendon which separates them, and extends to the uroliyal. It raises the tongue towards the palate.

2nd. The Stylo-hyoideus, fig. 76, a, arises from the upper aud back part of the lower jaw, and is inserted into the thyrohyal at ${ }^{1}$ xar'.
its junction with the basilyyal. In some birds it divides into three or more portions: the posterior deseends obliquely forward, and is inserted into the tendinous commissure of the mylohyoideus: the middle portion is inserted into the urohyal: the anterior fasciculus is inserted into the side of the basihyal above the transverse hyoglossus. The actions of these different portions vary according to their insertion; the first and second depress the apex of the tongue by raising the urohyal, the third raises the tongue and draws it to one side when it aets singly.

3rd. The Genio-lyoideus, fig. 76, b : this arises by two fleshy bands from the lower and internal edge of the lower jaw; these minte, pass backward, and surround the cornua (thyrohyals); and as they draw them forward protrude the tongue from the beak.

4th. The Cerato-kyoideus: this passes from the thyrohyal to the uroliyal, and is therefore subservient to the lateral movements of the tonguc.

5th. The Sterno-hyoidei: these are replaced by a slip of muscle which extends from the anterior surface of the upper larynx to be attached to the base of the glossohyal.

6th. A small and short musele, which is single or azygos; it passes from the basihyal to the under part of the glossohyal; it depresses the tip of the tongue and elevates its base.

7th. A short musele, fig. 75, c, which arises from the junction of the basihyal with the urohyal, and is inserted into the thyrohyal. ${ }^{1}$

All these museles are remarkably large in the Woodpeeker, in which there is a singular pair of museles that may be termed Cerato-tracheales (fig. 77, h). They arise from the trachea about eight lines from the upper larynx, twist four times spirally round the trachea, and then pass forward to be inserted into the base of the thyrolyals. This is the principal retractor of the singular tongue in this specics.
§ 147 Salivary Glands.-The salivary organs, being in general developed in a degree corresponding to the extent of the changes which the food undergoes in the month, and the length of time during which it is there detained, are by no means so conspicuous a part of the digestive system in Birds as in Mammals. Glands which pour out their secretion upon the food prior to deglutition are, however, met with in every bird, but vary in number, position, and complexity of structure.

In some species, as the Crow, they are of the simplest structure, consisting of a series of unbranched, cone-shaped follieles or

[^55]tubules, opening separately upon the mucous membrane of the mouth, along the sides of which eavity they are situated. They pour out a viscid mucus, and are the only traces of a salivary system met with in this bird.

In many other birds, and espeeially in the Seratching, Wading, and Swimming Orders, glands of the conglomerate strueture are found beneath the lower jaw, answering to the submaxillary glands of quadrupeds.

In the Goose they ocerpy the whole of the anterior part of the space included by the rami of the lower jaw, being of an elongated form, flattened and elosely united together at the middle line. On either side of this line the mueous membrane of the mouth presents internally a series of pores, each of whieh is the terminal orifiee of a distinet gland or aggregate of ramified duets.

A third and higher form of salivary gland, in which the seeretion of the conglomerate mass is conreyed into the mouth by a single duet, is found in the Woodpeekers and some species of the Rapacious Order. In the latter birds these glands are termed, from their situation, anterior palutine: in the Picee they eorrespond to the parotid and sublingual of Quadrupeds.

The sublingual glands of

from the angle to the symphysis of the lower jaw. The single ducts of each gland unite just before their termination, which is a simple orifice at the apex of the mouth.

Besides the preceding, which may be considered as the true salivary glands, there are numerons accessory follicles in different parts of the oral apparatus of Birds. In the Waterhen (Gallinula chloropus) there is a series of coccal glandular tubes along each side of the tongue: similar elongated follicles are situated along the margin of the lower jaw, resembling in their parallel pectimated disposition the branchix of Fishes. In the Goose the corresponding follicles are longer and wider, and are situated near the sides of the tongue. In the Raven thesc mucous follicles are narrower but longer. The glandular structures supplying the mouth in Birds may be summed up under the following heads: ' folliculi linguales,' 'glandulæ sublinguales,' ' glandulæ submaxillares' (Piei, Raptores, Rasores, Aptenodytes), 'glandula anguli oris' (Swan, Cantores, Diurnal Raptores) ; 'folliculi preglottidei;' ' folliculi post-nasales,' i.e., opening behind the posterior nostrils; ' amygdalæ,' or close-set groups of follicles, in two rows, opening behind the eustachian outlet.
§ 148. Alimentary Canal.-The food, after being imbued with the secretion of the preceding glands, is poised upon the tongue and swallowed, partly by means of the pressure of the tongue against the palate, partly by a sudden upward jerk of the head. The posterior apertures of the nostrils being generally in the form of narrow fissures are undefended by a soft palate or uvula; and the laryngeal aperture, which is of a similar form, is in like manner unprovided with an epiglottis, but is defeuded by the retroverted papillæ at the base of the tongue. In many Birds, indeed, as the Albatross and Coot, there is a small cartilage in the usual place of an epiglottis, but insufficient to cover more than a very small part of the laryngeal aperture. ${ }^{1}$ The surface of the mouth is rarely smooth above, commonly provided with retroverted papilla: similar mechanical helps to the right course of the food occur at or near the fauces, in addition to those alrcady noted on the tongue. The width of the mouth in Caprimulyus, and the length and depth due to the mandibular pouch in the Pelican, are remarkable. The extensibility of the membrane between the rami of the lower jaw admits of its formation into a bag, fig. $68, a$, which is calculated to contain ten quarts of water, and serves as a receptacle for fishes, making in that state a conspicuous appendage to the luge bill;

[^56]when empty it can be contracted so as to be hardly visible. By means of this mechanism a quantity of food can be transported to the young; and, as in disgorging the blecding fishes the parent presses the bottom of the sac against her breast, this action has probably given rise to the fable of her wounding herself to nourish the young with her own blood.

The Swift presents an analogous dilatation of the faucial membrane at the base of the lower jaw and upper part of the throat: it is most developed at the period of rearing the young, when it is generally found distended with insects in the old bircls that are shot while on the wing. A similar structure obtains in the Rook, and probably in other Insectivorous Birds. It is notable in the Nuteracker (Caryocatactes); which, descending from its favourite snowy altitudes, may be seen to return with a swelling like an enormous goitre as big as the head, formed by the gular poueh, crammed with nuts. ${ }^{1}$

The œsophagus, H, fig. 94 , a, fig. 78 , like the neck, is usually very long in Birds: as it passes down, it generally inclines toward the right side; it is partially covered by the trachea, G, fig. 94, and connected to the surrounding parts by a loose cellular tissue. It is wide and dilatable, corresponding to the imperfection of the oral instruments as comminutors of the food. In the rapacious, and especially in the piscivorous Birds, it is of great capacity, enabling the latter to swallow the fishes entire, and serving also in many Waders and Swimmers as a temporary repository of food.

When the Cormorant has by accident swallowed a large fish, which sticks in the gullet, it has the power of imflating that part to its utmost, and while in that state the head and neck are shaken violently, in order to promote its passage. In the Gannet the oesophagus is extremely capacious, and, as the skin which eovers it is equally dilatable, five or six herrings may be contained thercin. In both these species it forms one continued canal with the stomach. In the Flamingo, on the contrary, the diameter of the gullet docs not exceed half an inch, being suited to the

[^57]smallness of the objects which constitute the food of this species.

Besides deglutition, the osophagus is frequently concerned in regurgitation; and in the Birds in which this phenomenon occurs, the muscular coat of the gullet, like that in Ruminants, is well developed. The Raptores, for example, habitually regurgitate the bones, feathers, and other indigestible parts of their prey, which, in the language of Falconry, are called 'castings.' I have observed a Toucan to regurgitate partially digested food, and after submitting it to a rude kind of mastication by its enormous beak, again to swallow it.

The œesophagus possesses an external cellular covering, a muscular coat, an internal vascular tunic, and a cuticular lining. The muscular coat consists of two layers of fibres; in the external stratum they are transverse, fig. $81, a$, in the internal longitudinal, ib. b. The mucous coat is generally disposed in longitudinal folds, rarely connected by transverse folds; still more rarely villous, as in the Ostrich. ${ }^{1}$

In those Birds which are omnivorous, as the Toucans and Hornbills, in the frugivorous and insectivorous Birds, and in most of the Grallatores, which find their food in tolerable abundance and take it in small quantities without any considerable intermission, it passes at once to the stomach to be there successively digested, and the gullet presents no partial dilatations to scrve as a temporary rescrvoir or macerating receptacle. But
 in the larger Raptorial Birds, as the Eagles and Vultures, which gorge themselves at unccrtain intervals from the carcases of bulky prey, the œesophagus does not preserve a uniform width, but undergocs a lateral dilatation anterior to the furculum at the lower part of the neck. This pouch is termed the ingluvies or crop, fig. 78, b.

In those Birds, again, the food of which is exclusively of the vegetable kind, as grains and seeds, and of
which consequently a great quantity must be taken to produce the adequate supply of nutriment, and where the carity of the gizzard is very much diminished by the enormous thiekness of its museular coat, the crop is more developed, and takes a more important share in the digestive proecss. Instcad of a gradual lateral dilatation of the gullet, it assumes the form of a globular or oval reccptacle appended to that tube, and rests upon the elastie faseia which conncets the clavicles or two branches of the furculum together.

In the Common Fowl the crop is of large size and single, fig. $79, b$, but in the Pigeon it is double, consisting of two latcral oval cavitics, fig. $80, b, c$.

The dilatation of the osophagus to form the crop is more gradual in the Ducks than in the Gallinaceous Birds. The erop is wanting in the Swans and Geesc ; but is present in that modificd Anserine, the Flamingo.

The disposition of the muscular fibres of the erop is the same as in the cesophagus, but the muciparous follieles of the lining membranc are larger and more numerous. This difference is most conspicuoust in the ingluvics of the granivorous Birds, where it is not mercly a temporary reservoir, but in which
 the food is mixed with the abundaut secretion of the glands, and
beeomes softened and maeerated, and prepared for the triturating aetion of the gizzard and the solvent power of the gastrie seeretion.

The ehange which the food undergoes in the erop is well known to bird-fanciers. If a Pigeon be allowed to swallow a great quantity of peas, they will swell to such an extent as almost to suffoeate it.

The time during which the food remains in the crop depends upon its nature. In a common Fowl animal food will be detained about eight hours, while half the quantity of vegetable substanees will remain from sixteen to twenty lours. Hunter made many interesting observations on the crop of Pigeons, whieh takes on a seereting function during the breeding season, for the purpose of supplying the young pigeons in the eallow state with a diet suitable to their tender condition. ${ }^{1}$ An abundant seeretion of a milky fluid of an ash-grey colour, whiel eoagulates with acids and forms eurd, is poured out into the crop and mixed witl the macerating grains. This phenomenon is the nearest approach in the class of Birds to the eharacteristic mammary function of a higher elass; and the analogy of the 'pigeon's milk' to the lacteal secretion of the Mammalia has not escaped popular notice. In fig. 80, one side of the erop, b, shows the ordinary structure of the parts, the other, c, the state of the eavity during the period of rearing the young. The seeretion consists of proteine with oil, but contains no sugar of milk nor fluid easeine.

The eanal continued from the ingluvies to the stomach is ealled the lower osophagus; at its commeneement it is narrower and more vascular than that part which precedes the crop, but gradually dilates into the first or glandular division of the stomach, which is termed the 'proventrieulus' (ventriculus succenturiatus, bulbus glandulosus, cchinus, infundibulum), figs. 78, 79, 80, c.

The proventrieulus of the Bird, like the spiral valve of the Shark, is an alimentary surface packed into the smallest space: in the latter the membrane is clyylifie, in the former chymifie or digestive: every follicle is, in fact, a portion of the peptic scereting surface, with its gastric tubuli at right angles thereto; the surface being moulded to form either a simple or compound cavity.

In birds with a wide osophagus, fig. 78, a, the commencement of the proventriculus is not indicated by any change in the direction or diameter of the tube, but ouly by its greater vascularity, by the differenee in the strueture of the lining mem-

[^58]brane, and by the stratum of glands which open upon its inner surface, and which are its essential characteristic, fig. 81, c. Hence it is by some comparative anatomists regarded as a part of the oesophagus.

The proventriculus varies, however, in form and magnitude in different Birds. In the Rasores it is larger than the cesophagus, but much smaller than the gizzard. In Euphones ${ }^{1}$ it forms almost the entire stomach, the gizzard being minute: in Aleedo opposite proportions prevail. In the Psittacide and Ardeide (Parrot and Stork
 tribe) it is larger than the gizzard, and of a different form. In the Ostrich the proventrieulus is four or five times larger than the triturating division of the stomach, being continued down below the liver, and then bent up mon itself towards the right side before it terminates in the gizzard, which is placed on the right and anterior part of this dilatation.

In the majority of Birds the gastric follieles are simple, liaving no internal eells, dilated fundus, or eontracted neek; but from their external blind extremity proceed with an uniform diameter to their internal orifiec. This form obtains in the zoophagons and omnivorous Birds. In the Dove-tribe the follicles are of a conical shape ; in the Swan they are tubuliforn ; in the Goose and Turkey they present internal loeuli; in the Ostrich and Rhea these loculi are so developed that each gland forms a racemose group of folliclex, terminating by a common aperture in the proventrieulis.

The subjoined figures show the different forms of the solvent or proventricular glands in different birds.

[^59]The gastric glands are variously arranged.
Among the Raptores, we find them in the Golden Eagle disposed in the form of a broad compact belt; in the Sparrowhawk this belt is slightly divided into four distinct portions.

In the Iusessores the glands are gencrally arranged in a continuous zonc around the proventriculus; but in some of the Syndactyli, as the Hornbill, the circle is composed of the blending together of two large oval groups.

Among the Scausores the Parrots lave the gastric glands disposed in a continuons circle, which is at some distance from the small gizzard. In the Woodpeekers the glands are arranged in a triangular form, with the apex towards the gizzard. In the Toucan they are dispersed over the whole proventriculus, but are more closely aggregated near the gizzard; the lining membrane of the cavity is reticulate, and the orifices of the glands are in the interspaces of the meshes.

Among the Rasores the Pigeon shows its affinity to the Passerine Birds in laving the gastric glands of a simple structure, and arranged in a zonular form: they are chiefly remarkable for their large cavity and wide orifice. In the Common Fowl and Turkey the glands are more complex, and form a complete circle.

In the Cursores the arrangement of the glands is different in almost every genus. In the Ostrich they are of an extremely complicated structure, and are extended in unusual numbers over an oval space on the left side of the proventriculus, which reaches from the top to the bottom of the cavity, and is about four inches broad. The Rhea has the solvent glands aggregated into a single circular patch, which occupies the posterior side of the proventricular cavity. In the Emeu the gastric glands are scattered over the whole inner surface of the proventriculus, and are of large size; they terminate towards the gizzard in two oblique lines. In the Cassowary the glands are dispersed over the proventriculus with a similar degree of uniformity; but they are smaller, and their lower boundary is transverse. In the Apteryx the glands occupy its whole circumference, opening in the meshes of a reticulate surface. ${ }^{1}$

Among the Grallatores, the Marabou (Ciconia argala) has the nearest affinity to the Rhea in the structure and disposition of the gastric glands; they are each composed of an aggregate of five or six follicles, terminating in the proventriculus by a com-
mon aperture ; and they are disposed in two compact oval masses, one on the anterior, the other on the posterior surface of the earity. In the IIeron (Ardea cinerea) the solvent glands are of more simple structure, and are more dispersed over the proventriculus; but still they are most numerous on the anterior and posterior surfaces. In the Flamingo the gastrie glands are short and simple follicles, arranged in two large oval groups, which blend together at their edges.

The Natatores present considerable differenees among themselves in the disposition of the solvent glands. In the Cormorant (Phalacrocorax carbo) they are arranged in two eirenlar spots, the one anterior, and the other posterior; while in the elosely allied genus Sula, or Gannet, they form a complete belt of great width, and consequently are extremely numerous. In this respect the Gannet, or Solan Goose, shows a nearer affinity to the Pelican.

In the Sea-Gulls the gastric glands form a continuous zone; and in the Little Awk (Alca alle) they are spread over a great proportional extent of surface, and the form of the digestive organs is peculiar. The proventriculus is continued from the ocsophagus, with very gradual enlargement, below the liver, and is then bent up to the right side, and terminates in the gizzard. The solvent glands are situated at the anterior or upper part of the eavity everywhere surrounding it, but lower down they lie principally upon the posterior surface, and where it is bent upward toward the right side they are entirely wanting. In the graminivorous lamellirostral Water-birds, as the Swan, Goose, \&e., the gastric glands have a simple elongated exterior form, but have an irregular or cellular internal suffice: they are closely arranged so as to form a complete zone.

In general the muscular or pyloric division of the stomach called 'gizzard' (gigerium, ventriculus bulbosus), immediately succeeds the glandular or cardiac division; but in some Birds, as the $\Lambda_{\text {wk }}$ and Parrots, there is an intervening portion without glands.

The gizzord is situated below or sacrad of the liver, on the left side of the abdomen, generally resting on the mass of intestinc. In the Owl the gizzard adheres to the membrane coverimes the interual surface of the abdominal muscles; but in most birds it has a more dorsal position.

In all Birds the gizzard forms a more or les lengthened san: having at its upper part two apertures; one of there is of large size, communicating with the proventriculus, figs. 83,84 , ", the
second is in close proximity with, and to the right side of the preceding, leading to the duodenum, ib. o; below these apertures the cavity extends to form a cul-de-sac, c. At the middle of the
 antcrior and posterior parts of the cul-de-sae there is a tendon, figs. 78, 79, e, from which the museular fibres radiate.

The differences in the structure of the gizzard resolve themselves into the greater or less extent of the tendons, and the greater or less thickness of the muscular eoat, and of the lining mombrane.

In the Raptores the gizzarl, fig. 78, d, assmes the form of a more membranous cavity, in aceordance with the animal and casily digestible nature of their food. The muscular coat is thin ; the fibres principally radiate from small tendons, ib. e, and there are some longitudinal fibres beneath the radiating or extcrnal layer.

In the Rasores and lamcllirostral Nutatores it exhibits the structure to which the term gizzard can be more appropriately applied, figs. 83, 8t. The muscular fibres are distinguished by their unparalleled density of texture and deep colour, and are arranged in four masses; two are of a hemispherical form, and their closely-packed fibres rim transveraely to be connected to very strong anterior and posterior tendons, fig. 84, e; they constitute the sides of the gizzard, and are termed the digastric muscles or ' musenli lateralen,' fig. 83, d : between these, at the end of the gizzard, are the two smaller and thinner muscles called ' musculi intermedii,' fig. 84, f. There are likewise irregular bands placed about the circumference of the gizzard.

Fig. 83 , hows the relative thickness of the musculi laterales in the gizzard of a Swan, and fig. 84 that of the musculi intermedii and tendon.

The internal coat of the gizzard, fig. $84, r, h$, is cxtremely liard
and thick, and being of a horny nature, it is liable to be increased by pressure and friction, and as it is most subject to these influences at the parts of the gizzard opposite the museuli laterales, two eallous buttons are there formed, ib. g, g. It is here that the fibrous structure of the lining membrane can be most plainly

seen: and it is worthy of observation that the fibres are not perpendicular to the plane of the muscles, but oblique, and in opposite directions, on the two sides. Elsewhere the cutieular liuing is disposed in ridges and prominences, figs. 84,85 , h, which vary in different birds, but are pretty eonstant in the same wecies. In a Petrel (Procelleria glaciulis), the lining membrane is disposed in a pavement of small square tuberelex, like the gastric teeth of some Miollusks.

The cavity of the gizzard is so eneroached upon by the grinding apparatns, that it is necessarily very small, the two horny eallosities having their internal flat surfaces opmosed to one another, like 'millstones.' A erop is as cssential an appendage to this strueture as is the 'hopper' to the mill; it receives the food as it is swallowed, and supplies it to the gizarard in small successive quantities as it is wanted. ${ }^{1}$

Between the stomach of the carnivorous lagle and that of the graminivorous Swan there are numerous intermediate structures,

[^60]but it is necessary to observe that the amimal or vegetable nature of the food cannot always be divined from the different degrees of strength in the gizzard. Hardeoated coleopterous insects, for example, require thicker parietes for their due comminution than pulpy succulent fruits.

In the subgenus Euphomes, anong the Tanagers, the muscular or pyloric division of the stomach is remarkally small and not separated from the duodenum by a narrow pylorus.

The parictes of the gizzard, like those of other muscular cavities, beeome thickened when stimulated to contract on their contents with greater force than usual. In the IIunterian collection this fact is well illustrated by preparations of the gizzard of the Sea-Gull in the natural state, and that of another Sea-Gull which had been brought to feed on barley. The digastric muscles in the latter are more tlian double the thickness of those in the Sea-Gnll which had lived on fish. ${ }^{1}$

The immediate agents in triturating the food are hard foreign bodies, as saud, gravel, or pebbles.

Pigeons carry gravel to their young. Gallinaccous Birds grow lean if deprived of pebbles; and no wonder, since experiment ${ }^{2}$ shows that muless the grains of corn are bruised, and deprived of their vitality, the gastrie juice will not act upon or dissolve them. The observations and experiments of Hunter have completely established the truth of Redi's opinion, that the pebbles perform the sicarious office of grinding teeth.

Hunter inferred from the form of hair-balls occasionally found in the stomach of Cuckons, ${ }^{3}$ that the action of the great lateral muscles of the gizzard was rotatory. Harvey appears to have first investigated, by means of the ear, as it were in anticipation of the art of auscultation, the actions which are going on in the interior of an animal body, in reference to the motions of the gizzard. He observes (De Generatione Animalium, in Opera Omniu, tto, 1. 208), 'Falconibns, aqnilis, aliisque avibus ex
${ }^{1} \mathrm{xx}$. vol. i. p. 149 , prep. 522 , D , and 523.
${ }^{2}$ Grains of barley, inclosed in strong perforated tubes, pass through the alimentary canal unchanged. Dead meat, similarly introduced into the gizzard, is dissolved.
${ }^{3}$ 'The hairs of catcrpillars deroured by this bird are sometimes pressed or stuck into the horny lining of the gizzard, instead of being collected into a loose ball. They are then nently pressed down in a regular spiral direction, like the nap of a hat, and have often been mistaken for the natural structare of the gizzard. One of these specimens, exibited as such to the Zoological Society, was sent to me for examination, when, upon placing some of the supposed gastric hairs under the microseope, they exhibited the peculiar complex structure of the hairs of the larva of the 'Tiger-moth (Arctia caja), and the broken surface of the extremity which was stuck into the cuticular lining was plainly discernible. See Proceedings of Zool. Soc. 1834, 1. 9.
preda viventibus, si aurem prope admoveris dum ventriculus jejunus est, manifestos intus strepitus lapillorum illue ingestorum, invicemque collisorum, percipias.' And Hunter observes (Animal QEconomy, 4to, p. 198), 'The extent of motion in grindstones need not be the tenth of an inch, if their motion is alternate and in contrary directions. But although the motion of the gizzard is hardly visible, yet we may be made very sensible of its action by putting the ear to the sides of a fowl while it is grinding its food, when the stones can be heard moving upon one another.' 'Ticdemann believed that the muscles of the gizzard were in some degree voluntary, having observed that when he placed his hand opposite the gizzard, its motions suddenly stopped.

The pyloric orifice of the gizzard is guarded by a valve in many Birds, especially in those which swallow the largest stones. This valve in the Ostrich is formed by a rising of the cuticle divided into six or seven ridges, which close the pylorus like a grating, and allow only stones of small size to pass through. In the Touraco the pylorus projects into the duodenum in a tubular form. There is a double valve at the pyloric orifice in the Gannet, and a single large valvular ridge at the same part in the Gigantic Crame. In this species and some other Waders, as the Heron and Bittern; also in the Pelican, and, according to Cuvicr, in the Penguin and Grebe, there is a small but distinct cavity interposed between the gizzard and intestine. The analogrons structure has been described in the Crocodile (vol. i. p. 442, fig. 298, ๆ).

The intestines reach from the stomach to the cloaca; in relative length they are much shorter than in the Mammalia. In the Toncan, for example, the whole intestinal canal scarcely equals twice the lengtly of the body, including the bill. The canal is divided into small and large intestines, sonetimes by an intermal valve, sometimes by the insertion of a single coccum, but most senerally by those of two ecoca, which are always opposite to one another. In a few instances there is no such distinction. The small intestines and cocen are longest in the vegetable feeders. The large intestine is, with one or two exceptions, very short and straight in all Birds.

The course of the small intestine varies somewhat in the different orders of Birds; it is always characterised lyy the elongated fold or loop made by the duodenum, fig. $85, f, f$, which fold receives the prancreas, ib. q, q, in its concavity.

In the Raptores the intestines are generally disposed ins linl-lows:-

The duodenum forms a long and broad fold, the lower part of which is commonly bent or doubled upon itself; the intestine then passes backward on the right side of the abdomen, crosses to the left, and is disposed in deep, folds upon the edge of a scolloped

mesentery; towards its termination the ileum passes up behind the stomach and adlueres to it, laving here but a narrow mesentery; then passing down the posterior part of the abdomen the ileum makes another loose fold and ends in the rectum, which is continned straight to the cloaca. ${ }^{1}$ In the Owls, the last fold of the ileum is nearly as long as the duodenal fold, and the cœea adhere to each side of the fold.

In the Diarnal Raptores the intestinal canal is only twice the length of the body, except in the fisl-eating Osprey, in which the intestines are very narrow, and are to the length of the Bird itself as eight to one.

In the Cantores the scolloped folds of the small intestine are narrower and longer than in the Raptores, and the ileum generally adheres to the duodenal mesentery and panereas instead of to the stomach, prior to passing down to form its last fold and to terminate in the rectum. In the Raven the small intestines are disposed at their commeneement in coneentric folds.

Among the Scansores the Cuckoo presents the following dis-

[^61]position of the intestinal canal : after the usual long and narrow cluodenal fold, the ileum ' makes a fold which is widened at the end; it then forms a close fold upon itself, at the termination of whieh the rectum eommences. In the Maceaw the course of the small intestine is somewhat peeuliar: after forming the duodenal fold, it is disposed in three distinet packets of folds: the intestine, after forming the first two, passes alternately from one to the other, describing shorter folds upon each; it then forms the third distinct fold, which is a long one, at the termination of which the ileum adlieres elosely to the riglit side of the gizzard, and then passes backward and dilates into the reetum.

In the Rasores the Dove-tribe have the small intestines disposed in three principal folds ; the first is the duodenal fold, fig. $85, f, f$; the seeond is a long and narrow fold, eoiled and doubled upon itself, with the turns elosely conneeted together, ib. k; the third is also a long fold, whieh is bent or twisted, ib. k^{\prime}. In the Common Fowl the duodenum is disposed in a long simple loop; the ileum passes toward the left, and is disposed in loose folds on the right and lower edge of the mesentery; the ilcum before it, termination passes up behind the preceding folds, and is accompanied as far as the root of the mesentery by the two eccea, which there open into the eommeneement of the large intestine.

The Ostrich presents the most complieated course of the intestinal eanal in the whole elass of Birds. The duodenal fold is about a foot in lengtl, and the returning part makes a bend upon itself before it reaches the pylorus; the intestine then turns down again behind the duodenal folds and gradually aequires a wider mesentery. The ilcum alter a few follds aseends toward the left side, accompanied by the two long eoce, and becomes again eonnected with the posterior part of the duodenal mesentery; leyond which the eoca enter the intestine behind the root of the mesentery, and the large intestine commences. This part differs from the rectum in other Birds in its great extent, being nearly donble the length of the small intestines, and being disposed in folds upon a wide mesentery. It terminates by an oblique valvular aperture in a large minary receptacle. In the Bustard the rectum is a foot in length, which is the nearest approach to the Ostrich which the rest of the class make in this respeet.

The small iutestines in the Grallutores are characterisel by their small diameter and long and narrow folds ; these are monetimes extended parallel to one another, as in the Crane and Coot;

- 'Ihere is seldom any part of the small intestine empty oo as to merit the name bl' лиинит.
or folded coneentrieally in a mass, as in the Curlew and Flamingo. In the latter speeies the duodenal fold is four inehes in length; then the small intestines are disposed in twenty-one elliptieal spiral eonvolutions, eleven descending towards the reetum and ten returning towards the gizzard in the interspaces of the former.

Many of the Natatores present a eoneentrie disposition of the folds of the small intestines similar to the Flamingo.

The arrangement of the museular fibres of the intestine is the same as in the cesophagis, the external layer being transverse, the internal longitudinal.

The villi of the lining membrane manifest an analogy with the eovering of the outer skin, being generally mueh elongated, so as to present a downy appearanee when viewed under water. There are, however, great varictics in the shape and length of the villi. In the Emeu they eonsist of small lamella of the lining membrane folded like the frill of a shirt. In the Ostrieh the lamella are thin, long, and numerous. In the Flamingo they are short and arranged in parallel longitudinal zig-zag lines.

In many Birds a divertienlum is observed in the small intestine, which indieates the place of attachment of the pediele of the yolk-bag in the embryo, fig. $79, m$. We have found this proeess half an inel in length in the Gallinule, and situated seventeen inelies from the pylorus: in a Bay Ibis (Ibis falcinella) the vitelline cocom was an ineh in length: in a young female Apteryx it dilated into a sae, about an inch in diameter, with a yellowish stratum of the remains of the yolk. ${ }^{1}$

The Birds in which the ceeca coli have been found wanting are eomparatively few, though sueh examples oceur in all the orders. These execptions are most frequent among the Scansores, in whieh the eccea are absent in the Wrynceks, the Toueans, the Touraeos, the Parrot-tribe, and aecording to Cuvicr in the Woodpeckers. ${ }^{2}$ In the Insessores the eocea are defieient in the Hormbill and the Lark. Among the Grallatores, we have found them wanting in a Spoonbill. In the Netatores they are absent in the Cormorant. The Ferons, Bitterns, and, oceasionally, the Grebes afford the rare examples of a single eœeum, which is also remarkably short.

In the Raptores the diurnal and noetmrnal tribes differ remarkably in the length of the exea. They are less than half

[^62]an incli in length in the Eagles and Vultures, but are oceasionally wanting in the latter. Curicr states that the cocea are deficient in the greater part of the Diurnal Raptores, but we have observed them in the Malicetus Albicillu, Aquila Chrysatos, Astur palumbarius, and Buteo nisus. They seldom exceed the length above mentioned, fig. $78, g$, and in the Secretary Vulture they form mere tubercles. In the Barn Owl the cocea severally measure nearly two inches in length, and are dilated at their blind extremities; they are proportionally developed in the larger Strigide.

In the Cantores they are invariably very short where present. Among the Scansorial genera which possess the coca, these parts are fomnd to vary in length, measuring in the Cuckoo and Wattlebird (Glaucopis), each half an inch; while in the Scythrops, or New Molland Toucan, the coca are each two inches long, and moderatcly wide.

In the Rasores the coeca present considerable varieties. In the Pigeons, fig. $85, g$, they are as short as in the Insessorial order, and are sometimes wanting altogether as in the Crown-Pigeon. In the Guan (Penelope eristata) each cocum is about three inches in length: while in the Grouse each coccum measures a yard long, being thus upwards of three times the length of the entire body. The internal surface of these extraordinary appendages to the alimentary canal is further inereased in the Grouse by being disposed in eight longitudinal folds, which extend from their blind extrenities to within five inches of their termination in the rectum. We have always found the cocea in this species filled with a homogeneous pultaccous matter withont any trace of the heather buds, the remains of which are abundant in the frecal matter contained in the ordinary tract of the intestines.

In the Peacock the enca measure cach about one foot in length; in the Partridge about fon inches; in the Common Fowl and other Phasimbide the cocen are eacle abont one-third the lengtlo of the body; they commence by a narrow pedicle, which extends about half their length, and then they begin to dilate into reservoirs for the chyme, fig. 79, g.

In the Cursores the coeca again present very different degrees of developenent. In the Apteryx the cocea are each five inches in length. In the Emen they are namow and short. In the Cassowary they are wholly defieient; while in the Ostrich they are wide, mpwards of two feet each in length, and their sececting and aborbing parietes are further increased by being produced
into a spiral valve, analogous to that which exists in the long coccum of the Hare and Rabbit.

In the Grallutores the two ceca are generally short where present; they attain their greatest developement in this order in the Demoisclle, where the length of each coccum is five inches; and they are also large in the Flamingo, where they each measure nearly four inches, and are dilated at their extremities, presenting with the gizzard, crop, lamellated beak, and webbed feet, the nearest approach to the Anatide of the following order.

In the Nutatores, the cocea, where they are present, vary in length according to the nature of the food, being very short in the fish-eating Penguin, Pelican, Gull, \&co, and long in the Duck, Goose, and other vegetable-feeding Lamellirostres. In the Crested Grebe (Podiceps cristatus), each coecum measures 3 -16ths of au inch in length. In the Canada Goose the coeca are each nine inches in length, and in the Whitefronted Goose the same parts measure severally thirteen inches. They have the same length in the Black Swan. In the Wild Swan the cocea measure each ten inches in length, while in the tame species they are each fifteen inches long.

As digestion may be supposed to go on less actively in the somnolent, night-flying Owls, than in the ligh-soaring Diurnal Birds of Prey, an additional complexity of the alimentary canal for the purpose of retaining the clyme somewhat longer in its passage, might be expected; and the enlarged coeca of the Nocturnal Raptores afford the requisite adjustment in this case. For, although the nature of the food is the same in the Owl ${ }^{1}$ as in the Mawk, yet the differences of habit of life call for corresponding differences in the mechanism for its assimilation.

In the Rasorial Order, where the nature of the food differs so widely from that of the Birds of Prey, the principal modification of the digestive apparatus obtains in the more complex structure of the crop, proventriculus, and above ail the gizzard; but with respect to the cocea, as great differences obtain in their developement as in the Raptores. Now these differences are explicable on the same principle as has just been applied towards the elucidation of the differenees in the size of the coeca in the Raptores. Where the difference in the locomotive powers is so great in the Dove-tribe and the common Fowl; where the circulating and

[^63]respiratory systems must be so actively exereised to enable the Pigeon to take its daily flights and in some species their annual migrations-a less complicated intestinal canal may naturally be supposed with such increased energy in the animal and vital functions to do the business of digestion, than in the more sluggish and terrestrial vegetable feeders; and accordingly we find that the requisite complexity of the intestinal canal is obtained by an inereased devclopement of the cocal processes in the Galline, while in the Columbide the coca remain as little developed as in the Insessores, which they resemble in powers of flight. If we regard the cocea as exeretive organs, their differences in the above orders may be in like manner explained by their relations to the locomotive and respiratory fimctions.

In the Cursores the developement of cocea seems to have reference to the quantity of food, and the case with which it may be obtained, according to the geographical position of the species. In the Cassowary, which is a native of fertile and tropical islands, New Guinea, North of Australia, New Britain, \&c., vegetable food of a more easily digestible nature may be selected, and it need not be detained long, where a fresh supply ean be so readily procured. But in the Ostrich, which dwells amidst arid sands and barren deserts, every contrivance has been adopted in the structure of the digestive apparatus to extract the whole of the nutritious matter of the food which is swallowed.

In the Grallatores, where no material differences of locomotive powers or means of obtaining food exist, the cocca present in their developement a direct relation to the nature of the food, and are most developed in the Gruide. The same holds good in the Nututores.

Why the inereased extent of intestinal surface in the alowe different eases shonld be chietly obtained by the elongation of the coca, will appear fiom the following considerations. In consequence of the stones and other foreign bodies which birds swallow, it is necessary that there should be a free passage for these throngh the intestinal canal, which is therefore generally short and of pretty uniform diameter. In the omnivorous Birds of the tropies, as the Hornbills, Toucans, Tomracos, and Parrots, which dwell among ever-bouring fult-trees, the rapid pasage of the food is not inconsistent with the extraction of a due supply of nourishment, but is compensated by the mufailing abundance of the supply. But where a greater quantity of the chyle is to be extracted from the food, and where, from the nature of the latter, a greater proportion of foreign substanees is required for its
trituration, -while the advantages of a short intestinal traet are obtained, the chyme is at the same time prevented from being prematurely expelled by the superaddition of the two coccal bags which communicate with the intestines by orifices that are too small to admit pebbles or undigested seeds, but which allow the chyme to pass in. Here, therefore, it is detained, and ehylification assisted by the secretion of the eccal parietes, and the due proportion of nutriment extracted.

The large intestine is seldom more than a tenth part of the length of the body, and, exeept in the Ostrich and Bustard, is
 continued straight from the cocea to the cloaea; it may therefore be termed the rectum rather than the colon. It is usually wider than the small intestine, and its villi are coarser, shorter, and less numerous. The reetum, fig. 86, a, terminates by a valvular circular orifice, b, in a more or less dilated cavity, which is the remains of the atlantois, and now forms a rudimental urinary bladder, c, d. The ureters, h, h, and efferent parts of the generative apparatus, f, g, open into a transverse groove at the lower part of the urinary dilatation ; and beyond this is the extcrnal carity which lodges, as in Reptiles, Marsupials and Monotremes, the anal glands and the exciting organs of generation. The anal follicles in Birds are lodged in a conical glandular cavity, k, which communicates with the posterior part of the outer compartment of the cloaca, and has obtained from its discoverer the name of Bursa Fabriciu.
§ 149. Licer of Birls.-On the hypothesis of claylification, or on that of the formation of blood-dises, or on that of the production of grape-sugar in relation to the raising of animal heat, being essential functions of the liver, it might have been expected, since digestion is so much more active aud the blood so much more abundant and rich, and the temperature so much higher in Birds than in Reptiles, that the liver would be proportionally larger; but it is not so. 'Carefully ascertained upon delicate balances,' the proportionate weight of the liver to the body is the same in a Vulture as in a Tortoise, in an Owl as in a Bull-frog, in a Curlew as in a Corn-snake, in a Turkey as in an Alligator,
\&e.' ${ }^{1}$ My own observations show the liver to be relatively largest in the less active aquatic and land birds, smallest in the birds that fly best and breathe most : compared in the limits of the class the liver seems to be developed inversely as the lungs and their appendages, and so far as it is associated with the lungs in eliminating waste elements from the blood, to have less to do in that way, as the breathing organs perform most.

The liver, figs. 85, 87, m, m, is situated a little above the middle of the thoraeie abdominal eavity, with its convex surface towards the abdominal parietes, and its coneavity turned towards the subjacent viscera: the right lobe covers the beginning of the duodenal loop, pancreas, and part of the small intestines; the left lobe covers the proventriculus and part of the gizzard; ant the apex of the heart is reecived between the upper ends of these prineipal lobes. The liver is, as it were, moulded upon all these parts, and presents corresponding depressions
 where it comes in contact with them.

It is generally divided into two nearly equal lobes (R apporares,

[^64]Stork), which are often separated for a short extent, and connected together by a narrow isthmus of the glandular substance. In some Birds, however, as in the Pigeon, Cormorant, Swan, and Goose, there is a third, smaller lobe, situated at the back of the liver between the lateral lobes, which from its situation appears analogous to the 'lobulus Spigelii' of Mammalia. In the Common Fowl the left lobe is occasionally cleft from below so deeply as to form two lobes on that side. In most species the right lobe exceeds the left in size ; this is remarkably so in the Bustard, in which the right lobe extends into the pelvis. ${ }^{1}$ In the Eagle, however, the left lobe is sometimes the largest. Each lobe is invested by a double membranous tunic, one embracing it closely, the other surrounding it loosely, like the perieardium of the heart. They are formed by lamine of the peritoneum, and by the aircells. The two adherent layers are continued from the base of the liver, one over the anterior, the other over the posterior surface, elosely adhering to the proper capsule: the loose layers are formed by the hepatic air-cell, surrounding each lateral lobe, the thin border of which is usually free.

The principal liganent of the liver is formed by a large and strong duplicature of the peritoneum, which divides the abdomen longitudinally like the thoracic mediastinum in Mammalia. It is reflected from the linea alba and middle line of the sternum upon the pericardium, and passes deeply into the interspace of the lobes of the liver; it is attached to these lobes through their whole extent, and connects them below to the gizzard on one side, and to the duodenal fold on the other: the lateral and posterior parts of the liver are attached to the contiguous air-cells; and the whole viscus is thus kept steady in its situation during the rapid and violent movements of the bird. The ligament first deseribed is analogous to the falciform ligament of Manmalia; and, although there is no frce margin enclosing a round ligament, yet the remains of the umbilical vein may be traced within the duplicature of the nembranes forming the septum. As the muscular septum between the thorax and abdomen is wanting, there is consequently no coronary ligament; but the numerous membranous processes which pass from the liver to the surrounding parts amply compensate for its absence.

The liver is of a lighter colour in Birds of flight than in the heavicr Watcrfowl, where it is of a deep livid brown. Each

[^65]lobe has its hepatic artery and vena portre. The hepatic arteries are proportionally small, but the portal veins are of great size, being formed not only by the veins of the intcstinal eanal, pancreas, and spleen, but also by the inferior emulgent and sacral veins. The blood, which has circulated in the liver, is returned to the inferior cava by two venæ hepatica. There are occasionally some smaller hepatic veins in addition to the two principal ones. The coats of the portal and hepatic veins appear to be equally attached to the substance of the liver. A duct arises by two roots from each lobe, and the biliary secretion is carried out of the liver by these two and sometimes by three ducts; one duct always terminates directly in the intestine, and is an 'hepatic duct,' fig. $87, n, n$; the other enters the gall-bladder, and is an 'cysthepatic duct,' ib. o^{\prime}; the cystic bile is conveyed to the duodenum by a 'cystic duct,' ib. o. Where, as in a few instances, the gallbladder does not exist, both hepatic ducts terminate separately in the duodenum, fig. $85, n, n$; but in no case is there a single ductus communis choledochus as in Mammalia.

The gall-bladder, fig. 87, p, is situated near the mesial edge of the concave or under side of the right lobe, and is commonly lodged in a shallow depression of the liver; but sometimes, as in the Eagle, Bustard, and Cormorant, only a very small part of the bag is attached to the liver. It has no risible muscular tumie: its inner surface is delicately reticulated.

The gall-bladder is present in all the Raptores, Insessores, and Nututores. It is wanting in a great proportion of the Scensores, as in the genus Rhamphastos and in almost all the Psittucidce and Cuculida. Among the Rasores the gall-bladder is constantly deficient in the Columbide or Dove-tribe alone, in which the ceeca are shorter than in any other vegetable feeder. The gallbladder is occasionally absent, according to the French \eademicians, ${ }^{\text {, }}$ in the Guinea-fowl; and they also found it wanting in two out of six Demoiselles (Anthropoides l'irgo). The gall-bladder is small and sometimes absent in the Bittern: I found it absent in one out of three Kivis (A_{p}, tery x): it is always wanting in the Ostrich, but is present in the Limeu and Cassowary:

The bile, as before observed, 1 nasses directly into the gallbladder, and not by regurgitation from a ductns choledochus; the eyst-hepatic duct arises from the right lobe, and is continued in some birds along that side of the bag which is in contact with the liver, where it penetrates the coats of the cyst and terminates about one-third from the lower or posterior end. In the

[^66]rol. II.

Hornbill ${ }^{1}$ I found it passing over the upper end of the bladder to the anterior or frec surface, and the cystic duet continued from the point where the eyst-hepatic duet opened into the bladder ; so that the cystic duct had a eommunieation both with the rescrvoir and the eyst-hepatie duet; being somewhat analogous to the duetus eommunis eholedochus; (fig. 87, where x represents the orifice by which the bile passes both in and out of the gallbladder).

In the Goose the eyst-hepatie duct terminates by a very small orifice, surrounded by a smooth projection of the inner membrane, which, aided by the obliquity of the duct, acts as a valve and prevents any regurgitation towards the liver. The eystic duct here passes abruptly from the posterior extrenity of the gall-bladder, whieh is not prolonged into a neek. The duet makes a turn round the end of the bag, and is so elosely applied to it, as to require a eareful examination to determine the true place of its commencement.

The hepatic duct, fig. 87, n, arises by two branches from the large lateral lobes of the liver, which unite in the fissure or 'gates' of the gland. Two hepatic ducts have becn found in the Curassow; but these and the eystic duct terminate separately in the duodenum. Of the two hepatic ducts in Pigeons, one, the right and larger, enters the beginning of the duodenum, the other near its tcrmination. The place of termination of the cystic and hepatic duct is generally, as shown in fig. 87, pretty close together at the end of the fold of the duodenum; but in the Ostrich one of the hepatic duets, which is very large and short, terminates in the commencement of the duodemm about an inel from the pylorus; while the other enters with the pancreatic duct at the termination of the duodenum. Both the cystic and hepatic ducts undergo a slight thickening in their coats just before their termination. The passage of the bilc-ducts in Birds through the eoats of the intestinc is oblique, and they terminate upon a val vular prominence of the lining membrane of the gut.
§ 150. Pancreas of Birds.-The mon-mastication of food in the month is associated with a low condition of the salivary glands ; a large panereas is coneomitant with gastric mastication, in Birds. This organ, figs. 85, 87, q, q, consists of two (Picus, Certhia, Upupa, Caprimulgus, Grus, Colymbus), and sometimes of threc (Oriolus), distinet portions; but these are so closely applied together at some point of their surface as to appear like one continuous gland, fig. 88. It is of a narrow, clongatcl, trihedral form, lodged in the inter-
space of the duodenal fold, and generally bent upon itself like the duodenum, as in the Hornbill, fig. 87, q. It is there supported by the gastrohepatic and gastro-colic omenta.

The structure of the pancreas is conglomerate, like that of the salivary glands, but the ultimate follicles are differently disposed. In the salivary glands these are irregularly branched, while those of the pancreas in Birds diverge in the samc plane from digitated and pinnatifid groups. The substanee is firmer than in Reptiles, of a pinkish, yellowish, or brownish eolour.

The duets, figs. $85,87,88, r, r$, formed by the riterated union of the efferent branches from the eomponent follicles of the pancrcas, are in gencral two in number, whieh terminate separatcly in close proximity to the hepatic and cystic ducts, n; but occasionally there are three pancreatic ducts, as in the Fowl, Pigeon, Raven, and Hornbill; in which case the third duct eommonly terminates at a distanec from the other two: in the IIormbill it proceeds from an cnlarged lobe of the pancreas at the end of the duodenal fold, and cuters that part, at r^{\prime}, fig. 87. As a rule, the pancreatic scerction is the first poured into the gut, the cystic bile is the last.

CIIAPTER XVIII,

ABSORBENT SYSTEM OF BIRDS.

§ 151. The absorbents of Birds, as of Reptiles, differ from those of Mammals in having fewer valves, which are also less perfect, being so loose as frequently to permit for a certain extent a retrograde passage of the injected fluid. The lacteals, lymphatics, and thoracie ducts have very thin parictes, so as easily to be ruptured: they are composed of two tunics, of which the internal is the weakest.

The lymph resembles that of Mammals, but the chyle differs essentially in its transparency and want of colour. The lacteals have, however, been observed to contain an opaque white fluid in a Woodpeeker that had been killed after swallowing a quantity of ants.

With respect to the disposition of the alssorbents, they do not form in Birds two strata, as in Mammals; at least those only have been observed which correspond to the deep-seated absorbents which accompany the large vessels.

The lymphatic glands or ganglions are few in Birds; the most constant and conspicuous are those at the anterior part of the chest or the root of the neck. Small ones have been seen in the axilla and groin of sea-birds (Aptenodytes). In other parts of the body the absorbent glands are replaced by plexuses of lymphatic vessels surrounding the principal bloodvessels.

The absorbents of Birds terminate prineipally by two thoracie ducts, one on either side, which enter the right and left jugular veins by several orifices; the plexuses of the posterior part of the body communicate with the contiguous sacral and renal veins.

The lymphatics of the foot mite to form the vessels which are found ruming along the sides of each toc, fig. 89, 1. In the Palmipedes there are anastomosing branches which pass from the lateral ressel of one toe to that of the adjoining toe, forming arches in the uniting web, 2. These branches form a small plexus, 3 , at the anterior part of the digitometatarsal joint, from which thece or four lymphaties are continued. The anterior and in-
ternal branches, 4 , accompasy the bloodvessels, and form a network around them; the posterior and external branches, 5 , reeeive the lymphatics of the sole of the foot, then ascend along the metatarse, and form at its proximal articulation a elose network, 6 , from which the vessels elimb the tibia, forming a plexus, 7, around it as far as the middle of the leg; from this procced two branches, of which the smaller passes along the anterior part of the depression between the tibia and fibula as far as the kncc-joint, where it joins the other branell which accompanies the bloodvessels. The trunk formed by the union of the two preceding branches accompanics the femoral vessels, forming plexuses in its course, 8, which receive tributary absorbents from the surrounding muscles, and a large branch, 9 , corresponding to the deep-seated femoral vessels.

The iliae trunk, 10, accompanies the great femoral vein into the abdomen, which it enters anterior to the origin of the pubis; it there reeeives branches from the lateral parts of the pelvis, 11 , and afterwards separates into two divisions.

The posterior division re-
 ceive some lymphatics from the anterior lobes of the kidneys, and those of the ovary or texti-

[^67]cles; it communicates anteriorly with a branch from the absorbents which surround the great mesenteric artery, and posteriorly with large vesicular plexuses or receptacles, 12, 13, surrounding the aorta and its branches, and which receives the lymphatics from the renal plexus, and those accompanying the arteria sacra media, 14.

The sacral or pelvic plexiform vesicles of the lymph are two in number, situated in the posterior region of the body, in the angle between the tail and the thigh. Each vesicle is little more than half an inch long and a quarter of an inch broad, and is shaped somewhat like a kidncy-bean in the Goose. ${ }^{1}$ They have muscular coats with striated fibre, distinctly recognisable in those of the Ostrich, where these 'lymph-hearts' arc attached to the contiguous bone. In the Cassowary, Stork, and Goose, they lie free. The pulsations correspond with the motions of respiration.

The anterior division of the femoral lymphatic trunk, 16, accompanies the aorta, upon which it forms a plexus with the branch of the opposite side, and with the intestinal absorbents, 15. These vessels commence from a plexiform continuous network situated between the mucous and muscular coats of the intestioc; they are larger here than when they quit the intestine to pass upon the mesentery. They accompany the branches of the superior mesenteric artery, there being many absorbents for one artery, which by their anastomoses form plexuses surrounding the bloodvessels. Before reaching the aorta, the lacteals communicate with the inferior or posterior division of the femoral trunk, and with the absorbents of the ovary or testicles, after which they pass upon the aorta, 16, 17, where they receive the lymphatics of the pancreas and duodenum, and terminate by uniting around the coliac axis, 18, with the lymphatics of the liver, the proventriculus, c, the gizzard, and the spleen, forming a considerable plexus, from which, according to Lauth, ${ }^{2}$ it is by no means rare to see branches passing to terminate in the surrounding veins.

The aortic plexus, 19, which answers to the 'receptaculum chyli ' of Mammals, gives origin to two thoracic ducts, 20,20 , of varying calibre, but often, as in the Goose, exceeding a line in dianeter. They are situated at their origin behind the oesophagns, a, and in front of the aorta, b; they advance forward, diverging slightly from each other, pass over the lungs, v, w, from which they receive some lymphatics, and terminate respectively, after being joined by the lymphatics of the wing, in the jugular
vein of the same side. The left thoracie duet, before entering the vein, receives the trunk of the lymphaties of the left side of the neek; the right thoracic duet receives only a branch of those of the same side.

The lymphaties of the wing follow the course of the brachial artery, forming a plexus around it, especially at the elbow-joint. Their principal trunk, to which all the collateral branches are united about the upper third of the humerus, is here of large size, but its diameter soon begins to be diminished, and it is very small at the head of the humerus. When it reaches the parietes of the ehest, it receives two or three large lymphaties from the peetoral museles, and a branch which aceompanies the brachial plexus. Soon after a small lymphatic gland is sometimes formed on the trunk, which lastly unites with the thoracic duct of its own side.

The lymphaties of the head aceompany the branehes of the jugular vein, and are readily diseerned upon those which are situated between the rami of the lower jaw. They form, by uniting with the ecrvieal absorbents, two lateral branehes on each side, which accompany the eorresponding jugular vein, being situated, one in front, the other behind that vessel. These lymphaties communicate together, at the anterior and posterior parts of the neck, by transverse or oblique branehes. They receive in their progress absorbents from the museles, and from the peeuliar glands whieh are seen beneath the skin of the neek. The internal branch on the left side reecives also a considerable absorbent from the oesophagus. At the lower part of the neek both branehes receive a notable branch which accompanies the earotid arteries, and a little further on they form on each side a lymphatic gland situated on the jugular vein. On the right side the trunk of the cervieal lymphaties terminates in the jugular vein, after having furnished a communicating branch with the thoracie canal of that side; on the left side it terminates at onee in the eorresponding thoracie duet.

CHAPTER XIX.

CIRCULATING SYSTEMI OF BIRDS.

§ 152. Bloorl of Birds.-The blood is hot and of a deep red colour. The blood-dises are more abundant than in the coldblooded Vertebrates, save, perliaps, in some Ophidia: they are nueleated, clliptic, and flattened in form; averaging in size, in long dianeter $\frac{1}{2100}$ th, in short diameter $\frac{1}{3806}$ th, of an inch; with the following observed extremes:-Humming-bird, long diameter $\frac{1}{26 \overline{6}}$, short diameter $\frac{1}{4000}$; Ostrich, long diameter $\frac{1}{1649}$, short diameter $\frac{1}{\overline{0} 00}$. Milne-Edwards notes decimally the following range of size in different speeies of the elass:-6 Long diameter, maximum, 1.59 ; minimum, $1 \cdot 105$: short diameter, maximum, $1 \cdot 110$; minimum, $1 \cdot 158 .{ }^{\prime}$ (Metrical system.)

The blood-dises are largest in the embryo, losing size as the respiration gaias in activity and extent in the progress of the individual to maturity. The smaller size of the blood-dises of Birds as compared with those of cold-blooded Ovipara exemplifies the same inverse ratio of their size to the amount of respiration. The proportion of organie matters contained in the water of the blood is greater than in the Hamatocrya, as will be seen by comparing the subjoined Tables with those in vol. i. Pp. $463,464:-$

AVES	Water	Clot	Alloumen and Salts
Anas Boschas (I)uck)	765	150	85
Ardea cinerea (Heron)	808	133	59
Columba livia (1'igeon)	797	156	47
Gallus domesticus (Fowl)	780	157	63
Corvus Corax (Raven)	797	146	56^{2}

Ardea nycticorax (Night Heron)	MOIST BLOOD-DISCS			PLASMA		
	Total weight	Water	Solid matter	Total weight	Water	Solid
	315.84	236.88	$78 \cdot 96$	684.16	63901	$48 \cdot 15$
Syrnium nebulosum (Barred Owl)	$427 \cdot 36$	$320 \cdot 52$	10684	$572 \cdot 64$	51914	$\cdot 50$
Cathartes atratus (Black Valture)	626.88	$470 \cdot 16$	156.72	37312	329.01	$44 \cdot 11^{3}$
${ }^{1}$ ccaxxix. p. 86.	${ }^{2}$ Culxve p. 64.			${ }^{3}$ Ib. p. 27.		

The fibrine in the blood of Birds is soft and very lacerable. The serum is usually of a light yellow colour, but is golden in the Cathartes atratus. Dr. Jones notiees the strong musky odour of the blood of this Vulture, like that of the living bird. ${ }^{1}$
§ 153. Heart of Birds.-This organ consists of two ventrieles and two aurieles; the septum of both being eomplete.

The form of the heart is always that of a cone, sometimes wide and short, as in the Ostrich and Crane; sometimes more clongated, as in the Emeu, fig. 90, and Vulture; or still more acute, as in the Curlew and Common Fowl.

Its situation is more anterior and mesial than in Mammalia, and its axis is always parallel witl the axis of the trunk. It is not eontained with the lungs in an especial eavity, but its apex is lodged between the lobes of the liver; the diaphragm, as a rule, not being so far developed as to separate the chest from the abdomen.

As the lungs are confiued to the dorsal part of the chest, the whole of the anterior surface
 of the pericardinm is exposed when the sternum of the bird is removed. The pericardium is thin, but of a firm texture, and adheres by its external surface to the surrounding air-cells. It is of comsiderable size, and commonly prolonged for some way between the lobes of the liver.

The auricles of the heart in Birds have not externally suek free appendices as in Mamuals. The right auricle is mneh larger than the left; it is more distinetly divided internally into a sinus, ib. d, and auricle proper, b, i, x, than in Mammals, and these parts are separated by a more complete valvular strueture, but less definitely developed than in the (rocodile.

Three reins terminate in the sinus, there being in Birds always two preeavals, as in Reptiles. The right precaval, ib. ", which returns the blood from the right wing and right side of the neck, terminates in the upper and anterior part of the sinus; the left
preeaval, ib. b, winds round the posterior part of the left auricle to open into the lower part of the sinus; just before its termination it reeeives the eoronary vein, so that this docs not open separately into the auricle as in most Mammals. The postcaval vein, ib. c, terminates in the sinus just above the orifice of the left precaval, and a semilunar valvular fold, ib. h, analogous to that of the coronary vein in man, is extended forward between these orifiees so as to separate them, and afford a protection to the mouth of the left precaval, in addition to that which it derives in common with the other veins from the larger valves at the mouth of the sinus.

The disposition of the valves between the sinus and auriele secms morc espeeially destined to prevent regurgitation into the sinus, when the pulmonary cireulation may be impeded. A strong oblique semilunar museular fold, ib. g, commences in the Emeu by a band of museular fibres running along the upper part of the auriele, and expanding into a valvular form extends along the posterior and left side of the sinus, terminating at the lower part of the fossa ovalis, ib. i. A sceond semilunar museular valve, ib. f, of equal size, extends parallel with the preceding along the antcrior border of the orifiee of the sinus, its lower extremity being fixed to the smooth floor of the aurielc, its upper extremity being continued into a strong muscular column running parallel to the one first mentioned aeross thic upper and anterior part of the auricle, and giving off from its sides the greater part of the musculi pectinati. From this structure it results that the more powerfully the musculi pectinati act in overeoming the obstacle to the passage of the blood from the auricle to the ventricle, the closer will the valves be drawn together, and the stronger will be the resistance made to them by the regurgitation of the blood from the auricle into the sinus. The valves f and g are homologous with the pair dividing the auricle, o, from the sinns, s, in the Crocodile's heart (vol. i. fig. 339). The parietes of the anricle in the interspaces of the muscular fascieuli are thin and transparent, consisting in many parts only of the lining membrane of the cavity and the reflected layer of the pericardium blended together. The fossu ovalis, fig. $90, i$, is a deep depression situated behind the posterior semilunar valve, which, we may observe, bears nearly the same relation to the fossa as the annulus ovalis in the luman lieart. The membranous septum closing the foramen ovale is complete and strong, but thin and semitransparent. The appendix auricuta, $\mathrm{ib} . x$, is the most muscular part of the eavity;
it does not project freely in front of the great vessels arising from the ventricles, but is tightly tied down to them by the reflected layer of the pericardium. The auriculo-ventricular orifice is an oblique slit, fig. $92, k$; a bristle is passed through it in fig. 90. The manner in which regurgitation by this orifice is prevented is one of the chief peculiarities in the heart of Birds. The right ventricle, fig. $91, k$, is a narrow triangular cavity, applied as it were to the right and anterior side of the left ventricle, but not extending to the apex of the heart. The parietes are of pretty uniform thickness, except at the septum ventriculorum, and are weaker in comparison to those of the left ventricle than in Mammals. Short fleshy columns extend from the septum to the free wall of the ventricle at the angle of union of these two parts, leaving deep cells between them; a strong column, fig. 92, m, also extends from the right side of the base of the pulmonary artery to the upper extremity of the auriculo-ventricular valve; but these are the only 'columne carnex' in the right ventricle;
 there being none of a pramidal form projecting into the cavity, nor any' chordx tendinex.' The principal valve which guards the auricular aperture is a strong muscular fold, figs. 90, 91, 92, l, nearly as thick as the wall of the ventricle itself, extending from the fleshy column above mentioned obliquely downward and backward to the angle formed between the septum and the frec wall of the ventricle at the lower and posterior part of the cavity. The convex edge of this muscular valve is turned toward the convex projection made by the septum, and must be forcibly applied to this part during the systole of the ventrieles; so that, while all reflux into the auricle is prevented, additional impulse is given to the flow of blood through the pulmonary artery; the museular parietes of the ventricle being thas complete at every part except at the orifice of the artery. This valve is strongest in the Diving Birds, weakest in
the Struthious, and especially in the Apteryx, in which it is partially membranous and has its margin tied by a few tendons to a fleshy process from the fixed ventricular wall.

The small muscular column, fig. $92, m$, at the upper part of the auricular orifice is analogous in its position to the single valve whicl guards the eorresponding orifice in Reptiles; the Crocodiles alone present a second muscular valve (vol. i. p. 510, fig. $339, r$) homologous with the larger valve in Birds.

The right ventricle is remarkable for the smoothness and evenness of its inner surface. The
 pulmonary artery is provided at its origin with three semilunar valves, fig. $92, n$. It divides, as usual, into two branches, fig. 168, one for each lung; the right branch passes under the arch of the aorta.

The acrated blood is returned from the lungs by two reins which open into the back part of the left auricle; a strong semilunar ridge, which is hardly sufficiently produced to be ealled a valve, divides the cavity of the auricle in which the veins terminate from the muscular part or appendix. The flesly columns are very numerous and complicated in this part of the auricle, which is closely tied down to the ventricle loy the serous layer of the pericardium and dense cellular tissue.

The left ventricle, figs. 91, 92,0 , is an clongated conical cavity, the parietes of which are three times as thick as those of the right ventricle, and exhibit strong fleshy columns extending from the apex towards the base; two of the largest of these columns present in the Emeu a short convex eminence towards the auri-culo-ventricular orifice, fig. 92, r, and give off short tliick tendons to the margin and ventricular surface of two membranous folds, figs. 91, 92, p, q, which correspond to the 'mitral valve' in Mammals. Of these valves, the one next the anrta, q, corresponds to the single valve which guards the auricular opening in the heart of Reptiles, and is most developed in Birds ; the opposite valve is of much less size. In many Birds the chordre tendinea pass from the valves at once to the parietes of the ventricle, and are not attached to columne carnex. The surface of the ventricle formed by the septum is smooth from the orifice of the aorta down to the
apex of the heart. The aorta is provided with three semilunar valves, not with two only as in Reptiles. The extremities of these valves are comnected to small, firm, and sometimes ossified styles imbedded in the fibrous eoat of the vessels. ${ }^{1}$

The arrangement of the museular fibres of the ventriele in Birds is sueh that the right ventriele appears to be formed by a partial secession of the outer from the inner layers of the parietes of the left ventriele at the anterior and right side of that cavity. See the transverse seetion, fig. 92.
§ 154. Artcries of Birds. - The arterial system of Birds mainly differs from that of Mammals in the following points:The division of the aorta into three principal braneles, almost immediately at its origin: the eourse of the areh of the aorta over the right instead of the left bronehus to become the deseending aorta: the basilar artery being formed by the entoearotids, not by the vertebral: the great length of the common earotid, which is a single median trunk in some birds: and the origin of the arteries of the posterior extremities, whieh do not come off from a single branch, or 'external iliac,' but from two arteries which are detached sueeessively from the aorta at a great distance from each other, and pass from the pelvis by two separate apertures. In these differenees the eloser affinity of Birds to Reptiles is shown.

The aortic trunk, fig. 93, $\mathbf{1}$, is so short that it is only brought into view after the reflections of the pericardium and the adjoining vessels are detached by dissection. The first branch is to the left side and, after it is sent off, the trunk affects to turn over the auricle before it gives the branch of the right side; these two branches pass in a curved manner from the heart towards the axilla, and may be regarded as two artericim imominata, fig. $90, t, t$. After these branches are parted with, the arterial trunk, ib. s, fig. 93,2 , is continued over the right bronchus, and, on reaehing the back part of the heart, becomes the 'descending aorta.'

The arteria innominutu, fig. 93,3 , first sends off the common tronk of the carotid and vertebral arteries, ib. 4, which before its division gives off one or two small branches; one of these runs down upon the lungs in eompany with the par vagm, and appears to supply branches to the aponeurosis of the limgs, and the air-cells at the upper part of the thorax; the other braneh, after supplying the lymphatic gland of the neck with several small arteries, ascents upon the side of the cosophagus, to which, aud the inferior larynx, the divisions of the trachea, and to the parts

[^68]and integuments of the side of the neck, its branches are distributcd, anastomosing with the superior cesophageal and traeheal arteries. Sometimes, in the Duck, the supra-scapular artery, which is usually divided from the vertebral, is a branch of the common trunk, as it is also in the Apteryx, where it supplies the museles at the baek of the base of the neck.

Birds, as a rule, are peculiar in sleeping with their long neck
 much bent or twisted, and this position might be expeeted to exercise some effeet on the vessels subject thereto. Accordingly we find that the carotid arteries, ib. 4, fig. $90, u, u$, are frequently of unequal size; in the Dabchiek the left is the largest, fig. 93,2 ; in an Emeu I found it the smallest. One or other carotid may be obliterated, according, perhaps, as the bird habitually sleeps with the head under the right or left wing. In the Apteryx I found that the left earotid alone passed to the usual place in the neck, and divided at the third cervical vertebra to supply the head in the usual way. In the Flamingo the right carotid was single and bifurcated at the upper part of the neek. In the Common Fowl, each carotid, after parting from the vertebral artery, ib. 6, proceeds to the middle of the neek and soon disappears; becoming covered by the muscles of the anterior part of the neck, and entering the canal formod by the hypapophyses, fig. 25, h, within which it lics hidden, and in close contaet with its fellow of the other side, to very near the head. In the Bittern the two carotids are situated one behind the other, and adhere so intimately together in this situation that they secm like a single trunk.

In the following details of the vascular system, I adopt, with little modification, the words of Macartney, by whom it was first and best described in his Article 'Birds,' in ‘ Rees's Cyclopedia.' The carotid artery emerges from between the muscles of the neck, at about the third or fourth vertebra from the head (9); and after giving off the arterice cutanea colli laterales, fig. $93,10,11$, to the lateral muscles and integuments of the neck, it runs along the outer edge of the rectus major anticus to behind the angle of the jaw, where it divides into its scveral branches.

An artery (arteria occipitalis) first goes off posteriorly, which passes a little forward under the thyrohyal, and after sending some blood to the muscles of the neck, makes a turn backward, enters the foramen in the transverse process of the second vertebra, and terminates by anastomosing with the vertebral artery. ${ }^{1}$

The next branch is the entocarotid; it passes behind the muscles of the jaw close to the basioccipital, sends a branch upward, which penetrates the tympanum; and another through the articulation of the jaw, to unite with the ophthalmic, and contribute to the plexus at the back of the orbit (rete ophthalmicum of Barkow). The entocarotid then enters an osseous canal, which runs along the side of the basisphenoid between the tables of the bone; and at the lower and back part of the orbit, the artery reccives a remarkable anastomosing branch of the internal maxillary, which almost equals in size the carotid itself, and these two vessels produce by their union onc which passes almost directly to the cranium, entering at the deep 'sella turcica.' It forms within the sknll an anastomosis similar to the circle of Willis; but the branch which occupies the place of the basitur artery is very small, and appears to be furnished entirely from the anastomosis of the carotids, and designed only to supply the medulla oblongata. The buanches of the entocarotid are spread in an arborescent form upon the surfaces of the brain; some on the outvide and others on the ventricles and the fissure between the two hemispheres: the tufted termination of the vessels of the choroid plexus is shown in fig. 46. The orbital plexus formed by the carotid sends off the inferior palpebral, etlimoidal, lacrymal, and ophthalmic arteries. The ophthalmic artery forms two remarkable plexuses at the posterior part of the globe of the eye; the first, fig. $59, \varepsilon$, is situated close beside the inner side of the optic nerve, is formed by an artery answering to the arteria centralis retince,

[^69]and supplies the marsupial membrane; the second plexus, ib. 4, is situated more exteriorly, and gives off the ciliary arterics.

After the carotid has sent off the entocarotid, it passes for a little way downward and forward behind the angle of the jaw, and divides at once into different branches, corresponding to those of the ectocarotid in Mammals; the first of which might be called the oesophageal or laryngeal artery. This vessel sends a branch to the muscles upon the thyroliyal, and then turns downward and divides into two branches, one to the trachea, fig. 93 , G 1 , and the other to the osophagus, upon the side of which parts they descend to near the thorax, forming a series of arches, ib. 11, 11, and ultimately inosculate with the tracheal and oesophageal branches of the common trunk of the carotid and vertebral arteries.

The external maxillary artery, ib. 12, dips in between the pterygoid and digastric museles; it then passes behind the tympanic, and gires twigs upward to the muscles of the jaws, and to the plexus at the back of the orbit: upon emerging from behind the tympanic, it lies moder the zygomatic areh, and sends an artery upward, which is distributed to the temporal and masseter muscles, and proceeding under the triangular tendon that comes from the inferior margin of the orbit to the lower jaw, it divides into two principal branches; one of these passes along the side of the upper jaw, gives a branch upward to the fore part of the orbit which unites with the ophthalmie artery, and is lost at the top of the head. This branch is very large in birds with combs, as, in conjunction with the ophthalmic, it furmishes numerous vessels to these vascular parts. The artery then goes on and supplies branches to the sides of the head before the orbits, and to the integuments and substance of the upper mandible, inosculating with the palatine branches of the internal maxillary artery. The sccond portion of the external maxillary proceeds to the lower jaw, to whieh, and the lower part of the masseter musele, it is distributed. The external maxillary supplies the place of the temporal, labial, angular, nasal, and mental arteries of mammals.

The laryngeal or posterior palatine artery is a little branch of the ectocarotid, which is sent off posteriorly opposite to the external maxillary artery. Its branehes are exhausted upon the back part of the fauces, the muscles for moving the upper jaw, and posterior nares.

The lingual or submaxillary artery, ib. I3, passes under the muscles which comnect the hyoid to the lower jaw, and close upon the back of the membrane of the lower part of the mouth, it sends a branch to the csophagus and trachea, supplies the muscles
of the hyoid, ib. \mathbf{F}, the tongue, E , the lower surface of the mouth, and furnishes the artery which enters the substance of the lower jaw.
' Just at the origin of the submaxillary artery there is another little branch of the carotid, which is lost upon the muscles of the hyoid arch.

- The internal maxillary artery is, as usual, the continuation of the trunk of the ectocarotid; it runs forward between the pterygoid muscle and the lining of the mouth, upon the side of the long muscle for moving the upper jaw, and divides into two principal branches; one of them proceeds under the tendon of the long muscle to get upon the palate, where it forms two branches, of which one runs along the external side of the palate, between the membrane and the bone of the mandible to the extremity of the bill, where it becomes united to the same branch of the opposite side, as also to the middle artery of the palate. The other branch lies also superficially under the membrane which lines the mouth. It passes onward to meet its corresponding vessel of the opposite side, with which it becomes actually incorporated, and by their union a single artery is generated, which runs along the middle line of the palate to the end of the mandible, where it unites with the lateral branches, as already mentioned. At the junction of the vessel of each side to form the middle palatine artcry, two branches go off, which are lost upon the lining of the mouth, and the interior of the organ of smell.
- The other branch of the internal maxillary artery is reflected upward toward the orbit, below which it divides and unites again, forming a triangle, through which the vein passes: at this place it produces a remarkable plexus of vessels, like the rete mirabile of the carotid artery of quadrupeds, which is inereased by branches from the ophthalmic and the palatine arteries, and from which the back part of the organ of smell reccives its supply of blood.
' The internal maxillary artery then runs directly backward below the orbit, passes between the radiated or fau-shaped muscle which moves the upper jaw and the pterygoid; and turning inward round the basis of the cranium, becomes incorporated with the internal carotid artery just as it enters the bony canal which conducts it to the brain.'
‘The vertelral artery, fig. 93, 6, soon after it parts from the

[^70]VOL. II.
carotid, sends off a branch backward, whieh passes over the neek of the seapula and is lost among the museles on the posterior part of the shoulder, inosculating with the artieular and other arteries about the joint: this branch might be ealled the supra-scapular, ib. 5. In the $D u c k$ we have observed it, before it makes the turn over the seapula, to send an artery upward along the museles of the neck. The trunk of the vertebral artery proceeds obliquely upward, and having entered the foramen in the transverse proeess of the penultimate eervical vertebra, gives off a large branch downward, which is distributed between the vertebre, and to the spinal eanal, in the manner of the intercostal arteries, with whieh it anastomoses upon arriving in the thorax. The remainder of the vertebral artery is eontinued upward in the eanal formed by the pleur- and di-apophyses of the eervical vertelrex, diminishing gradually in eonsequence of the branches it sends off between each vertebra to the myelon and the museles of the neek. Near the head the artery is found eonsiderably reduced, and within the uppermost foramen in the transverse processes terminates entirely by inoseulation with the reflected oceipital branch of the earotid, as before noticed.
' After the common trunk of the carotid and vertebral is detaehed from the arteria innominata, this vessel may assume the name of the subclavian, fig. 93, 14. While passing under the coracoid it sends off some important branehes: the first might be ealled the pectoral artery; it proceeds upward upon the internal surface of the peetoralis minor muscle, which it supplies, and then dividing into two branches, one passes over the anterior edge of the coracoid, and under the pectoralis medius, between which and the sternum it runs, detaeling its branches to the muscle; the other sends first along the under side of the coracoid a braneh which is again subdivided and distributed to the outside of the shoulderjoint and to the deltoid muscle, in whieh it inosculates with the articular artery. The vessel then passes between the coracoid and the furculum, and on a ligament whieh conncets the head of the coracoid to that of the scapula, and disperses its branches upon the upper part of the shoulder-joint, forming anastomoses with the neighbouring arteries.

- The next branch of the subclavian is the humeral artery, ib. 15 ; it arises from the upper side of the vessel, and makes a slight eurve to reaeh its situation on the inside of the arm in order to disperse its branches in the manner hereafter deseribed.
- The internal mammary artery, fig. 94, 24, is given off just as the subelavian leaves the eliest. It divides into three branehes;
one ramifies upon the inner surface of the sternum, another upon the sternal ribs and the intercostal muscles, and the third runs along the anterior extremities of the vertebral ribs, supplying the intercostal muscles, \&c.
' The chief peculiarity of the arteries of the superior extremities in birds consists in the great magnitude of the vessels which supply the pectoral muscles; these, instead of being inconsiderable branches of the axillary artery, are the contimuations of the trunk of the subclavian, of which the humeral is only a branch.
' The great pectoral or thoracic artery passes out of the chest over the first rib and close to the sternum, and immediately divides into two branches. One of them, fig. 93, 16, ramifies in the superior part of the pectoralis major, and the other, ib. 17, is exhausted in the lower part of the muscle, and sends off a branch analogous to the long thoracic artery of Mammalia.' Fig. 93 shows the distribution of thesc arteries to the skin after perforating the pectoralis muscle.
-The humeral artery, while within the axilla, gives a small branch backward to the muscles under the scapula, and upon reaching the inside of the arm produces an artery that soon divides into the articular and the profunda humeri. The articular artery passes round the head of the humerus, underneath the extensors; its branches penetrate the deltoid muscle, and anastomose with the other small arteries around the joint.
' The profunda humeri, as usual, turns under the extensor muscles to reach the back of the bone, at which place, in birds, it separates into two branches, of which one descends upon the inside, and the other mpon the outside of the articulation of the humerus with the radius and ulna, and there inosculate with the recurrent branches of the arteries of the fore-arm.
- After the humeral artery has sent off the profunda, it deseends along the inner edge of the biceps musele, detaching some branches to the neighbouring parts; upon arriving at the fold of the wing, it divides into two branches; one of these is analogous to the ulnar artery, and the other from its position deserves to be called rather the interosseous than the radial artery.
' At the place where the humeral produces the two arteries of the fore-arm, a small brauch is sent off, which is lost upon the fore-part of the joint, and in anastomoses with the recurrent of the ulna and profunda lumeri.
'The utnar artery is the principal division of the humeral: it proceeds superficially over the muscles which are analow, pronator, sends a large recurrent branch under the flexor ulnaris
to the back of the joint, upon which it ramifies and forms anastomoses with the profunda humeri. The artery then proceeds along the inner edge of the ulnar muscles, to which it distributes branches. It is afterwards seen passing over the carpal bone of the ulnar side, and under the annular ligament, at whieh place it sends off some branches which spread upon the joint and inosculate with the similar ones of the interosseous artery. Very soon after the ulnar artery gets upon the metacarpus, it dips in between the bones, and reappears upon the opposite side, lying under the roots of the quills, to each of which it sends an artery; it preserves this situation to the end of the metacarpal bones, where it passes between the style analogous to the little finger and the principal or forc-finger, and pursues its course along the edge of the latter, to the extremity of the wing, supplying each of the true quills with an artery, and sending at eael joint of the finger a cross branch to communicate with the anastomosing branches on the opposite side.
' The interosseous artery detaches first a braneh of some size to the membrane which is spread in the fold of the wing, upon which it forms several ramifieations, fig. 94, o. After this the artery dips down behind the flexor museles to get into the space between the ulna and radius. It here gives a braneh baekward to communicate with the others about the joint, and proceeds in the interosseous space as far as the carpal joint, during which course they become much diminished from giving off several branches which are distributed to the integuments and the quills placed upon the outside of the ulna. The remainder of the interosseous artery is expended in small branches upon the back of the carpal joint, the bastard quills, and along the radial edge of the metacarpal and bones of the fore-finger, where it forms communieations with the cross branches of the ulnar artery already mentioned.
'From this description it will be perceived that no artery exists in lieds strictly analogous to the radial; that there are no palmar arches; and that the size of the interosseous artery, and the course of the ulnar, along the outside of the metacarpus, are peculiaritics which arise from the necessity of affording a large supply of blood to the quills during their growth.
'The descending aortu, fig. 93, 19, makes a curve round the right auricle and right bronchus, in order to get upon the posterior surface of the heart, after which its course is close along the spine, in which situation it is bound down by ccllular substance, and the strong menlorane or aponeurosis, which covers the lungs on their anterior part. The first brauches which this vessel
appears to send off are bronchial arteries; they arise from the fore part of the aorta, just when it arrives upon the spine; and having eutered the lungs, their ramifications accompany those of the pulmonary arteries. They appear also to send branches to the spine and the spaces between the ribs.
' The intercostal arteries do not take their origin from the aorta in numerous and regular branches as in Mammals, but consist originally of but few vessels, which are multiplied by anastomoses with each other, and with the arteries which come out of the spinal eanal. An arterial plexus is thus formed round the heads of the ribs, from which a vessel is sent to each of the intercostal spaces. Many of these branches, besides supplying the intercostal muscles and ribs, are continued into the museles upon the outside of the body and the integuments. The anastomosis of the intercostal arteries round the ribs is very similar to the plexus, which is produced by the great sympathetic nerve in the same situation.
: The aorta produces no branch which deserves the name of the phrenic artery, as birds do not possess that muscular septum of the body to which the artery of this name is distributed in other animals.
'The coetiac artery, fig. 93, 20, is a very large single trunk, and mises from the fore part of the aorta, even higher than the zone of the gastrie glands. It descends obliquely for a short way, and then gives off a branch which soon divides into two or three others that are spread upon the lower part of the oesophagus, and the side of the zone of the gastric glands, miting with the other arteries of the oesophagus above, and extending downwards upon the posterior side of the ventricle, and anastomosing with the anterior grastric artery. The trunk of the coliac now divides into two very large branches, which from their distribution we have chosen to call the posterior and the anterior gastric arteries.
'The posterior gustric artery, almost as soon as it is formed, detaches the splenic artery; and very soon after it furmishes firom the posterion side of the vessel the right hepatic artery. This brancle proceeds to the riglit lobe of the liver, which it enters on the side of the hepatic dnet; after having divided into two or three minute arteries on its way to the liver, it supplies the hepatic duct with a branch which accompanies the duct to the intestine, and is there lost. The posterior gastric artery then rums down npon the back of the gizzard, and opposite to the origin of the first intestine it sends off an artery, which proceed directly to one of the cocca (in the Fowl), upon which and the
side of the next intestine it is expended, inosculating at the end of the coccum with branches of the mesenteric artery, which are distributed to the adjoining portion of the small intestinc. The posterior gastric then furnishes a large vessel which runs upon the gizzard, and divides into two chief branches, which penetrate the substance of the digastric muscle, in which they are lost.
' The next branch of the posterior gastric artery is the pancreatic. It rums between the two pancreatic glands, dispensing branches to each and to the duodenum. After this the trunk of the posterior gastric divides into two branches, which furnish twigs to the muscular parietes of the ventricle, and run along the margins of the upper and lower portions of the digastric mnscle, supplying them with numerous twigs, and anastomosing with the ramifications of the other gastric arteries.
'The anterior gastric artery descends to the angle formed by the bulbus glandulosus and the gizzard, and there sends off a small branch which spreads upon the zone of the gastrie glands, and inosculates with the first ramifications of the coliac, and immediately afterwards it detaches a large artery, which runs round the superior margin of the digastric muscle, which it furnishes with many twigs, and commmicates freely with the corresponding branch of the posterior gastric artery.
- Three small hepatic arteries take their origin from this branch of the anterior gastric, just as it passes over the highest part of the margin of the gizzard; these vessels cntcr the fissure in the left lobe of the liver. The anterior gastric artery now proceeds along the fore part of the gizzard, sending one or two branches into the miscular substance, and near the tendon it terminates in two large vessels, one of which is distributed upon the left side of the digastric muscle, and the other passes a little over the tendon, and then divides into two arteries, which produce several branches that disappear in the substance of the gizzard, and between the digastric muscles and the parietes of the ventricle, anastomosing with the vessels of the posterior side.
-The superior mesenteric artery, fig. 93, 21, takes its origin from the fore part of the aorta, a little below the coliac, and proceeds for some way withont detaching any branches; after which it experiences the same kind of division and subdivision that takes place in Mammalia; and the unmerous arteries whieh are thus ultimately produced are spent upon the small intestines. One of the first and largest branches of the superior mesenteric, however, is allotted to supply one of the cocea, and to establish a communication with the inferior mesenteric and gastric arterics. This
branch, soon after it leaves the trunk of the superior mesenteric, divides into two. One descends upon the rectum, where it meets with the inferior mesenteric artery, with which it produces a very remarkable anastomosis, similar to the mesenteric arch in the human subject; this united artery supplies the rectum and origin of the coca. The second portion of this branch of the superior mesenteric runs in the space between the last part of the small intestine and the coccum of one side, sending numerous branches to each, and at the end of the cœcum communicates in a palpable manner with another branch of the superior mesenteric artery, which runs upon the adjoining part of the small intestine.
- A branch, arteria spermatica, fig. 93, 22, arises from the anterior part of the aorta, just below the lungs; it is designed for the nutrition of the organs of generation, and except in the season for propagation, it is so small as to be discovered with difficulty; but when the testicles become enlarged, it is considerably increased in size in the male bird, and much more so in the female, when the ovary and oviduct are developed for producing eggs. It nearly equals the superior mesenteric artery during the period of laying, in which state we shall describe it. It is a single artery, like the cocliac and mesenteric, proceeds at a right angle from the aorta, and soon sends off a branch, which goes into the kidney of the left side, to which it gives some twigs, and afterwards emerging from the kidney, it runs in the membrane of the oviduct, upon which it is distributed. After this branch is detached, the artery projects a little farther forward into the cavity, and divides into two brauches; one of these goes to the ovary, in which it ramifies, and furnishes an artery of some size to each of the cysts containing the ora. The other is distributed in numerous branches to the membrane and superior parts of the oviduct, and inoscnlates with the other arteries of the oviduct. It deserves to be remarked, that this and all the other arteries which are furnished to the oriduct have a tortuous or undulating course, in the same manner as the ressels of the uterus of the human subject.
' There are no regular emulgent arteries in birds; the kidneys deriving their blood from various sources, which will be pointed out as they occur.
- The inferior extremity is supplied with two arteries, which have a separate origin from the aorta. One corresponds to the femoral, and the other to the ischiadic artcry.
- The femoral artery, figs. $93,94,23$, is a small trunk, which takes its origin from the side of the aorta, opposite to the notch
in the boncs of the pelvis immediately under the last rib. This notch is formed into a round hole in the recent subject by a ligament which is extended from it to the rib; and it is through this hole that the femoral artery makes its exit from the pelvis; just licfore it passes out upon the thigh, it sends off a long branch, 25 , which runs backward the whole length of the margin of the pelris, dispensing arteries to the abdominal muscles on one side, and the obturator internus on the other. This branch also appears to supply one to the oviduct. The femoral artery, immediately after leaving the pelvis, separatcs into two branches; one goes mpward and outward, ramifying anongst the muscles in that situation; the other turus downward, and is distributed to the flexors of the limb and round the joint, and scnds an artery to the edge of the vastus internus, which can be traced as far as the knee. The kidneys appear to derive some irregular inconsiderable branches from the femoral artery while it is within the pelvis.
'The ischiadic artery, figs. 89, 93, 26, is the principal trunk of the lower extremities, exceeding very much in size the femoral. When it is produced by the aorta, it appears to be the continuation of that trunk; the remaining part of the aorta hecomes so much and so suddenly diminished, and secms, as it were, to proceed as a branch from the back part of the ressel.
'The ischiadic artery, while in the pelvis, is concealed by the kidneys, in which situation it gives a branch from its lower side, which divides into three others that are distributed to the substance of the kidneys; one of these on the left side is continued out of the kidney to be lost mon the oviduct. The artery leaves the pelvis by the ischiadic foramen in company with the great nerve; while within the foramen it gives a branch obliquely downward under the biceps to the muscles lying in the pelvis; and as it passes over the adductor it sends off another along the lower edge of that muscle, which is chiefly lost in the semi-mem. branosus. It then detaches several small branches to the muscles on the outer and fore part of the thigh, some of which anastomose round the joint with the branches of the femoral artery. Just as the ischiadic arrives in the ham, it furnishes a very large branch downward, which divides into two ; one goes under the gastrocnemius, to which and the deep-seated flexors its branches are distributed as far as the heel: the other is analogous to the peroneal artery; it goes to the outside of the leg, supplies the peroneal muscles posteriorly, and passes along the outer edge of the flcxors of the toes to the hecl, above which, and behind the flexor tendon, it divides, running on each side of the hecl, and
forming several articular arteries around the joint, and comnunieating with the other branch, and with the anterior tibial, and the metatarsal branch of the plantar artery.
' The articular arteries go off next from the artery in the ham; the two principal ones are deep-seated. One proceeds under the vastus internus to the external part of the joint; the other is large, and situated upon the inside. It forms two vessels: one is the true articular artery, and spreads upon the ligaments of the joint ; the other is distributed in the substanee of the flexor of the heel, which is placed upon the inside and fore part of the leg, and comes out upon the edge of this muscle to be lost in the integuments.
- The posterior tibial artery, fig. 94, 2s, is extremely small ; it only supplies muscular branches to the internal head of the gastroenemius, and some of the flexors of the toes; it is lost on the inside of the lieel in anastomoses with the peroneal artery, and other small superficial branches.
'The trunk of the artery of the leg now gets upon the posterior surface of the tibia, and sends off, through the deficiency left between the tibia and fibula at the superior part, a branch which is distributed to all the museles upon the fore part of the log . The artery then creeps along the back of the bones for some way, and passing between then above, where the fibula is anchylosed with the tibia, it reappears on the anterior part of the \log in the situation of the anterior tibial artery; at this place it detaches some very small brauches, which frequently divide and unite again, to produce a most singular reticulation or plexus of ressels, which closely adheres to the trunk of the artery, and is continued with it as far as the articulation of the cibia with the metatarsal bonc, where it disappears without seeming to answer any uscful design. This plexus resembles in appearance exactly the division of the arteries of the extremities, which has been deseribed by Mr. Carlisle in the tardigrade quadrupeds, but differs from it in this cireumstanee, that the trimk of the artery is prescrved behind it, without suffering any material diminution of its size.
' The anterior tibial artery furnishes no branch of any importance during the time it is proceeding along the fore part of the leg. It passes under the strong ligament which binds down the tendons of the anterior museles of the leg, and over the fore part of the joint on the inside of the tendon of the tibialis antiens, at which places it distributes some branehes which inomenlate with the other arteries romm the joint; it then pursues its comse in
the groove along the anterior surface of the metatarsal bonc, and covered by the tendon of the flexor digitorum. On coming near the foot it sends off an artery, which divides, behind the joint of the internal toc, into two branches; one goes between the internal and middle toes, ramifies upon both their joints, and unites with the artery in the sole of the foot; the other is distributed between the internal toe, and the pollex or toe which oecupies the place of the great toe; the main artery now passes to the sole of the foot through a hole in the metatarsal bone, left for the purpose, when the original parts of this bone were united by ossification. In this situation the artery might receive the name of the plantar. It has scarcely passed throngh the bone, when it divides into six branehes; three of these are distributed to the tendons and ligaments, \&e., on the outside of the foot and the back of the metatarsus, anastomosing with the descending branches of the peroneal artery; the fourth branch supplics the pollex, and also sends a branch from the metatarsus. The remaining branches are designed for the three principal toes; one dips in between the internal and middle toe, unites with the anterior branch of the metatarsal artery, and is distributed to the sides of these toes as far as their extremity. The other divides, between the external and middle toe, into two branches, which run upon the opposite side of each of these toes to the end.
' When the feet are webbed, the digital arteries send off numerous branches, which, ramifying in the membrane between the toes, establish a communication with cach other. The present description has been taken from birds which possess three prineipal toes, and the back toe or pollex; but no material differenee can be expected in those with a greater number of toes.
- After the trunk of the aorta has detached the ischiadie arteries, it is continued along the spine as the arteria sacra media, fig. 93, 29, sending off small branehes answering to lumbar arteries, one of whieh ascends upon the rectum, supplies the place of the inferior mesenteric, ib. 30, and unites with the superior mesenteric as already mentioned. The aorta separates above the coccygeal vertcbre into three branches; two of these (the hypogastric arteries, ib. 31, proceed laterally, and are distributed to the neighbouring parts, and to the kidneys and oviduct; the third branch (the coccygeal artery, ib. 32) descends to the very point of the tail, mpon the muscles and quills of whieh its branches are exhausted.
- The arterial system of Birds, besides the distinguishing characters above mentioned, differs from that of Mammals ehiefly
in the frequent anastomoses, which exist more especially amongst the arteries of the head and the viscera. Similar communications occur between the veins."

Besides the remarkable arterial plexuses mentioncd in the general description, as the orbital, the temporal, the spermatic plexuscs, \&c., that which Barkow ${ }^{2}$ has described under the name of the plexus of the organ of incubation (Brütorgane) deserves special notice. It is represented at 17,18 , fig. 93 , and is composed of branches coming from the posterior thoracic, abdominal, cutaneous, and ischiadic arteries, which ramify beneath the integument of the abdomen, and form, by their unions, a rich network of vessels which becomes truly extraordinary in the time of liatching. At this period many birds pluck off the feathers from the seat of incubation, probably thereto impelled by the great degrec of heat caused by the influx of blood into the incubating plexus.
§ 155. Veins of Birds.The renous blood is returned to the heart by means of threc trunks; two of thesc are precavals, fig. $90, a, b$, and one postcaval, ib. c. Each precaval, fig. $94, a$, is composed of the jugular and vertebral, and the reins of the wing.

' The vertebral cein is lodged in the same canal with the vertebral artery; it anastomoses between the vertebre with the veins of the myelonal membrancs. It also frecly communicates at the base of the cranium with the jugular vein, and receives blood from the muscles of the neck.
' The jugular vein, fig. $91, b$, is a single trunk in birds, and

[^71]${ }^{2}$ xLIV.
does not admit of the distinetion into external and internal; it proeeeds superfieially along the side of the neck in eompany with the par vagum. The vein of the right side exceeds the other in size; it is oiften twice as large. The jugular vein reeeives several lateral branches from the muscles and integuments of the neck, ib. d, the \propto sophagus, \&e. (the veins from the erop joining the jugular are shown at c): one of these near the head is much longer than the rest, ib. e; it lies deep anongst the muscles, and appears to communicate with the vertebral vein. There is a branch of the jugular which goes to the superior larynx amongst the muscles of the tongue and of the hyoid, and another for the muscles within the jaws and the integuments in the back of the mouth ; these might be called the lingual, thyroid, and submaxillary veins, ib. g, h, i.
'The jugular veins form a remarkable eommunieation with each other immediately below the cranium, by means of a eross branch, generally of an equal size with the trunks themselves. From each side of the arch thus formed there issues a large vessel, which is made up of the veins of the external part of the head; one of these passes round the tympanic, and apparently penetrates the joint of that bone with the lower jaw ; it appears in several branehes upon the side of the eheck, and contributes to form a plexus of veins below the posterior part of the orbit, ib. k, similar to the arterial plexus already described in that situation. The prineipal branch of the veins of the head passes obliquely round the pterygoid bone, and below the orlit divides into several large vessels, one of which belongs to the back part of the palate; another ascends on the orbit, and unites with the ophthalmic vein; and a third is distributed to the interior of the organ of smell, the palate, and the external parts of the upper and lower jaws. These branches produce plexuses along the base of the orbit and the external edge of the palate, which correspond to those of the arteries before described. ${ }^{\text {. }}$

The sinuses of the brain are irregular in form, and consist of flattened eanals. The principal ones, besides those upon the cerebellum, are the superior longitudiual, and one which runs along the lower edge of each homisphere of the cerebrum ; there appears to be also one upon the side of the cereleellum, corresponding to the lateral sinus. All these sinuses communicate with each other on the back of the cerebellum, and seem to discharge their contents principally into some veins which lie in the
myelonal sheath, and these appear to dispose of their blood gradually, as they descend in the neek, by means of lateral communication with the vertebral veins. The superior longitudinal sinus is continued at its anterior part under the frontal and nasal bones, and anastomoses with the ophthalmic and nasal veins. There are other small sinuses in the several diplicatures of the dura mater.

The veins of the wings, which are derived from the parts within the chest, the muscles about the scapula, and the pectoral minscles, accompany the arteries of the same parts so regularly that their course does not require description.

The axillary vein, fig. $94, l$, lies considerably lower in the axilla than the artery, but still continues to receive corresponding branches (m indicates the great pectoral vein). The trunk of the vein descends in the course of the humeral artery, but more superficially; in this situation it may be called the humeral vein, ib. n. Branches of this vein accompany the articular and profunda arteries, and at the middle of the humerus a large branch of the vein enters the bone; there arc also two very small branches which lie in close contact with the humeral artery, which they accompany nearly its whole length.

The principal vein of the wing divides into two, opposite to the joint of the humerus with the fore-arm. One of these branches, ib. o, belongs to the sides of the radius; it receives blood from the museles and skin on the upper part of the forearm, but its chief vessels lie between the integuments of the fold of the wing. The other branch of the humeral vein, ib. p, crosses the fore-arm, just below the articulation, in company witl the nerve, and rumning along the inferior edge of the ulna, receives a branch from between the basis of each quill, is continned along the ligament which sustains the rest of the quills to the extremity of the wing, receiving many veins of the joints from the opposite side of the fingers. Besides these large superficial veins of the fore-arm, there appears to be onc, and sometimes two, small aecompanying veins to the ulnar and interosseons arteries, ib, q.

The inferior vena cava, ib. k , before it enters the auricle, $\mathrm{A}, \mathrm{re-}$ ceives as usual the hepatie veins, ib. s; these are numerous, and open into the cava as it passes behind the liver, or more frequently within the substance of that viscus in the back part.

The trunk of the vena cava is very short in the abdomen; it scparates into two great branches analogous to the primary itiuc reims, ib. t, opposite to the adrenals; these turn to each side, and expericnce a very singular distribntion. On coming near the
edge of the pelvis, each of these two veins forms two branches; one of which collects the blood of the lower extremity, as hereafter deseribed; the other passes straight downward imbedded in the substance of the kidney, and admits the several emulgent veins, which are very large, and are seen to pass for some way obliquely in the kidney before their termination. Sometimes the emulyent veins are double, as in the figure, ib. u. The limbvein sends off a deseending braneh into the renal tissue which, when arrived at the lower end of the kidney, divides into three branehes; one receives the blood of the museles of the tail and parts adjacent; another aceompanies the ureter to the side of the rectum, and is distributed about the anus and parts of generation, answering to the hemorrhoidal veins; the third, ib. v, v, passes inward to the middle line between the kidneys, and there unites with the corresponding branch of the opposite side. These are the branches which liave been supposed to earry venous blood into the kidneys, for the purpose of supplying material for the urinary seeretion. The vessel which is in this manner produced, ib. z, reecives all the blood of the reetum from the anus to the origin of the eccea, anastomosing below with the branehes of the hemorrhoidal veins; and at the upper part of the rectum, it becomes continuous with the trunk of the veins of the small intestines, ib. x, forming the most remarkable anastomosis in the body, both on aceount of its eonsequenees and the size of the vessels by which it is effected. By means of this communieation, the blood of the viseera and the external parts of the body flows almost indifferently into the vena eava and vena portæ, w; for the anastomosing vessels are suffieiently large to admit the ready passage of a considerable column of blood in proportion to the whole mass which eirculates in the body of the bird; for instance, in the Goose the eommunieating veins of the pelvis are equal in size to a goose-quill, and in the Ostrich and Cassowary they are as thick as a finger. Besides their anastomoses the prineipal viseeral veins are remarkable for their large size in the Diving Birds.

- The anastomosis of the pelvie veins, in being the means of conveying eommon renous blood into the liver, goes to prove that the blood of the vena porta does not require any peculiar preparation by eirculation in the spleen or other viseera to fit it for the secretion of bile.
'The vena porta, ib. w, belongs almost exelusively to the right or principal lobe of the liver. It is formed by three branches. The splenic vein is the smallest, and is added
to the vena portæ, just as it penetrates the liver on the side of the hepatic duct. The ncxt is made of two branches; of which one returns the blood of the posterior gastric artery, and therefore may be called the posterior gastric vein; and the other is furnished by the pancreas and duodenum, and is the pancreatic vein. The third and largest branch of the vena portæ is the mesenteric vein, ib. x, which not only collects the blood from all the small intestines, but likewise receives the inferior mesenteric, ib. z, or vein of the rectun, which forms the communieation that has been described with the pelvic veins.
'The veins of the left lobe of the liver are furnished in the Goose by those whieh aceompany the anterior gastric artery, and some branches from the head of the duodenum.
' The anterior gastric veins produee two small trunks, which enter at the two extremities of the fissure, in the eoneave surfaee of the left lobe of the liver, as it lies upon the edge of the gizzard; the veins from the head of the duodenum furnish a small vessel which passes backward to penetrate the posterior part of the fissure in the left lobe.
' In the Cock the veins that the left lobe of the liver derives from the anterior gastric, are more numerous than in the Goose.
'The veins of the zone of gastrie glands, and of the lower portion of the cesophagus, do not eontribute to the sceretory vessels of the liver, but proeeed to the superior part of that viseus, to terminate in the vena cava, as does also the umbilical vein.
- The vein which returns the blood of the inferior extremities is divided in the pelvis into two branehes, which eorrespond with the femoral and iseliadic arteries; the one passes through the isehiadie foramen, and the other through the hole upon the anterior margin of the pelvis; but the proportion they bear to eaeh other in magnitude is the very reverse of what oeeurs in the arteries; for the anterior vein is the prineipal onc, whilst the other is not a very considerable vessel, and reeeives its supply of blood from the museles at the posterior part of the joint.
- The femoral vein, ib. a a immediately without the pelvis, gives branehes on both sides, which receive the blood of the extensor and adduetor museles at their superior part: the trunk passes obliquely under the aecessory inuscle of the flexor digitorum, and over the os femoris, where it lics superfieially; it then winds under the adduetor muscles, and gets into the ham, $b b$, where it reeeives many museular branehes, and comes into eompany with the artery and nerve. It here divides into the tibial, c c, and
peroneal veins. The first is joined by some branehes from the surfaee of the joint answering to the artieular arteries; it also reeeives the anterior tibial vein which aeeompanies the artery of the same name. The fibial vein proceeds down the leg along with the artery on the inside of the deep-seated flexors of the heel: it turns over the fore part of the articulation of the tibia with the metatarsal bone, in order to get upon the inner side of the metatarsus; above the origin of the pollex, it reeeives a eommunieaing braneh from the peroneal vein, and immediately after two branehes from the toes: one of them eomes from the inside of the internal toe; the other arises from the inside of the external and middle toes, unites at the root of the toes in the sole of the foot, and is joined by a braneh from the pollex, before its termination in the internal vein of the metatarsus.
'The peroneal vein derives its prineipal branehes along with those of the peroneal artery, frorn the museles on the outside of the leg. The trunk of the vein eomes out from the peroneal museles, and passes superfieially over the joint of the heel, and along the outside of the metatarsus; near the pollex, or great toe, it sends a braneh round the baek of the leg, to eommunicate with the tibial vein; after whieh it is continued upon the outside of the external toe to the extremity, reeeiving anastomosing branehes from the tibial vein.
'Where the veins run superfieially upon the upper and Iower extremities, they seem to supply the place of the branches of the cephalic, basilic, and the two saphence; but the analogy is lost upon the upper arm and thigh, these branehes forming deep-seated trunks; this eonstitutes the greatest peeuliarity, ${ }^{1}$ as eompared with Man and many Mammals, in the distribution of the veins in the extremities of Birds.'

CHAPTER XX.

RESPIRATORY SYSTEM OF BIRDS.

§ 156. Lungs of Birds. Notwithstanding the extent and activity of the respiratory function in Birds, the organs subservient thereto manifest more of the Reptilian than of the Mammalian type of formation.

The lungs are confined, as in the Tortoise, to the back part of the thoracic-abdominal cavity, being firmly attached to the ribs and their interspaces; and, as in the Serpent, they communicate with large membranous cells which extend into the abdomen and serve as reservoirs of air. In the Apteryx alone they do not penetrate the diaphragm.

In those aquatic Birds which are deprived of the power of flight, as the Penguin, the air-receptacles are confined to the abdomen ; but in the rest of the class they extend along the sides of the neck, and, escaping at the chcst and pelvis, accompany the muscles of the extremities. They also penetrate the medullary cavities and diploce of the bones, extending in different species through diffcrent proportions of the osseous system, until in Volitores, even in the Hornbill, every bonc of the skeleton is permoated by air. There is, indeed, no class of Animals so thoroughly penetrated by the medium in which they live and move as that of Birds.

The lungs are two in number, of a lengthened, flattencd, oval shape, fig. 95, extending along each side of the spine from the second dorsal vertebra to the kidneys, and laterally to the junction of the vertebral with the sternal ribs. They are not suspended freely, nor divided into lobes, as in Mammals;
 but are confined to the back part of the chest by ccllular VOL. II.
membrane, and the plcura is reflected over the stcrnal surface only, to which the strong aponeurosis of the diaphragmatic muscles is attached. They arc consequently smooth and even on that surface, but posteriorly are accurately moulded to the inequalities of the ribs and intercostal spaces: the bosses varying in number from four to seven (Apteryx) or cight (Emeu).

The lungs in general are of a bright red colour, and of a loose spongy texture. The bronchi, fig. $85, v$, fig. 95 , a, penetrate their mesial and auterior surfaces about one-fourth from the upper extremities, become membranous, dilate, give off branches, which diverge as they run along the anterior surface; and the trunk

A. Tolule of the lung of a bird represented in ideal longitudinal section. celxpili. divides into the two which open at b, b, into the thoracic-abdominal air-receptacles. These orifices are oblique, and are partially covered by a slight projeetion of membrane. Some cartilaginous traces are found through their entire extent.

The pulmonary artery divides, almost immediately after its origin, into two branches, one to each lung; the ramifications of each artery form plexuses, fig. 96, в, which chiefly compose the pulmonary tissuc: the pulmonary veins leave each lung by a single trunk, and the two trunks unite into one before terminating in the left auricle.
The superficial primary branches of the bronchi, fig. 95, c, c, send off deeper-seated secondary ones, fig. 96, a, α, which maintain a uniform diameter to their cæcal terminations : the tertiary bronchi, ib. b, b, distributed penniformly, also maintain a regular diametcr, and open upon a dense labyrinth of blood-vessels, ib. в. The mucous ciliated lining of the bronchi ceases with them; and the eapillaries of the pulmonary tissue are covered only by a hyaline epithelium, so as to appear naked. ${ }^{1}$ The ultimate pulmonary capillarics do not form a network lining definitely bounded air-cells, but each eapillary erosses

[^72]an air-space of its own; they interlace in every direction, forming a cubic mass of capillaries permeated everywhere by air. In fig. $97, a$ is the cavity of a bronchial tube, b its lining membrane supporting blood-vcssels with large areoke; c, c, perforations in the membrane at the orifices of the lobular passages, $d, d: e, e$, are interlobular spaces containing the terminal branches of the pulmonary ressels supplying the capillary plexus, f, f, to the meshes of which the air gets access by the lobular passages.
§ 157. Air-cells of Birds.The thoracic-abdominal cavity is subdivided and intersected by a number of membranes; the greater part of the cells thus formed are filled with air. The texture of their parietes possesses considerable firmness in the larger birds, as the Ostrich and Cassowary.

The innermost layer of the air-
 reccptacles can be ssparated from the outer layer, and is a continuation of the lining membranc of the bronchial tube; the outer layer is a serous membrane, and appears to form the cclls by a series of reflections of what may be regarded as the pleura or peritoncum.

These large membranous receptacles, into which the extremities of the bronchial bifurcation and also some of the preceding branches open, are disposed with sufficient general regularity to admit of a definite description and nomenclature.

The first or interclacicular air-cell, fig. 98, a, extends from the anterior part of each lung, forward to the interspace of the furculum, antcrior to which it dilates in the Gannet and many other birds into a large globular receptacle. In the Vultures it is divided into two lateral receptacles, between which the large crop is situated. A thin fan-shaped muscle is extended fiom the anterior edge of the furculum, over the interclavicular air-cell in these and some other birds.

The anterior thoracic cell, ib. b, contains the lower larynx and bronchi, and the great vessels with their primary branches to the head and wing.. It is traversed by numerous inembranous septa, which connect the different vessels together, and maintain them in their situations. The air passes into the posterior part of this
reeeptaele by two openings at the anterior part of the lungs. The deep-seated air-cells of the neek are eontinued from it anteriorly.

The lateral thoracic eells, ib. d, are continued on each side from a foramen on the inner edge of the lung, situated just opposite the base of the heart; they are eovered by the antcrior thoraeic air-eell, and from them the air passes into the axillary and subscapular cells, into those of the wing, and into the humcrus, ib. e. They also communicate with the cellula cordis posterior, ib. c, behind the heart and bronchi, which cell is often subdivided into several small ones.

The cellula hepaticce arc of much larger size; they arc two in number, of a pyramidal figure, with their bases applied to the lateral thoracie eells, and their apiees reaehing to the pelvis: they eover the lower portions of the lungs and the lobes of the liver ; they rceeive air from several foramina situated near and at the external edge of the lungs.

The cellule abdominales commenee beneath the eellulæ hepatiee at the inferior extremity of the lungs, where the longest branches of the bronehiæ open freely into them. (A bristle is passed through one of these openings in the figure.) They are distinguislied into right (h) and left (f) : the former is generally the largest receptaele in the body; it extends from the last ribs to the anus, and eovers the greater part of the small intestines, the suprarenal gland, and kidney of the same sidc. The left abdominal cell, f, eontains the intestines of its own sidc, and is attached to the gizzard. In some large Birds, as the Gannet, it is separated from the right receptaele by a mediastinal membrane, g, which is continued on from the gizzard to the anus.

Both the abdominal receptacles transmit air to the pelvic cells, i, k, of their respective sides, and to scveral small and extremely delicate cells between and behind the coils of intestine. One of these is continued round the fold of the duodenum and pancreas to the gizzard, and has been termed the duodenal cell.

From the inguinal cell are continued the intermuscular gluteal and femoral cells, which surround the head of the femur, and communicate with that bone by an aperture, l, situated immediately anterior to the great trochanter, except in those Birds in which the femur retains its medulla.

The cervical air-cclls are continued from the large clavicular cell, and form in the Argala and Bustard, fig. 54, a, a singular appendage or pouch, contained in a loose fold of integument, which the bird can inflate at pleasure.

In the Pelican and Gannet extensive air-cells are situated beneath almost the whole of the integument of the body, which is united to the subjacent muscles only here and there by the septa of the cells and the vessels and nerves which are supported by the septa in their passage to the skin. The large pectoral muscles and those of the thigh present a singular appearance, being, as it were, cleanly dissected on every side, having the air-carities above and beneath them. The axillary vessels and nerves are also seen passing bare and unsupported by any surrounding substance through these cavitics. Numerous strips of panniculus carnosus pass from various parts of the surface of the muscles to be firmly attached to the skin; a beautiful fan-shaped muscle is spread over the interclavicular or furcular air-cell. The use of these muscles appears to be to produce a rapid collapse of the superficial aircells, and an expulsion of the air, when the bird is about to descend, in order to increase its specific gravity, and enable it to dart with rapidity upon a living prey.

The air-receptacles of the thoracic-abdominal cavity present varieties in their relative sizes and modes of attachment in different birds. In the Raptores they are principally attached posteriorly to the ribs, the diaphragmatic aponcurosis covering the lungs, and to the kidneys; while in the Grallatores they have anterior attachments to the intestines in many places.

The singular extension of the respiratory into the osseous system was discovered almost simultaneously by Hunter and Camper, and ably investigated by them through the whole class of Birds. The air-cells and lungs can be inflated from the bones, and Hunter injected the medullary cavities of the hones from the trachea. If the femur into which the air is admitted be broken,
the bird is unable to raise itself in flight. If the trachea be tied, and an opening be made into the humerus, the bird will respire by that opening for a short period, and may be killed by inhaling noxious gases through it. If an air-bone of a living bird, similarly perforated, be held in water, bubbles will rise from it, and a motion of the contained air will be exhibited, synchronous with the motions of inspiration and expiration.

The proportion in which the skeleton is permeated by air varies in different Birds. In the Alca impennis, the Penguins (Aptenodytes) and the Apteryx, air is not admitted into any of the bones. The condition of the osseous system, therefore, which all birds present at the carly periods of existence, is here retained through life.

In the large Struthious Birds, which are remarkable for the rapidity of their course, the thigh-bones and bones of the pelvis, the vertebral column, ribs, sternum and scapular arch, the cranium and lower jaw, have all air admitted into their cavities or cancellous structure. In the Ostrich the humeri and other bones of the wings, the tibix and distal bones of the legs, retain their marrow. Most Birds of Flight have air admitted to the humerus: the Woodeock and Snipe are exceptions. The Pigeon tribe, with the exception of the Crown Pigeon, have no air in the femur, which retains its marrow. In the Owls also the femur is filled with marrow; but in the Diurnal Birds of Prey, as in almost all other Birds of Flight, the femur is filled with air. In the Pelican and Gannet the air enters all the bones with the exception of the phalanges of the toes. In the Hornbill even these are permeated by air.

Hunter has given the following characters as distinguishing the bones which receive air. They may be known-'first, by their less specific gravity; secondly, by their retaining little or no oit, and, consequently, being more easily cleaned, and when eleaned, appearing mueh whiter than common bones: thirdly, by having no marrow, or even any bloody pulpy substance in their cells; fourtlly, by not being in general so hard and firm as other bones; and, fitthly, by the passage that allows the air to enter the bones.' ${ }^{1}$ The openings by which the air penetrates the bones, may be readily distinguished in the recent bone, sinee they are not filled up by blood-vessels or nerves, but have their external edges rounded off.

In the dorsal vertebre the air-orifices are small, numerous, and irregular ; situated along the sides of the bodies, and the roots of
the spinous processes, the air passes into them direetly from the lungs. In the two or three lower cervieal vertebræ the air-holes are in the same situation, but reeeive the air from the lower cervieal or elavicular air-cells: in the remainder of these vertebre the air-holes are situated within the eanal lodging the vertebral artery, and communieate with the lateral air-cells of the neek.

The air-holes of the vertebral ribs are situated at the internal surface of their vertebral extremities, and appear, like those of the eontiguous vertebræ, to have an immediate communieation with the lungs. The sternal ribs have also internal cavities whieh reeeive air from the lateral thoracie cells by means of orifices placed at their sternal extremities.

The orifices by which air is admitted to the sternum are numerous, but are principally situated along the mesial line of the internal surface, opposite the origin of the keel, forming a reticulation at that part; the largest foramen is near the anterior part of the bone ; some smaller ones oeeur at the costal margins. All these orifiees communicate with the thoracie air-receptacles.

The seapula is perforated by several holes at the articular extremity, which admit air into its eancellous structure from the axillary eell. The eoraeoid has small air-holes at both extremities; the largest is situated on its inner surface, where it is conneeted with the elaviele or furculum. The fureulum reeeives air prineipally by a small hole in the inner side of eaeh of its seapular extremities, whieh communicates with the elavieular air-cell.

The air-hole of the humerus is of large size, and situated at the anconal or back part below the head of the bone, in the hollow of the ulnar or inner tuberosity. It eommunieates with the axillary air-cell, and transmits the air to the eavity of the bone by several eribriform foramina.

The air-holes of the pelvic bones are situated irregularly on the inner surface upon which the kidneys rest, and must therefore reeeive air from continuations of the abdominal reeeptaeles around the kidneys.

A depression at the anterior part of the base of the great troelauter receives air from the gluteal eell, and transmits it by several small foramina into the interior of the femur. In the Ostrich, the air-holes are situated at the posterior part of the bone at both its extremities.

The eavities of the long bones into which air is thus admitted are proportionally larger than in the eorresponding bones of Mammalia, and are charaeterised by small transverse osseous columns which eross in different directions from side to side, and are more
numerous near the extremities of the bone; they abut against and strengthen, like eross-bcams, the parietes of the bone. The membrane lining these cavities, is not very vascular.

The lower jaw receives its air by an orifice situated upon each ramus behind the tympanic articulation, from an air-ecll which surrounds the joint. The bones of the cranium and upper jaw receive air admitted to the tympanic cavity by the Eustachian tube, not from the nasal passages. With these, howevcr, the subocular air-cell communicates; and in the Coot, Water-hen, Goose, and other water-birds, entozoa (Monostoma mutalile, e. g.) gain access to that air-cell.

The extension from the lungs of continuous air-reeeptacles throughout the body is subservient to the function of respiration, not only by a change in the blood of the pulmonary circulation cffected by the air of the reeeptacles on its repassage through the bronchial tubes; but also, and more cspecially, by the change which the blood undergoes in the eapillaries of the systemic circulation, which are in contact with the air-receptacles. The free outlet to the air by the bronchial tubes does not, therefore, afford an argument against the use of the air-cells as subsidiary respiratory organs, but rather supports that opinion, since the inlet of atmospheric oxygenated air to be diffused over the body must be equally free.

A second use may be ascribed to the air-cells as aiding mechanically the actions of respiration in Birds. During the act of inspiration the sternum is depressed, the angle between the vertebral and sternal ribs madc less acute, and the thoracic cavity proportionally cnlarged; the air then rushes into the lungs and into the thoracic receptacles, whilc those of the abdomen bccome flaccid: when the sternum is raised or approximated towards the spinc, part of the air is expelled from the lungs and thoracie eclls by the trachca, and part driven iuto the abdominal receptacles, which are thus altcrnately cnlarged and diminished with those of the thorax. Hence the lungs, notwithstanding their fixed condition, are subject to due compression through the medium of the contiguous air-receptacles, and are affected equally and regularly by every motion of the sternum and ribs.

A third use, and perhaps the one which is most elosely related to the peculiar exigencies of the bird, is that of rendering the whole body speceifically lighter; this must neecssarily follow from the desiecation of the marrow and other fluids in those spaces which are occupied by the air-cells, and by the rarefaction of the contained air from the heat of the body.

Sgreeably to this riew of the function of the air-cells, it is found that the quantity of air admitted into the system is in proportion to the rapidity and continuance of the bird's flight; and, where it is limited, the air is distributed to those members which are most employed in locomotion; thus the air is admitted into the wing-bones of the Owl , but not into the femur ; while in the Ostrich the air penetrates the femur, but not the humerus or other bones of the wing.

A fourth use of the air-receptacles relates to the mechanical assistance which they afford to the muscles of the wings. This was suggested by observing that an inflation of the air-cells in a Gigantic Crane (Cicomia Argala) was followed by an extension of the wings, as the air found its way along the brachial and antibrachial cells. In large birds, therefore, which, like the Argala, hover with a sailing motion for a long-continued period in the upper regions of the air, the muscular exertion of keeping the wings outstretched will be lessened by the tendency of the distended air-cells to maintain that condition. It is not meant to advance this as other than a secondary and probably partial service of the air-cells. In the same light may be regarded the use assigned to them by Hunter, of contributing to sustain the song of Birds, and to impart to it tone and strength. It is no argument against this function that the air-cells exist in birds which are not provided with the mechanism necessary to produce tuneful notes; since it was not pretended that this was the exclusive and only office of the air-cells.
§ 158. Air-passages in Birds.- The air-passages in Birds commence by a simple superior larynx, from which a long trackea extends to the anterior aperture of the thorax, where it divides into the two bronchi, one to each lung. At the place of its division there exists, in most birds, a complicated mechanism of bones and cartilages moved by appropriate muscles, and constituting the true organ of voice: this part is termed the inferior larynx.

The tendency to ossification, which is excmplified in the bony condition of the sternal ribs and tendons of the museles, is again manifested in the framework of the larymx and the rings of the trachea, which, instead of being cartilaginous, as in Reptiles and Mammals, are in most birds of a bony texture.

The superior larym.x, figs. $73, c-h, 99$, and 100 , is situated behind the root of the tongue, and rests upon the urohyal, fig. 73, 43, to which it is attached by dense cellular texture.

It is composed of several bony and cartilaginous picces, varying in number from four to ten. The largest of these picces constitutes
the anterior part of the larynx. It is of an oval or triangular form, according as its superior termination is more or less pointed, and answers to the thyroid cartilage, fig. 73, f. The cricoid cartilage is represented by three osseous pieces, which are situated at the posterior and inferior part of the upper larynx; the middle one, fig. 73, g, is of an oblong form, and varies in size, being larger than the lateral ones in the Anatida, but smaller in the Cantores. The lateral pieces are connected at one extremity with the thyroid piece, and at the other to the middle oblong piece above described, which completes the circle of the laryngeal framework posteriorly: the first two incomplete tracheal rings, ib. g, g, may represent the anterior part of the cricoid. The arytenoid bones, ib. h, rest upon the middle oblong portion of the cricoid, and extend forward, being connected at their outer edge by means of elastic cellular substance to the thyroid, and attached by their anterior cxtremities

to the urohyal by means of two small ligaments: they form, by their inner margins, the rima glottidis or laryngeal fissure.

This fissure, fig. 51, i, being thus bounded by inflexible rigid substances, is only susecptible of having its lateral diameter varied according to the degrces of separation or approximation to which the arytenoid bones are subject. These different states are produced by appropriate muscles, one pair of which may be regarded as Thyreo-arytenoidei, and the other may be termed Constrictores glotticlis. The former, fig. $99, k, k$, arisc from the sides and posterior surface of the thyroid, and are inserted into the whole lengtl of the inner edge of the arytenoids, which they draw ontward, and consequently open the laryngeal fissure. The Constrictores glottidis in the Gigantic Crane arise from the middle of the internal or postcrior surface of the thyroid, and are inserted into the arytenoids: they close the laryngeal opening with such accuracy as to supersede the necessity of an epiglottis. From the simplicity of the structure
just described, from the situation of the superior laryux with relation to the rictus or gape of the bill, and from the absence of lips by which this might be partially or entirely closed, it is plain that it cannot be considered as influencing the voice, otherwise than by dividing or articulating the notes after they are formed by the lower larynx. The superior larynx presents, indeed, but few varieties in the different species of Birds; and these relate chiefly to certain tubercles in its anterior, which vary in number, and do not exist at all in some species, as the Singing Birds; being chiefly present in those birds whieh have a rough unmusieal voice. In the Pelican, the Gigantic Crane, and most of the Rasores, a process extends backward into the cavity of the upper larynx from the middle of the posterior surface of the thyroid cartilage, and seems destined to give additional protection to the air-passage.

The trachea, figs, 93, 94, G, is proportionally longer, in consequenee of the length of the neek in Birds, than in any other elass of animals, its length being further inereased in many species by eonvolutions varying in extent and complexity. A species of Sloth (Bradypus tridactylus) among Mammals, and a species of Crocodile (Crocoditus acutus) among Reptiles, present an analogous folding of the trachea.

The traehea is composed in Birds of a series of bony, and sometimes, as in the Ostrich, of cartilaginous rings, ineluded between two membranes. In those eases in which they are of a bony structure, the ossification is observed to eommence at the anterior part of each ring, and gradually to extend on both sides to the opposite part.

The tracheal rings, whether bony or cartilaginous, are, with the exeeption of the two uppermost, always complete, and not, as in most quadrupeds, where the windpipe bears a different relation to the organ of voice, deficient posteriorly. They differ in shape, being sonetimes more or less compressed. They are generally of uniform breadth, but in some species are alternately narrower at eertain parts of their cireumference and broader at others, and in these eases the rings are generally elosely approximated together, and, as it were, locked into one another. This structure is most eommon in the Crallatores, where the rings are broadest alternately on the right and left sides.

With respeet to the diameter of the tracheal rings, this may sometimes be prette uniform throughout, and the trachea will consequently be eylindrical, as in the Cantores, the Grallutores which have a slurill roiee, the females of the Natatores, and most Ruptores and Rusores: or the rings may gradually decrease in diancter,
forming a conical trachea, as in the Turkey, the IIeron, the Buzzard, the Eagle, the Cormorant, and the Gannet; or they may become wider by degrees to the middle of the traehea, and afterward contract again to the inferior larynx; or lastly, they may experience sudden dilatations for a short extent of the trachea; the Golden-eye (Anas clangula), the Velvet-duek (Anas fusca), and the Merganser (Mergus serrator), present a single enlargement of this kind, in which the bony rings are entire, and of the same texture as in the rest of the tube. In the Golden-eye the trachea is four times larger at the dilatation than at any other part. In the Goosander (Mergus merganser), the trachea presents two sudden dilatations of a similar structure to that above deseribed. The trachea of the Eimcu (Dromaius ater) is also remarkable for a sudden dilatation, but in this instance the eartilaginous rings do not preserve their integrity at the dilated part, but are wanting posteriorly, where the tube is completed by the expanded membranes only.

With regard to the windings of the windpipe, in an Australian Snipe (Rhynchrea australis), the convolutions, which are short, are external to the ehest, between the skin and the fore part of the pectoral museles. In the same position lie the long double coils of the windpipe in the Scmipalmate Goose (Anas semipalmata), and the long single fold in Ortalida Parraqua. In the Crested Pintado (Numida cristata), the apex of the furculum forms a bony cup whieh receives a loop of the trachea. In the erestless Guan (Penelope Mirait), the Demoiselle (Grus virgo), and Stanley Crane (Grus Stanleyanus), the trachea forms a curve sinking into the upper and fore part of the sternum. In the common Crane (Grus cinerea), and Serass Crane (Grus Antigone), the keel of the sternum is more deeply hollowed for the lodgment of more extensive coils of the trachea. In the male wild Swan (Cygnus ferus), the windpipe describes a double vertical coil within the long and deep keel of the sternum : in Bewiek's Swan (Cygmus Bewickiz), the distal part of the coil lies horizontally within the body of the sternum : the entry and exit of the intrasternal coils are shown in fig. 101.
§ 159. Lower Larynx in Birds.-The main or essential organ of voice is situated at the lifureation of the trachea, ib. a, into the bronehi, $\mathrm{ib} . b, b$; and herein may be diseerned an analogous relation to convenient stowage, which the position of the masticatory apparatus shows: for even the museles of the organs of voice and the bony drum of the larynx, \&e., are brought beneath the eentre of gravity, at the base of the neek, not acenmulated at its anterior extremity. In general the rings of the
bronchi are incomplete. In the King-Vulture the entire rings are continued a little way along the bronchial divisions of the trachea, without any modifications, external or internal, indicative of a laryngeal structurc. The same may be seen in the Ostrich, where the bronchi are provided with entire slender rings rapidly diminishing in size as they approach the lungs: but the terminal rings of the trachea are thickencd and protrude outward, forming a cavity on each side, the lining substance of which projects into the area of the tube above the commencement of cach bronchus. ${ }^{1}$

In most Birds the bronchi, figs. $85, v, 101, b$, are straight, compressed, and easily lacerable tubcs, strengthened by half-rings on the outer side, the inner side being formed by a membrane (' membrana tympani-

Tracheal coils and lower larynx, Bewick's Swan, xtviI', formis'). Usually the bronchi rapidly contract as they approach the lungs.

The muscles of the trachea are the 'sterno-tracheales,' fig. 104, d, a long pair, arising from the costal processes of the sternum and converging to ascend along the sides of the windpipe. To these are sometimes added a second pair from the furculum, called 'cleido-trachcales.' In Cursores and most Rasores the sternotracheales alone are present. In most Raptores and Grallatores, a muscle, broneho-trachealis, situated on cach side of the lower part of the trachea, descends to be inserted into the first or second bronchial half-ring : in Alcedo and Comrimulgus it descends to the third half-ring ; in some of the Owls its insertion is still lower, and the degrec of tension of the tympaniform membrane will be proportionally varicd. In Colopterus cristatus an azygos muscle occupies the anterior interspacc of the broncho-tracheales. ${ }^{2}$

In other Vocal Birds there is a double glottis, usually produced by a bony bar, 'pessulus,' 'os transversale,' fig. 102, i, which traverses the lower end of the traehea from before backward: it supports a thin membrane which ascends into the tracheal area and, terminating there by a free concave margin, is called the ' membrana semilunaris,' ib. h. This is most developed in Singing

[^73]Birds, and, being vibratile, forms an important part of their trilling vocal apparatus. The air passes on each side the membrana semilunaris and its sustaining bone to and from the bronehi and lungs. The walls of the lower larymx are formed beginning of the brong and half-rings of the end of the trach.
 The last ring of the trachea, fig. 103, t, usually expands as it descends, with its fore and hind parts produced, and the lower lateral borders concave: the extremities of the pessulus, fig. 102, i, abut against the produced angles, and expand to be there connected, also, with the fore and hind terminations of the first half-ring of the bronchus, fig. 103, a, strengthening and clamping together the upper parts of the rocal framework. The seeond bronchial half-ring, ib. b, is flattened and curved with the convexity outward, like the first, but is more moreablc. The third half-ring, ib. c, is less curved and further separated from the sccond, to the extremities of whieh its own arc connected by ligament, and, for the intervening extent, by membrane; its inner surface supports the fibrous chord or fold which forms the outer lip of the glottis of that side ; it is susceptible of a rotatory movement on its axis, and is an important agent in the modulation of
 the voice. All the above parts, t, a, b, c, fig. 103, are bony. Thic bronehial halfrings and their connecting ligaments and membranes form the outer convex wall of the tube: the inner wall is a flat membrane, stretched like a drum-head, between the extremities of the half-rings, and attached above to the cross-bar, and through it to the semilunar membrane. The outer part of the lower trachcal and bronchial ringw, being cut away in fig. 102, exposcs the central surface of the 'membrana tympaniformis,' g, with its upper connexions with the cross-bone i, and the 'membrana semilunaris,' h. Part of the peripheral surface of the tympaniform membranc is secn in the front view of the lower larynx and bronchi, fig. 104, a, g. A small appendage to the inner margin of the half-ring, fig.

103, b, making a prominence where the external vocal fold is continued over it, in the starling, thrush, nightingale, \&c., has been called 'arytenoid eartilage,' from its analogy to that of the upper larynx of Mammals. The proper muscles of the lower larynx, as seen in the Raven, are shown in fig. 104, in front view A, and side view B.

The muscle answering to the 'tracheo-lateralis' in $V o$ litores expands toward the lower end of the trachea and divides into two fasciculi which diverge, the one, f, to the fore, the other, a, to the back part of the bronchus, to be inscrted into the corresponding extremities of the third half-ring, fig. 104, c. The fasciculus, fig. 104, s, f, is the 'broncho-trachealis anti-

A front, B side, view of lower larsnx, Raven. $x x x$. cus :' the fasciculus, α, is the broncho-trachealis posticus. Bencath this is a shorter muscle, ib. b, the broncho-trachealis brevis, whicli is inserted into the posterior end of the second bronchial halfring.

The remaining two muscles are enlarged divisions or differentiated fasciculi of the common laryngeal muscle (Kehlkopfmuskel, Müller ${ }^{1}$) of I'olitores: the 'bronchialis posticus,' ib. c, arising from the lower and lateral border of the last tracheal ring, swells; into a 'venter,' and contracts as it passes backward to be inserted into the hinder end of the second half-ring. The 'bronchialis anticus,' ib. e, is partly covered by the 'broncho-trachealis anticus,' and is thick and ventricose: it arises from the last tracheal ring. and passes forward to its insertion into the fore ends of the first and seeond half-rings and into the supplemental (arytenoid) cartilage.

All the foregoing muscles tend to tighten the whole or parts of the tympaniform membrane which is below their points of insertion, and to relax the part above the insertion. They lengtlen the part of the bronchus below or beyond their insertion and shorten the part above, by approximating to the trachea the halfrings they are attached to. The chief antagonistic power is the

[^74]elasticity of the membranes so put on the stretch: but there is a direct 'relaxor' of the tympaniform membrane in the 'sternotrachealis,' ib. d, which, passing from the side of the trachea to the sternum, shortens the whole bronchus as it draws down the windpipe. This is the most constant of all the muscles affecting the lower larynx. It is reckoned by Savart as the sixth pair of vocal muscles, but not by Cuvier, since it is not directly attached to any part of the lower larynx, and exists in Birds, as, e. g., the Vulture and Ostrich, in which that larynx is not developed.

The manifold ways and degrees in wlich the several parts of the complex vocal organ in Cantores may be affected, cach of the principal bony half-rings, as one or other end may be pulled, being made to perform a slight rotatory motion, are incalculable: but their effects are delightfully appreciable by the rapt listener to the singularly varied kind and quality of notes trilled forth in the stilhess of gloom by the Nightingale.

In many of the Volitores there is a single pair of 'bronchotracheales,' and a single pair of short ventricose ' bronchiales.' In Thamnophilus each sterno-trachealis bifurcates to send a small strip to the lower larynx, and the rest to the side of the trachea, as usual. In Furnaria the sterno-trachealis is inserted into the upper end of a long appendage to the upper bronchial half-ring.

The Parrot tribe have a single glottis bounded by a lateral pair of vibratile membranes; each membrane, connecting together, and occupying the interspace between, the last tracheal and first bronchial half-rings. These

Lower larynx Parrot. XXX: have each one margin concave, with the concavity turned towards each other, and are moveably joined together at their fore and hind extremities. These lalf-rings expand, and stand out from the end of the trachea. A narrow muscle, ' tensor longus glottidis, fig. 105, a, passes from the side of the trachea to the upper (tracheal) half-ring ; and, by raising it, makes tense the elliptical elastic membrane: a broader 'tensor brevis glottidis,' ib. b, passes from the lower rings of the trachea to the same lalf-ring, diverging to its extremities: a third narrow muscle passes from the tracheal to the bronchial half-rings, ib. c, and, by approximating them, relaxes the membrane occupying the elliptical interspace. These membranes, projecting on each side into or below the tcrmination of the air-tube, leave a narrow chink between them, through which the air passes to and from the lungs; and when, in forcible expiration, the membranes are put into a sufficient
state of tension, they vibrate, and the vocal air is driven along the trachea through the upper larynx, where some modification of sound may be made. The tonguc of the Parrot is more fleshy

than in most Birds. These structures, concomitant with the single glottis and pair of vocal folds in the lower or true larynx, relate to the faculty, so remarkable in these singular birds, of imitating human speech.

In the males of the Mergansers and of most Ducks a certain number of the terminal rings of the trachea are welded together and expanded into an irregular bony case, divided into two unequal cavitics. In the Mergus serrator, fig. 106, the broad 'pessulus,' i, leares a passage at its upper part, b, by which the air from the right bronchus, f, can pass to and from the trachea, e : part of the outcr wall of the right laryngeal chamber is formed by membrane, h : this clamber is extended by the osscons cavity, g. A similar but somewhat
 more complex lower laryux exists in the male Anas clengulu. These modifications relate to the power rather than to the variety of the voice.

CHAPTER XXI.

URINARY SYSTEM OF BIRDS.

§ 160. Kidneys of Birds.-The urinary excretion is early provided for in the bird: about the third day of incubation a series of short parallel croal tubes, fig. 108, c, are developed in the blastema beneath the vertebral column, and pass transversely to a longitudinal canal, ib. d, which conveys the excretion to the cloaca. These are the primordial or transitory kidneys. Behind them subsequently appear the secondary or persistent kidneys, ib . a, together with the genital glands, ib. e, and adrenals, ib. f. The

Kidneys, Wolfflan bodies, and testes of an embryo Bird, magnified, LXXIV. proper ducts of the kidneys, or ureters, ib. b, soon follow the appearance of the true renal tissue, and as this proceeds in its developement, the primordial glands disappear, or yield up their duct and a remnant of their tissuc to form the epididymis and vas deferens in the male.

In the mature bird the urinary system consists of the kidncys, ureters, and a more or less incomplete urinary reccptacle.

As in Reptiles the kidney is distinguished from that of the Mammal by the homogeneity of its substance, which is not divided into a cortical and medullary part, and by the tubuli uriniferi extending to the surface of the gland there to form by reiterated unions the ureter, and not terminating in a cavity or pelvis in the interior of the kidney, from which the uretcr commences.

The kidneys, fig. $85, x$, are two in number, of an elongated form, commencing immediately bclow the lungs, and extending along the sides of the spine as far as the termination of the rectum; in which course they are impacted in, and as it were moulded to, the carities and depressions of the pelvis. From this fixed condition it results that they are generally symmetrical in position, not placed one higher than the other, as in the Mammalia. The posterior surface of the kidney presents inequalities corresponding
to the risings and depressions of the pelvis; the anterior surface is smoothly convex or flattened; but rising into a series of prominences which correspond, not to the eminences, but to the eavities of the bones on which they rest; their inner or mesial side is generally pretty regular and straight, but the external edge is more or less notched. They are relatively larger than in most Manmals; resembling in this respect the kiducys of Whales and of the cold-blooded Ovipara, where there is no perspiration from the skin.

The kidneys vary in size in different birds, being, for example, smaller in most of the Grallatores, as the Bustard and Heron, where the pelvis is short, than in the Rasorial Order, in whieh it is of great extent. Where they are short they are in general more prominent, and this is so remarkable in some Birds, as the Owls , that in them they resemble somewhat in their superficial position the kidneys of Mammals.

As might be expected from their relations to the pelvis, the kidneys in Birds present as many varieties of outward eonfiguration as there are differenees in the part of the skeleton to which they are moulded. In some Aquatie Birds, as the Grebe (Podieeps) and the Coot (Fulica), the kidneys are more or less blended together at their lower extremities, as in most Fishes: in Colymbus the extent of the union is greater; in Platalea they have been observed to be joinced by a middle band. In the rest of the class they are distinct from one another.

The prineipal lobes are in general three in number: the anterior or highest one is, in some cases, the largest; while in others, as the Peliean, the contrary obtains, the lowest division being most developed in this bird. In the Tern eaeh kidney is divided by fissures into seven or eight square-shaped lobes: in the Eagle they each present four divisions; but in these cases there are not distinet ureters to eaeh lobe as in the subdivided kidneys of Mammals. In the Emeu (Dromaius ater) the kidncy presents only two lobes; the superior or anterior one is the broadest and most prominent, being of a rounded figure, and constituting one-third of the whole; the lower division is flattened, and gradually tapers to a point. In one specimen I found the left kidney half an ineh longer than the right. In the small Cantores the exposed superficies of the kidney is rarely lobular.

Each kidney is invested by its proper capsule, a thin membrane, which also extends into the substance of the gland, between its divisions: a layer of peritoneum is reflected over their anterior surfaces.

The texture of the kidncys is much more frail than in Mammalia, readily yielding under the pressure of the finger, to which they give a granular sensation as their substance is torn asunder.

In colour they rescmble the human spleen. Besides being divided into lobes, the surface of the kidneys may be observed to be composed of innumerable small lobules, separated by continuous gyrations like the convolutions of the cerebral substance.

The tubuli uriniferi originate from cycry part of the internal substance of the lobules, cxtending to the gyrations, uniting in the pinnatifid form, and coursing to the margins of the lobules, all the inflcxions of which they follow. The pinnatifid ramification of the uriniferons tubules is sometimes 'oppositc,' sometimes 'alternate,' sometimes the branches are simple, sometimes dichotomously divided; but these ramuli appear scarcely smaller than the brauches from which they spring, and never intercommunicate. ${ }^{1}$ The uriniferous ducts front the convoluted lobules unite dichotomously, and ultimately escape by a single duct-the ureter.

The arteries and veins of the kidneys have already been described. Where the entire stream of the venous blood is not sent to the lungs, but part is diverted to the arterial system, then also a portion of the venous blood circulates through the kidneys beforc it reaches the licart; but in Birds, where not only the whole venous current is sent to the lungs, but with pecnliar energy and frequency, such vicarious office of removing effete particles directly from the venous blood is not required. A certain retention of the oviparous type in the apparent entry of veins into the lower ends of the kiducys is shown, but a reniportal vein does not cxist: the connection of the lower veins coming from the kidneys with the iliaco-mesenteric is of such a kiud that the renal venous blood may flow to the portal system of the liver when that system and digestion are at work; or it may flow by the upper emulgent veins to the inferior cava and so to the lungs, when respiration is unusually active.

The ureter, figs. $85, y, 108, b$, is continued down along the anterior surface of the kidney toward the mesial side; here and there imbedded in its substance, forming a series of dilatations corresponding to the principal lobes or enlargements of the glaud, and receiving the branches of the tubuli uriniferi as it passes along. Below the kidney the urcters pass behind the rectum, becoming connected to, and after a short distance involyed in, its coats; they ultimately terminate upon valvular eminences in a depression at the lower part of the urinary sac, ib. d; the terminal papillæ of the ureters are situated with the orifices of the genital

[^75]ducts, in the same segment of the cloaca, which is therefore termed the urogenital eavity, fig. 109, e.

The space intervening between the urogenital eavity and the valvular termination of the rectum, ib. c, forms a cavity more or less developed in different Birds, but always distinct in the smoothness of its lining membrane from the rectum, which has a more vascular and villous internal tunie. The Birds in whieh this rudimental urinary bladder presents the largest eapacity are the Owls, many of the Aquatie Birds, as the Pcliean, Willock, Grebe, Swan, \&e.; some of the Wading Order, as the Bittern and Bustard, but more especially the Ostrich, among the Cursores, in which the urinary receptacle is represented as laid open at d, fig.
 109.
§ 161. Adrenals of Birds.-The adrenals, d, d, figs. 117, 127, are small bodies, usually of a bright yellow colour, situated on the mesial or inner side of the superior extremities of the kidneys; elosely attached to the coats of the contiguous large reins and in contact with the testes in the male; and the left one adhering to the ovary in the female. They vary in shape, being sometimes of a round, flattened, oval, or irregularly triangular figure. They are proportionally smaller than in Mammals, being in the Goose each about the size of a pea. They are sometimes confluent.

They present, like the kidneys, a homogeneous texture throughout, and do not exhibit the alternate strata of different-coloured substances as in Mammalia. In the Gigantic Crane we found the texture of the suprarenal glands to be coarsely fibrous; in the IIornbill they were granular, similar to the kidncy; in the Pelican they were of a granular but more pulpy texture.

There is no carity in the suprarenal glands. The veins which return the blood from them are of proportionally large size, as in all the parenchymatous bodies without excretory ducts. The suprarenal glands have been found to present a slight enlargement corresponding with the increased developement of the sexual organs. Their relative size and position to the testes in the male embryo are shown at f, fig. 108.
§ 162. Spleen of Birds.-The spleen, figs. 85, 87, s, s, is comparatively of small size in Birds; it is generally of a round or oval figure, but sometimes presents an elongated and vermiform shape, as in the Sea-Gull, or is broad and flat as in the Cormorant. It is situated beneath the liver, on the right side of the proventriculus. It is, however, somewhat loosely connected to the surrounding parts, so that its position has been differently described by different authors. A process of the pancreas commonly passes into close contact, and is connected with the spleen by a continuation of vessels, as in the Hornbill, fig. 87, q, s. The texture of the spleen is closer in Birds than in Mammals; but a minute examination proves that the blood of the splenic artery is ultimately deposited in cells, from which the splenic veins arise. These veins in the Swan and some other Lamellirostres form a network on the exterior surface of the spleen, as in the Chelonian Reptiles.

In many Birds, as e.g. Vultures, Falcons, the Starling, Magpie, Heron, Bustard, and in most Aquatic Birds, two small bodies are found, one on each side of the trachca, very ncar the lower larynx and frequently attached to the jugular veins. They may be homologues of the 'thyroid gland.' In addition to these there are two similar bodics, in the Gannet, attached to the upper part of the commencement of each bronchus.
§ 163. Peculiar Secretions.-The unctuous fluid with which Birds lubricate their feathers is secreted by a gland situated above the coccyx or uropygium. This gland consists of two lateral moieties conjoined. As might be expected, it is largest in the birds which frequent the water. In the Swan it is an inch and a half in longth, and has a central cavity, which serves as a receptacle for the accumulated secretion. Each lateral portion is of a pyriform shapc, and they are conjoincd at the apices, which are directed backward, and are perforated by numerous orifices, encircled in some birds by a crown of feathers. The longitudinal central cavities present numerous angular openings, in which there are still smaller orifices of the secerning follicles. These consist of close-set almost parallel straight tubules, extending to the superficies of the gland, without ramifying or intercommunicating, and preserving an cquable diamcter to their blind extremitics. The tubules are longest at the thickest part of the gland, and bccome shorter and shorter towards the apex.

The follicles to which is due the peculiar odour of certain birds, as e.g. the Hoopoe, Muscovy Duck, Black Vulture, \&c., are probably somewhat diffused on parts of the integument.

CIIAPTER XXII.

TEGUMENTARY SYSTEM OF BIRDS.

§ 164. Composition of the Tegument.-This is eomposed, as in Manmalia and Reptilia, of the eorium or derm, the epiderm and its appendages, and an intermediate layer of unhardened epiderm with colouring matter, ealled 'rete mucosum.'

The corium, or true skin, is very thin and lacerable, but vaseular. In some Birds it adheres to the subeutancous museles by eellular tissue, whieh is frequently the seat of accumulation of dense yellow fat. In the Penguin the layer of subeutaneous cellular tissue adheres to the corium, but is separated from the museles, and has a smooth internal surfaee: long vessels, like threads, eonneet this layer to the museles. The skin is moved by museles whieh at the same time raise and ruffle the plumage whieh it supports. In most Birds the skin is more or less separated from the muscles of the trunk by the interposed air-eells; as in the Batraelians it is by the lymph receptaeles. It adheres, however, to a larger proportion of the osseous system than in other elasses; as, c. g., to the upper and lower jaws, the feet and part of the tibix, the pinion bones. The corium has extensions beyond the covering of the body, to form the webs for swimming and the broader folds at the axillæ and bend of the arm for flight: it developes the papilla beneath the toes, the vaseular eomb aud wattles of the Coek, the earuncle and pendent ornaments of the Turkey, \&e.

The rete mucosum rarely eontains any colouring matter where the feathers grow ; at this part the skin is of a pale greyish colour, or pink, from the colour of the blood whieh eirculates in it. But in the naked parts of the integument, as the eire, the lore, the eomb, the wattles, the naked parts of the head and neek in some Birds, and the tarsi and toes, the rete mueosum frequently glows with the richest erimson, orange, purple, green, blaek, and a rariety of other tints, of whieh the planches coloriées and the different zoological monographs of geographieal groups and families of Birds afford numerous examples. ${ }^{1}$
${ }^{1}$ Amongst these merit highest mention the works of our countryman Gouzd on the Birds of Australia, Europe, Asia, Great Britain, \&c.; and his magnificent monographs on the Humming-Birds, Trogons, and Toucans.

The epiderm is in some places continued as a simple layer over the eorium, following its wrinkles and folds, as around the naked necks of some Vultures. It is moulded upon the bony mandibles to form the beak, and in some Birds adheres to osseous protuberanees on the cranium, where it forms a species of horn; and it is remarkable that these instances oceur ehiefly in those orders of Birds, the Cursores and Rasores, which are most analogous to the Ruminantia among quadrupeds: the Cassowary and Helmeted Curassow are examples. The Hornbills are, however, instanees in the Volitorial, and the Kamiehi in the Grallatorial Order. The euticle is sometimes developed into spines or spurs, as upon the wing of the Snake Vulture, Cassowary, Palamedca; and upon the
 leg of many Gallinaeeous Birds. The elaws whieh sheath the unguial phalanges of the feet assume various forms adapted to the habits and manner of life of the different orders. A remarkable artificial form is given to the elaw of the middle toe in eertain Birds; the inner edge being pro̊duced and divided into small parallel processes like the closeset teeth of a comb, fig. 110. These tecth are not reflected or recurved, as they might be expeeted to be, if they liad been intended to serve as holders of a slippery prey, but are either placed at right angles to the elaw or are inelined towards its point. The Common Barn-Owl (Strix flammea), the Night-jar genus (Caprimulgus), the Heron and Bittern kind (Ardeida, Vig.), afford examples of this structure; and as each species of bird appears to be iufested by its peculiar louse (Nirmus), the solution of the final intention of so singular a eontrivance, which is limited to so ferv species, and these of such different habits, may yet be afforded by the entomologist.

With respect to the seales which defend the naked parts of the legs of birds, they do not differ from those of Reptiles. Their form and disposition, as has been already observed, have afforded distinctive characters to the zoologist. In most of the Raptores, the Psittacida, the Rasores, the Grallatores, and the Natatores, the scales are polygonal, small, and disposed in a reticulate form ; the birds so eharaeterised formed the Retipedes of Scopoli. In the rest of the class the tarsi are eovered anteriorly with unequal
semi-annular scales, ending on each side in a longitudinal furrow, and these birds he termed the Scutipedes. In one section of the Tyranni, Cuv., the scuta surround the tarsi as complete rings. Where the carneous parts of the museles are continued low down upon the legs, as in the Owls, a covering of feathers is co-extended to preserve their temperature.
§165. Appendages of the Tegument.-The Vertebrate elasses have each their characteristic external covering: the cold-blooded Ovipara are naked, or their external surface is defended only by hard scales or plates (squame and scuta); but the warm-blooded classes require to be invested by an integument better adapted to maintain the high degree of temperature peeuliar to them: hence quadrupeds are clothed with fur and hair, and birds with down and feathers.

Feathers are the most complieated of all the modifieations of the epidermie system, and are quite peculiar to the elass of Birds. They are proverbially light; and, as the eloquent Paley well observer, 'every feather is a mechanical wonder;' ' their disposition, all inclined baekward, the down about the stem, the overlaping of their tips, their different configuration in different parts, not to mention the variety of their colours, constitute a vestment for the body so beautiful, and so appropriate to the life which the animal is to lead, as that, I think, we should have had no conception of anything equally perfeet, if we had never seen it, or can now imagine anything more so.' ${ }^{1}$

Notwithstanding the varieties of size, consistence, and colour, all feathers are composed of a quill or barrel, fig. 111, ", a shaft, b, b, and a vane or beard, c, c; the vane consists of barbs, fig. 112, e, and barbules, $f f$.

The quill (calamus), by which the feather is attached to the skin, is larger and shorter than the shaft, is nearly cylindrical in form and semi-transparent; it possesses
in an eminent degree the opposite qualities of strength and lightness. It terminates below in a more or less obtuse extremity, which is piereed by an orifice termed the lower umbilicus, fig. 111, e; a second orifice, leading into the interior of the quill, is situated at the opposite end, at the point at which the two lateral series of barbs meet and unite; this is termed the upper umbilicus, ib. f. The cavity of the quill contains a series of conical capsules fitted one upon the other, and united together by a central pedicle.

The shaft (scapus) is more or less quadrilateral, and gradually diminishes in size from the upper umbilicus to its distal extremity. It is always slightly bent, and the coneave side is divided into two surfaces by a middle longitudinal line continued from the upper um-
 bilicus; this is the internal surface, fig. 112, c. The opposite, or external surface, ib. b, is smooth, and slightly rounded; both sides are covered with a horny material similar to that of which the quill is formed, and they inclose a peculiar white soft elastic substance, called the pith, ib. α.

The barbs (rami) are attached to the sides of the shaft near the external surface, and consist of laminx, varying as to thickness, breadth, and length. They are arranged with their flat sides toward each other, and their margins in the direction of the external and internal sides of the feather; consequently they present a considerable resistance to being bent out of the vane's plane, although readily yielding to any foree acting upon themselves in the line of the stem: (e, e, fig. 112, are the bases of two barbs of a feather magnified). The barbules (radii, hamuli), ib. f, f, are given off from either side of the thicker margin of the barbs, and are sometimes similarly barbed themselves, as may be seen in the barbules of the great feathers of the Peacock's tail. In these feathers and in the plumes of the Ostrich, the barbules are long and loose; but more commonly they are short and elose-set, and by their form and disposition constitute the mechanism by which the barbs are united together. The barbules arising from the upper side of the barb, or that next the
extremity of the feathcr, are curved downward or toward the internal surface of the shaft; those which arise from the under side of the barb are curved in the contrary direction: so that the two adjoining series of hooked barbules lock into one another in a manner which has been compared to the fastening of a latch of a door into the catch of the door-post. There is much complicated varicty in the interlocking mechanism here generally explained.

Besides the parts which constitute the perfect feather, there is an appendage attached to the upper umbilicus, called the accessory plume (hyporachis). It is usually a small downy tuft, but varies both in different species, and even in the feathers of different parts of the body of the same bird. In the quill-feathers of the wings and tail, it retains the state of a small tuft of down; but in the body-feathers of Hawks, Grouse, Ducks, Gulls, \&c., it is to be found of all sizes, sometimes equal to that of the fcather from which it is produced.

In the Ostrich and Apteryx the feathers have no accessory phume; in the Rhea it is represented by a tuft of down; in the Emeu it rivals in size and structure the original feather; and in the Cassowary, besides the double fcather, there is a second aecessory plume, so that the quill supports three distinct shafts and vanes.

The feathers vary in form in different parts of the bird according to their functions, and afford zoological characters for the distinction of species; they have, therefore, received in Ornithology distinct names. The ordinary imbricated feathers which eover the body are called ' clothing feathers :' the larger ones for special uses, 'quill-feathers.' Those which surround or cover the external opening of the ear are termed the ' auriculars.' Those which lic above the scapula and humerus are called the 'scapulars.' The small feathers which lie in several rows upon the bones of the antibrachium are called the 'lesser coverts' (tectrices prima). Those which line the under or inner side of the wings are the 'under coverts.' The feathers which lie immediately over the quillfeathers are the 'greater coverts' (tectrices secunde). The quillfeathers supported by the wings are the 'remiges,' or 'rowing feathers.' The largest of these remiges, which arise from the bones of the hand, are termed the ' primaries' (primores). Those which rise from the ulna, towards its distal end, are the 'secondaries' (sccundaric). Those which are attached to its proximal extremity are the 'tertiaries' (tertiaria). These in some Birds, as the Wondcock and Snipe, are so long as to give them the appearance, when flying, of haring four wings. The quill-feathers which grow
from the phalanx representing the index, form what is termed the bastard wing (alula spuriu). Those forming what is ealled the 'tail' of the bird, and supported by the coccyx, are the 'rectrices,', or stecring quills. The overlying feathers are the 'tail-coverts' (calypteria); these bear the ornamental ' cyes' and are so developed in the Peacock as to form what is called the 'tail' or 'train' of that gorgeous bird.

In considering the structures which determine the powers of flight in differeut Birds, it is necessary to take into account the texture, forms, and proportions of the wing-feathers, as well as the developement of the bones and muscles which support and move them; as much depends mpon the mechanical advantages ressilting from the shape of the expanded wing. When the primary quill-feathers gradually increase in length as they are situated nearer the extremity of the pinion, they give rise to the acuminated form of wing, as in the Swifts and Humming-Birds, in which the first primary is the longest; and in the true Falcons, in which the second primary is the longest. In the Hawks the wing is of a less advantageous form, in consequence of the fourth primary being the longest. When the primaries gradually decrease in length towards the end of the pinion, they give rise to a short rounded form of wing, such as characterises the Gallinaceous Order; in which, although the peetoral museles are immensely developed in order to counteract the disadvantage resulting from the disposition of the primaries, yet they are only able, in consequence of the form of the wing, to carry the bird rapilly forward for a comparatively short distance, and that with an exertion and vibratory noise well known to every sportsman.

The texture of the quill-feathers has also a material effect on the powers of flight. In the Falcons each primary quill-feather is elongated, narrow, and gradually tapers to a point; the webs are entire, and the barbs closely and firmly connected together. ${ }^{1}$ In the Owls the plumage is loose and soft, filaments from the barbules extend upon the outer surface of the vane, and one edge of the primaries is serrated; so that, while they are debarred from so swift a flight as the Hawk, they are enabled, by the same mechanism, to wing their way without noise, and stcal unheard upon their prey.
§ 166. Developement of Feathers.-The first covering of the bird

[^76]is a partial and temporary one, consisting of fasciculi of long filaments of down, which on thcir first appearance are enveloped in a thin sheath, but this soon crumbles away after being exposed to the atmosphere. The down-fasciculi, which diverge cach from a small quill, are succeeded by the feathers, which they guide as it were through the skin; and after the first plumage, at each succeeding moult, the old feathers serve as the 'gubernacula' to those which are to follow. It is to be observed that feathers do not grow equally from every part of a surface of a bird; they are not devcloped, for example, at those parts which are subject to friction from the movements of the wings and legs. They first appear in clumps upon the parts of the skin which are least affected thereby, as, e. g., upon the head, along the spine, upon the exterior surface of the extremities, at the sides of the projecting sternum and of the abdomen.

In fig. 113, Hunter ${ }^{1}$ designates them as follows: a, 'cranial (dump' (pteryla citpitis, Xitzscli); b, 'posterior cervical' and 'dorsal clumps' (p t. spinulis, N.) ; d, ‘lumbar clumps ' (pt. femorales seu lumbales, N.); e, 'brachial clumps' (p t. humerales, N.); f, 'antibrachial,' and g, 'carpal clumps' (p t. "larum, N.); q, 'femoral clumps' (pt. crurates, N.) ; n, the 'anterior cervical,' and o, ' pectoral clumps' (pt. colli laterales, N.) ; $p,{ }^{\text {' abdominal clumps }}$ ' (pt. gastrei, N.), \&c. Nitzsch ${ }^{2}$ illustrates the affinities of Birds by the characters of the 'ptcrylæ,' cxhaustively followed out in LIV:

The matrix, or organ by which the perfect feather is produced, has the form of an elongated cylindrical cone, and cunsists of a

[^77]capsule, a bulb, and intcrmediate membranes which mould the secretion of the bulb into its appropriate form. The matrix is at first an extremely minute cone, attached by a filamentary process to a follicle or papilla of the skin; but it is not a developement of that part, being of a different structure and adhering to it by a small part only of its circumference. The matrix progrcssively increases in length; its base sinking deeply into the corium, and aequiring a more extended connection by cnlarged vessels and nerves, while its apex protrudes to a greater or less extent from the surface of the integument, when the capsule drops off to give passage to the fcather which it incloses, and the formation of which

Matrix of a growing feather, with the capsule laid open. Lr. has, in the meanwhile, been gradually proceeding from the apex downward. The capsule of the matrix, a, a, fig. 114, is composed of several laycrs, the outermost of which is of the nature of epiderm; the inner ones are more compact and pulpy. The sides of the capsule which correspond to the outer and inner sides of the growing feather within arc indicated by a white longitudinal line.

The axis of the capsule is occupied by a medulla or bulb, ib. e, also of a cylindrical form, and of a soft fibrous texture, adhering by its basc to the parts beneath, and there receiving numerous bloodvessels and a nerve.

Between the medulla and the capsule there are two parallel membranes, one internal, ib. d; the other external, ib. b; from the latter membrane a number of closc-set parallel lamine extend obliquely from one of the white longitudinal lines above mentioned to the other on the opposite side of the cylinder. The two membranes seem to be united together by the oblique septa. In the long and narrow spaces between these septa, the matter of the vane, ib. c, is deposited and formed into barbs and barbules. The deposition of the material of the barbs commences at the apex of the bulb, and the stem is next formed in the following manner.

The external longitudinal line from which the oblique laminæ are continued, receives and moulds on the inner surface of the external capsulc the horny covering of the back of the feather, or that longitudinal band to the two sides of which the barbs are attached; and on the opposite surface of the internal membrane are formed the pith or substance of the shaft, and the horny pellicle
whieh ineloses it on the inner surfaee. The internal longitudinal line has no other use than to establish a solution of continnity between the extremities of the barbs of one side and those of the other, whieh meet at that part, and thus eurve round and completely inelose the formative bulb. In fig. 115, the eapsule of the matrix of a growing feather, c, has been laid open, and the nascent barbs, d, d, which surrounded the bulb, have been unfolded, exposing that part at a, b. A portion of the barbs and stem have been eompleted and protruded, and the bulb is beginning to undergo a process of absorption at that part, which will hereafter be described. The shaft and barbs at the apex of the cylinder are the first parts which aequire consistence, and the molceules eomposing the remainder are less compaetly aggregated as they are situated nearer the base of the matrix. As the gelatinous medulla increases at the base, the first-formed slaft and barbs are protruded through the extremity of the capsule, the bulb continuing to furnish the secretion which is moulded between the two striated membranes until the entire feather is completed. If the striated membrane inelosing the bulb be attempted to be
 reflected from below upward, it will be found to be comnected with a series of membranous cones, a, b, c, d, c, fig. 116, rangel one upon the other throughout the whole length of the bulb, and connected together by a tube running through its eentre. In this figure the pulpy matter which occupied the interspaces of the concs has been removed to show their eentral connecting tube.

As the developeinent of the feather advanees, the pulpy matier
disappears from the summit of the medulla, and only the membranous funnel-shaped caps remain, which are protruded from the theea and the centre of the new-formed barbs, and fall off as these expand. The theea which ineloses the whole is of a firm texture where the new-moulded barbs are yet pulpy and tender, but it becomes thinner as these aequire consistency, and, lastly, dries and crumbles away after it has been exposed to the action of the atmosphere. The bulb itself, when examined in a half-formed quillfeather, is composed of two parts, corresponding to the external and internal aspeets of the feather. The internal part represents a semicylinder or case, inelosing the external part, which is of a conical form ; the latter extends from the base of the bulb, and gradually diminishes to a point where the shaft is completed and the barbs begin to expand. Its office is to deposit the pith within the shaft, and it is absorbed in proportion as this is effected. The internal part or case also commences at the base of the bulb, and adheres closely to the cone, with which, indced, its substance is continuous; it increases in thickness as the cone diminishes, its margins are beautifully scolloped or crenate, and the crenations are lodged in the interspaces of the oblique lamine or moulds, and deposit in them the material of the vane. The horny sides of the shaft are lodged and formed in the grooves between the external and internal parts of the bulb, and correspond in degree of formation to the dejthis of those grooves; and being progressively brought into contact from above downwards, the shaft is thus completed, leaving the longitudinal line at the internal side. When all the grooves (wherein are formed the barbs, and the portion of the shaft which carries them) are filled by the horny matter, and the barbed part of the feather is finishch, this horny matter lastly expands uniformly around the medulla, and forms the quill of the feather.

When the quill of the feather has acquired the due consistence, the internal medulla becomes dried up, and is resolved, as before, into membranous cones arranged one upon the other; but these latter never pass out, for the quill, which is now hardened and closed by the shaft at the extremity opposite to the lower umbilicus, will not permit their egress; they remain, therefore, inclosed, and constitute the light dry pith which is found in the interior of the quill. The last remains of the bulb are seen in the ligament which passes from the pith through the lower opening of the quill and attaches it to the skin.

There is a close analogy between the formation of a feather and that of a tooth; but a tooth may take years to be perfected,
and there are but two scries produced in one part of the jaw, and only one in the other, in any warm-blooded animal. Feathers, on the other hand, are developed in the course of some days; they attain a length of from one to two feet or more in many Birds, and they are almost all renewed every year,-in some species even twice a year. It may be conecived, then, how mueln vital energy the organisation of Birds must exercise, and how many dangers must accompany so eritieal a period as that of the moult.

The plumage is commonly ehanged several times before it attains that state whiel is regarded as characteristic of the adult bird. The time required for this varies from one to five years, and several birds rear a progeny before they aequire the phumage of maturity.

When the inale lird assumes a restment differing in eolour from the female, the young birds of both sexes resemble the latter in their first plumage (Blaekbird); but when the adult male and female are of the same colour, the yoming have then a phomage peculiar to themselves (Swan). When adult birds assume a plumage during the breeding season decidedly different in colour from that which they bear in winter, the young birds have a plumage internediate in the general tone of its colour compared with the two periodieal states of the parent hirds, and bearing also indications of the colours to be afterwards attained at cither period (Ruff). When both males and females are alike in colonr, but species of the genus differ widely in colour, as e. e. the Black and White Swans, the young of sueh species are alike and of an intermediate hue.

Changes in the appearance of the plumage of lirds may be produced:-

By the feather itself becoming altered in colonr ;
By the bird's obtaining a certain number of new feathers without shedring any of the old ones;

By the wearing off of the lengthened lighter-colenred tips of the barbs of the feathers on the body, by which the brighter tints of the plumage underneath are exposed;

By an entire or partial moulting, at which old feathers are thrown off and new ones produced in their places.

The first three of these changes are olsered in adult lifeds at the approach of the lurecding season; the fourth change is partial in suring and entire in autumn.

CHAPTER XXIII.

GENERATIVE SYSTEM OF BIRDS.
§ 167. Male Organs and Semination.-- The few varieties of structure whieh the generative organs present in the Class of Birds, are principally met with in those of the malc.

The organs in this sex exhibit all the essential charaeteristies of the oviparous type of structure. The testes are situated high up in the abdomen, whenee they never deseend into an external scrotum. The intromittent organ is either double, as in Serpents, when, however, each penis is extremely small; or it is single, but in this case, to whatever extent it may be developed, it is simply grooved along the upper surface or dorsum for the passage of the fecundating fluid. As there is no true urethral eanal, so neither are the glands of Cowper or the prostatic glands present.

The testes, figs. 89, $x, 117, a, a$, are two in number ; in form more or less oval, situated near the upper extremities of the kidneys. They vary remarkably in colour in different birds; I have seen them white in the Peregrine Falcon and Dove; pale yellow in the Horn-Owl and Gallinule ; of a brighter ycllow in the Magpie, Bay Ibis, Ruff, and Oyster-catcher; of a black colour in the Chough, Partridge, Heron, Seagull, but whitish toward the lower end in the last two. They are invested with a strong and dense 'albuginean' tunic, and are fastened or suspended by a fold of peritoneum. The contorted seminiferous tubules are very slender, and are separated into packets by delicate and membranous septa, continued from the inner surfaee of the tunica albuginea. The arterics spread in an arborescent form beneath that capsule. The vas deferens, fig. 117, c, c, is continued from the posterior or 'dorsal' and internal or 'mesial' part of the gland.

The periodieal variations of size which the testicles undergo are very remarkable in the Class of Birds; and the limited period during which their funetion is in activity is compensated by the frequeney and energy with whieh it is exercised.

The proportional size whiel the testes acquire at the breeding season is immense, as may be seen in the subjoined figures of the
testes of the House-Sparrow, which eommences with the glands as they appear in January, when they are no bigger than pins' heads, and ends with their full developement in April.

It rarely happens that both testes are developed in exactly the same degree: the left is commonly the largest; but sometimes

the right exceeds the left; and I have scen an example, in a Rook, where it alonc had taken on the action of scxual increase, and had acquired a bulk compensating for the want of devclopement in the left testis.

In most Birds, the only appearance of an epididymis, fig. 117, b, is a remnant of the primordial kidney, fig. 108, c. This part frequently presents a colour strikingly different from that of the testes: thus it has been observed in the Bustard and Curassow to be black; in the Cassowary, yellow ; and in the Demoiselle (Anthropoides Virgo) to be of a green colour. In the Ostrich the epididymis is folded upon itself at the side of the testis.

The vas deferens, fig. 117, c, eommonly passes down to the cloaca by the side of the ureters without undergoing any remarkable convolution; but in the Common Cock it is bent upon itself in short transverse folds from side to side almost from its commencement; the folds gradually but slightly increase as they approach the
cloaca, both in extent and in the diameter of the tube composing them; and they are so closely compacted, and inclosed by a cover-

Penis of a Drake. Xxyil. ing of peritoneum, as to present in a longitudinal section the appearance of a series of cells, which are capable of retaining, as in a vesicula seminalis, a quantity of the seminal secretion. In the Sparrow there is a dilatation at the end of each vas deferens, which opens, as in the Common Cock, on a papilla, situated in the urogenital division of the cloaca anterior to the insertion of the ureter.

The base of each papilla is surrounded by a remarkable plexus of arteries and reins, M, 1 , fig. 94 , which serve as an ercetile organ during the venereal orgasm, when the fossa of the turgid papilla is everted, and the semen brought into contact with the similarly everted orifice of the oviduct in the female, along which the spermatozoa pass by undulatory movements of their ciliary appendage or ' tail.'
In some Natatores which copulate in water there is provision for a more efficient coitns than by simple contact of everted cloace, and in the Anatide a long single penis is developed, fig. 119. It is exsentially a saccular production of a lighly vascular part of the lining membrane of the cloaca, continued from the fore-part of that cavity, ib. a, a; and in the passive state is coiled up like a screw by the elasticity of associated ligamentous structure, b, b. The vascular membranc gives off many small
pointed processes, which, in the Gandcr, are arranged in transverse rows on cither side the urethral groove, d, and near the extremity of the penis are inclined backward. The elastic band, b, b, has been cut open lengthwise in the figurc given by Home: ${ }^{1}$ it is surrounded by cavernous tissue, and terminates in the blind end of the sac which can be everted. Λ groove, ib, d, d, commencing widely at the base, follows the wiral turns of the sac to its termination: the sperm-ducts open upon papille at the base of this groove. This form of penis has a muscle by which it can be everted, protruded, and raised.

The base of the penis in the Ostrich is attached to the forc wall of the cloaca, the conical body is bent in a recess, out of which it can be drawn and into which it can be returned by muscles. It consists of two solid fibrous bodies, the fissure between which is covered by cavernous ercctile tissue, bounding the seminal groove; but it has no evertible sacciform part: there is a third elastic substance internal to the cavernous substance which produces the twisted form.

The Drake's penis is formed after the type of that of Lizards and Serpents. The Ostrich's penis is like that of the Tortoise and Crocodile. ${ }^{2}$

The spermatozoa of Birds, like those of Lizards, have a long cylindrical body; generally straight or wavy, obtuse anteriorly, and tapering behind into a filamentary tail of varying length according to the species, fig. 120; but in the Cantores the body is twisted spirally in three to five or more turns, pointed anteriorly and terminating in a usually long filamentary tail, fig. 123. The sperm-cell contains many spermatoa, fig. 121, and in these the *permatozoa are developed and usually excluded

[^78]${ }^{2}$ LXVIII。
within the common sperm-cell, fig. 122 : here they are agglutinated
 together, either in irregular groups; or, as in the Cantores, in a regular bundle, with the spiral bodies at one end and the tails extending, parallel, to the other, fig. 123. In both eases the spermatozoa are set free by rupture and solution of the sperm-cell: in the Cantores they are then found fascieulate in the 'tubuli testis,' whilst in other birds they are irregularly dispersed.
§ 168. Female Organs and Ovulation of Birds. - The ovarium of the Bird consists essentially of the germ-cells, with the stroma or blastema modified by their presence, and the vitelline matter superadded to the germ-cell. The formative processes are most clearly traceable in the smaller singing-birds. In fig. 124, a the small clusters of granules indieaie the beginning of the ova in the ovarian stroma: in larger clusters a clear point appears, which in the largest assumes the character of a germ-cell surrounded with opaque minute granules. The almost contemporaneous formation of the 'ovisac' (Barry) soon manifests itself by its lining of epithelial eells, ib. в, at which period the germ-eell manifests, by its macula, the ordinary characters of the 'germinal resicle.' This is shown, in foeus, at c ; the epithelium of the ovisac
is shown in focus at D: in $\mathrm{E}, \rho v$ is the ovisae with its cpithelial lining, v the granular yolk surrounding, g the germinal vesiele or developed 'germ-cell.' F is part of an ovule of $\frac{1}{40}$ of an inch in diameter, lighly magnified: v, minutely granular or primitive yolk-substance; g, germinal vesicle; z, 'thick consolidated membranous layer which formed a vesieular covering for the primitive ovule, and which corresponds to the zona pellucida of the mammiferous ovum.' ${ }^{\text {I }}$

In g and h , Prof. Allen Thomson gives diagrammatic figures of the earliest stages of formation of the ovarian ovum in a Blackbird : figs. 1 and K ' are intended to illustrate, diagranmatically, the view, that after the disappearance of the zona, and the formation of the larger granular yolk-cells, the outer layer of the cells of this substance forms the permanent vitelline membrane of the bird's egg; vd, 'remains of minutely granular yolk, forming the vitelline dise round the germinal vesicle; $s g$, large corpuseles of the yolk; vm, outer layer of the cells of the same, on which the vitelline membrane is afterwards formed. ${ }^{2}$

The germinal vesicle, with the firmer primitive vitelline granules ('germ-yolk,' $\mathrm{K}, \boldsymbol{v d}$), moves from the eentre to the periphery of the ovum, which then begins to expand by the addition of the softer 'food-yolk,' ib. sg: this seems to be due to cells thrown off by, and to fluid exuding from, the inner surface of the ovisae, ov, the eells greatly and rapidly increasing in number and acquiring the eharacteristic yellow or orange eolour of the yolk in birds.

At the earlier stages of the developement of the ova the ovarium appears as a flattened solid, granular body, attached by a fold of peritoneum, or of air-eell, to the bodies of the middle dorsal vertebra, fig. 125, a.

At first, the right and left ovaria are similar in size, fig. 127, c : but the symmetry is soon disturbed by eoneentration of developement in the left ovariun (fig. 125, a), the right one, α^{\prime}, remaining stationary and ultimately, in most birds, disappearing.

The enlargement of the ovarian ovum is now due to the aeeumulation of the yellow or 'food' yolk, with concomitant distension of the membrana vitelli and of the ovarian eapsule, or 'calyx,' fig. 126, a, d, which maintains its connection with the rest of the ovarium by a contraeted base or pediele.

The ealyx consists of two membranes, united together by lax tissue and blood-vessels: these ramify as in fig. 126, c, converging toward a white transverse line or band across the most prominent
part of the calyx, where the vessels become suddenly so minute, as to scem to be wanting: fig. 128, c. This part, called the 'stigma,' begins to appcar when the ova have attained, in the Common Fowl, the diameter of an inch: it increases in breadth, and the membranes there become thimed, as the ovum acquires its

full size; when they readily yield and are rent by the compressing force of the infundibular opening of the oviduct, fig. $128, c$, whereupwin the orum slip out of the calyx into the efferent pasage.

The empty calyx collapses, as at b, b, fig. 126, and d, fig. 128, rapidly shrinks, and is ultimately absorbed.

In birds that have fer young at a brood, as the Apteryx, ${ }^{1}$ ${ }^{1}$ xı. vol. iii. r. 310 , pl. 36.

Eagle, Dove, \&c., the number of enlarged ovarian ova or 'yolls's is correspondingly small; but in the more prolific species, as the Common Fowl, fig. 126, A, they are more numerous. The number of young produced may be, by this means, in some degree inferred, if the female of a rare species happen to be killed during the breeding season.

In the diagrammatic section of a full-sized ovarian ovom, B, fig. $126, o$ is the outstretched ovarian capsule and stroma forming the 'calyx,' p its peduncular connection with the rest of the orarium; c is the common position of the germ-cell and discoid germ-yolk; $o v$, the two layers of the ovisac into which the blood-vessels penetrate; sm , the vitelline membrane. This membrane is sufficiently strong and ductile to permit the ovarian ovum being compressed into an elliptical form to facilitate its passage through the contracted part of the oviduct. Certain changes now occur in the ovarian ovum, and much addition is made to it; but, before entering upon these, the canal through which it passes and in which the egg is completed must be described.

In the female embryo the basis or stroma of the ovarium, fig. $127, c$, allpears in a similar relation to the primordial kidneys (ib. b), as the testis in the male. At the period when the permanent kidneys, ib. a, have sent the ureters, ib. e, to the cloaca, the oviducts, g, have been developed as prolongations from that part, and, to a certain point of developement, they are

Kidneys, Wolffan bodies, ovarles, and oviducts of a foetal bird, at a period when both oviducts are still of nearly equal size. Magnifled. Lxxiv. of equal size and length. Sulsequently the left oviduct alone proceeds to grow; the right is stationary, or slurivels: occasionally it may be discerned as a rudiment in the mature bird, but usually all trace of it has clisappeared. The left oviduct expands above or at its free end into the infundibular orifice, fig. $125, b$, where it: parietes are very thin; as it descends, these increase in thickness, and the efferent tube gradually acquires the texture and form of an intestine. Like this, it is attached to and supported by a duplicature of peritonemm called the mesometrium, but which also includes muscular fibres, to be presently described.

The oviduct in the quiescent state is generally straight, but at the period of sexual excitement it is augmented in length as well as capacity, and describes threc principal convolutions before reaching the cloaca, fig. 128, n. The lining membrane presents a different character in different parts of the oviduct; at the infundibulum, ib . e, the surface is longitudinally rugous: lower down the lining membrane begins to be disposed in oblique ridges, ib. g, beset with follicular glands: at the more contracted part, or
 'isthmus,' they become longitudinal and subside: in the terminal dilatation, ib. k, the lining membrane is beset with large flattened villi, containing the follicles concerned in the secretion of the shell. The whole oviduct is lined by vibratile epithelium. The shell-forming part has been termed the 'uterus,' but the ovum is never developed in it. The rest of the canal, l, which, by the same loose analogy, is termed 'vagina,' opens into the urogenital segment of the cloaca, anterior to the orifice of the left ureter, and its termination, figs. $86,109, f$, is provided with a sphincter.

The mesometry, fig. 128, m, differs most from the mesentery when the female organs are in full sexual action. It presents at that pcriod a muscular structure, but the fibres are not striated. It is divided into two parts, one superior, the other infcrior. The inferior mesometry has its point of attachment at the lower part of the uterine portion of the oviduct, and forms a somewhat dense and cruciform plexus of muscular fibres radiating from that part. The transverse fasciculi are spread out on either side and around the utcrus. The lower fasciculus surrounds the vagina more laxly, and contributes to the expulsion of the ovum. The upper fasciculus spreads out like a fan upon the oviduct from its insertion into the uterine portion to the commencement of the infundibulum.

The superior mesometry commences by a firm elastic ligament, which is attached to the root of the penultimate rib of the left side, wheuce the muscular fibres are continued to the upper part of
the oviduct, upon which they form a delieate muscular tunie, whose fibres embrace the oviduet for the most part in the transverse or eircular direction, except at the infundibular aperture, where they affeet the longitudinal direetion, whieh enables them to dilate that orifiee. Longitudinal museular fibres begin again to be distinetly seen in the uterine portion of the oviduet, whence they are eontinued along the so-called vagina. An internal stratum of eireular fibres is also situated immediately behind the ealeifying membrane of the ' uterus.' In the vagina the circular fibres are concentrated at its termination to form the sphineter above mentioned.

The 'elitoris' of the Ostrich is continued from the anterior margin of the preputial cavity of the eloaca, and is grooved like the penis of the male: it is furnished with corresponding museles. A smaller elitoris exists in those birds of which the males have a well-developed intromittent organ. § 169. Fecundation in Birds,
and Structure of the laid Egg. -In coitu spermatozoa enter the cloaca and penetrate the oviduet, aseending to the ovarium. The germinal vesicle, on the reception of the ovum by the oviduct, is no longer visible, as such. A discoid aggregate of cells eonstitutes an opaque white circular spot on the part of the periphery of the yolk to which the germeell and germ-yolk had passed, and this was known to the older embryologists as the

Structure of the cicatricula in a laid Fowl's egg. occvill 'cicatrieula.' It eonsists of a central clearer and of a peripheral denser portion, fig. 129, B : beneath the clear centre is a group of minute opaque granules called ' nucleus cicatrieulæ.' In the diagrammatie figure A, a is the vitelline membrane; d the elear tract leading from the 'nueleus,' c, to the centre of the yolk, -the trace of the excentrie course of the germ-cell : b, b, are the minute granules forming the denser part of the eicatricula; e, e, are the larger yolk corpuscles. The 'nucleus cieatrieulx,' c, is the 'germ-mass,' the result of the same series of spontancous divisions of the impregnated germ-cell, as affected the entire yolk in the Batrachian (vol. i. fig. 452) ; to which the ovum of the Bird offers the opposite eondition in the preponderance of the 'food-
yolk' over the 'germ-yolk.' In fig. 129, B is an enlarged view of the cicatrieula as seen from above on the surfaee of the yolk in an impreguated egrg : the dark central space is the 'transparent area' surrounded by the 'opaque area,' and by one or two delicate 'halones.' C is the cicatricula of an unfecundated laid cgg: instead of the central transparent area a number of rather irregular transparent spots are seen.

The yolk forms an ellipsoid mass, somewhat flattened on the cicatricular surface, and consists of the external eoloured part, fig. $130, \mathrm{~s}, \mathrm{~d}$, in concentrie layers indicative of successive deposit, and of a eentral lighter-coloured part, ib, c, about one-fourth of

the diameter of the whole. The margins of yolk-layers, interrupted by the 'cicatricula' and its eanal, may form the 'halones.' The yolk-layers, d, d, usually show some diversity of tint.

The ripe ovariain ormm, having passed into the oviduet, is propelled by the peristaltic action of that tube in a rotatory course to the 'uterus.' The contaet of the membrana vitelli stimulates the exudation of the product of the lining membrane in a denser state than usual, which forms a kind of accessory tunic, and is continued, thread-like, from near each pole of the ellipsoid, usually a little toward that half which is opposite the one supporting the cicatricula: these filaments, fig. $130, \mathrm{~A}, c$, are the 'chalazax, and the layer of dense albumen from which they are continued is called the 'membrana chalazifera.' During the passage of the egg and its acquisition of successive deposits of the ordinary allominous secretion, the chalaza become twisted in opposite directions, fig. 131, , and ultimately the one next the small end of the egg contraets some adhesion to the membrane lining the shell there. In fig. 131, a shows the ovum from the
upper part of the oviduct, with the coating of dense albumen continued into the chalaze; в, the outstretched chalaze from opposite sides of the yolk, showing the opprosite turns of the spiral; c, an egg from above the middle of the oviduct, with the first layers of soft albumen deposited upon the chalaziferous membrane and chalaza.

The albumen is rapidly added in the more glandular and rascular part of the oviduct, by the ridges of follicles which correspond in direction with the spiral course of the egg; and, when it has arrived at the narrower part of the oviduct called the isthmus, denser layers of albumen are again excreted, forming the ' membrana putaminis,' fig. $130, \mathrm{~A}$, d. So inclosed, and having acquired its ovate form with the small end toward the cloaca, the egg passes into the 'uterine' or shell-forming dilatation, fig. 128, k.

Artificial coagulation of the albumen or 'white' of an egg enables one to demonstrate its disposition in spirally deposited layers. It is at the latter stage of the egg's formation that the spiral structure of the chalaze becomes apparent. The time of the passage of the egg from the infundibulum to the uterus, in the Common Fowl, is from four to
 six hours. Here it may remain from twelve to twenty hours. On entering the 'uterus,' a thickish white fluid exudes from the inner surface of the cavity and condenses on the ' membrana putaminis,' forming thereon a cellular matrix in which soon appear particles of calcarcous matter, which from the shape they assume in the interstices of the matrix appear to be crystalline.

Allen Thomson has given the annexed illustration, fig. 132, of the structure of the lining mombrane of the shell and of the proper shell-membrane. A shows the 'lining membrane of the shell ; a, thick maiter or felty portion; b, thin shred of the torn margin, showing the peeuliar fibrous tissue of whiel the various layers are composed; B , outermost layer of the same, which is incorporated with the shell; some of the angular corpuscles of
 the shell lying upon the fibrous substance and firmly united with it. c, small portion of the caleareous shell, which has been steepcd in dilute hydroehlorie aeid, slowing the remains of opaque calcareous substance in the centre: here and there clear oval eells seen, as at $a, \alpha .{ }^{1}{ }^{1}$

The colour of the eggshell depends on pigmental matter seereted by partieular follieles of the villous membrane of the 'uterus;' and either ineorporated uniformly with the outermost layer of the shell, as in the Thrush: or deposited in eells more or less dispersed or aggregated in patehes. The shell eonsists in great part of earbonate of lime, with a little earbonate of magnesia and phosphate of lime and magnesia.

The appearanee to the unaided eye of pores on the surfaee of the shell is due to the impressions of the villi of the formative membrane: the permeability of the shell by the atmosphere depends on a more minutely porous texture. The first effect of this permeability is penetration of air between the layers of the lining membrane as the contents of the egg eondense by cold and era-

[^79]poration after it is laid. The air aceumulates between layers of the ' membrana putaminis' at the great end of the egg, fig. 130, a, f; and in increased quantity as the other contents become condensed into the tissues of the ehick, when it is averred to contain rather more oxygen than in ordinary atmospheric air. Such is the complex structure of the egg of a bird prior to its becoming subject to the influence of incubation.

It differs from the egg of the cold-blooded, non-ineubating Ovipara, in the presence of the chalaze and of the air-chamber, in the firmer and more complex strueture of the shell, and in the greater proportion of albumen: in all which differenees may be diseerned a prospective adaptation to the business of hatching.

The eicatricula, or germ, is on the uppermost part of the floating yolk, the thinner part of whieh, occupying the nuclear traet, fig. 130, в, c, makes that half of it the lightest. Pressure of the upfloated germ against the shell-wall is moderated by the weight of the denser albumen forming the chalazz, ib. A, c; and their usual attachments, a little below the axis of the yolk, help also to make the eieatrieular half the lightest and uppermost. Under ordinary eireumstanees rotation of the egg takes place on its long axis, and, if a fresh egg be so turned round, 'the cicatrieula will keep its position upwards for one turn or a little more, and then, by the twisting of the chalaze, the yolk is earried completely round, and balanees itself again with the eieatrieula uppermost in its new position.' ${ }^{1}$ The main function of the ehalaze is to keep the yolk more steady in the albumen, and to moderate the effects of any violent movement or rotation of the cgg. The domed form of the hard shell enables it to bear the superincumbent weight of the brooding mother. How these modifications of the oviparous egg in anticipatory relation to the needs and conditions of incubation can be brought about by 'selective' or other operations of an unintelligent nature is not coneeivable by me.

Birds differ in the number of eggs which they lay at one breeding season, in the relative size, in the shape, colour, surface, and thickness of the shell of the laid eggs. The Frigate Bird, Albatross, Penguin, Fulmar, Petrel, Awks, and some other sea-birds that brood on bare rocks, severally lay and hatch but one egg at a season: the Skua Gulls (Lestris) have two eggs; the Common Gulls (Larus) three eggs; the Lamellirostres and most Gallince hatch many egrs at a brood.

The Cuckoo has the smallest egg in proportion to its size, the ${ }^{1}$ cecvili. p. 65.

Apteryx the largest: in this species it weighs $14 \frac{1}{2}$ oz. ; the entire bird 60 oz ; so that the egg is nearly equal to one-fourth of the parent. The hugest known egg of a bird is that of the extinet Epyornis of Madagasear. The following are comparative admeasurements of this egg and that of an Ostrich:-

	Repyornis.		Struthio.	
	ln.	Lines.	In.	Lines.
Length of major axis	12	3	5	10
", minor axis	9	4	5	0
Greatcr circumference	34	2	17	10
Smaller circumfcrence	29	2	16	6

The eontents of the egg of the $\mathbb{E}_{\text {pyornis }}$ are eomputed to equal those of 6 Ostriches' eggs, and 148 hen's eggs.

The eggs of most Owls, of some Penguins (Spheniscus), of the King-fishers (Alcedo, Halcyon), of the Plantain-eaters (Musophaga), and Bee-eaters (Merops), are those that lave, or nearly approach to, the spherical shape : those that furthest depart from it, or lave the longest shape, are the eggs of the Megapode and Albatross. The oval, or ovate, is the common form in birds (fig. 130, and vol. i. p. 599, fig. 420, c) : the eggs with the narrowest small end, ib. D, are those of the Plovers, Suipes, Sand-pipers and allied Waders, which usually lay four eggs, paeked in the smallest compass by the meeting of the small end of each in the centre. The egg of the Chinese Jacana (Parra sinensis) is like a top in shape. The eggs of Grebes, Cormorants, Pelicans, are elliptic. The shell of the Emeu's and Ostrich's egg has a rough exterior : that of the Gangas (Pteroclcs) has a glossy smoothness. The shell of the egg of the Ostrieh, Emeu, and Cassowary is relatively thicker than that of the Apteryx, Mound-bird, and Dinornis.
§170. Accessory Generative Structures and External Sexnal Characters.-The exception to the rule of incubation is given by the Megapodial birds of the Australasian Islands. A huge mound of decaying vegetable matter is raised: the eggs are deposited vertically in a circle at a ecrtain depth, near the summit, and the ehiek is developed with the aid of the heat of fermentation. The large size of the egg relates to affording a supply of material sufficing for an unusually advaneed state of developement of the chiels at exclusion; whereby it has strength to force its way to the surface of the lateling-mound, with wings and feathers sufficiently developed to enable it to take a short flight to the nearest branch of an overshadowing tree. ${ }^{1}$

A steady continuous temperature of about 100° Fahr. is the

[^80]requisite condition of suecessful inenbation: the heat of the sun alternating with the cold of night would hateh no bird's egg. The Ostrich deposits about fifteen eggs in a hollow of the sand: the male bird incubates, and the young are excluded in from fifty to sixty days. The following are the periods of incubation in some birds of the different orders of the class: the female sitting where not otherwise stated:-

Species		No. of days
Ameriean Ostrich	(Rhca americana) male	35
Mooruk	(Casuarius Bennettii) malc	48
Emeu	(Dromaius Nove Hollundice) male	54
Puffin	(Fratercula arctica)	30
Guillemot	(Uria troile)	30
Itooded Merganser	(Mergus cucullatus)	31
Sheldrake	(Tudorna culpanser)	30
Muddy Wildrake	(Casarca rutila)	30
Summer Duck	(Aix sponsa).	30
Mandarin Duck	(Aix galericuluta)	30
Sandwich Island Goose	(Bernicla sandoicensis)	31
Cereopsis Goose	(Cereopsis Nova Hollantia)	35
Black Swan	(Cygnus atratus)	3.5
White Stork	(Ciconia albat)	31
Heron	(Ardea cincrea)	28
Dotterel	(Churadrius morinellus)	20
Capercailzic	(Tetrao urogullus)	28
Californian Quail	(Callipepla californica)	21
Purple Kalcege	(Gullophasis Horsficldii)	24
Impeyan Pheasant	(Lophophorus Impeyanus)	28
Crown Pigeon	(Goura coronata)	28
Ringdove	(Columba palumba)	16
Cuckoo	(Cuculus canorus) by IIcdge-Sparrow or other Passerines	Cr 14
Belted King fisher	(Alcedo alcyon)	16
Matin	(Hirundo unlica)	13
Skylark	(Alanda arvensis)	15
Chatfinch	(Fsingilla colels)	13
Wion	(Tioglodytes rulyeris)	10
Bullinch .	(Pyrrhula vulgaris)	15
Starling	(Sturnus valgaris)	16
Raven	(Corvus corux)	20
Golden Eagle	(Aquila chrysaetos)	30

Most birds nidify, i.e. prepare a receptacle for the ergs, to aggregate them in a space that may be covered by the incubating boly (sand-hole of Ostrich), or superadd materials to keep in the warmth. The most complex 'nests' are made by birds of the singing order: and of these the pendent nests of the WeaverBirds (Ploceida) are, perhaps, the most perfect and remarkable examples of nidification. Not only does the female construct her nest for incubation ; but the male makes his, in the form of a beeV゙OL. 1 I.
hive, open at the bottom, which is crossed by a perch of strong woven material, upon which he sits, sheltered from the tropical sun or storm by the dome above, which is suspended to a branch near that to which is attached the nest of the female, whom he solaces during her confinement with his song.

Certain conirostral Cantores still practise in the undisturbed wilds of Australia the formation of marriage-bowers distinct from the later-formed nesting-place. ${ }^{1}$ The Satin Bower-Bird (Ptilonorlynnclus lolosericeus), and the Pink-necked Bower-Bird (Chlamydera maculata), are remarkable for their construction on the ground of avenues, over-arched by long twigs or grass-stems, the eutry and exit of which are adorned by pearly shells, brightcoloured feathers, bleached bones, and other decorative materials, which are brought in profusion by the male, and variously arranged to attract, as it would seem, the female by the show of a handsome establishment. For receiving and incubating her cggs the female builds a nest, like that of the Magpic, in the conccalment of a trec. ${ }^{2}$

Most birds, on reaching maturity, show external sexual characters. In Diurnal Raptores the female is larger than the male; in Gallinacece and most other polygamous birds, she is less. In this suborder the male is most conspicuous by the richness and beauty of his colours; and a difference in this respect is the most common sexual character in birds, with the frequent addition of a peculiar size and shape of certain feathers, especially at the brceding scason, when, c.g., the male of Machetes pugnax becomcs the 'Ruff', the female the 'Reeve.' There is a sexual difference in the length of the beak in the Hook-billed Parrots (Nestor), in the Apteryx, and in the singular genus of Humming-Bird (Androdon, Gould), in which the end of the longer bill of the male is dentated. The comb and wattles of the Cock exemplify scxnal characters of certain cutancous appendages: his spur and that of other Galline and Pluasianida, including Meleagris, is a weapon of combat, analogous to the horns of Mammalian Herbivores.

Swifts, Swallows, Doves, Crows, King-fishers, Parrots, and the majority of the Waders are examples of birds in which the sexes are alike.

[^81]
CHAPTER XXIV

developement of birde.

§ 171. The heat-foree being converted into movements of the parts of the germ thereto subjected, the expansion of the pellueid aren, fig. 133, a, is the first sign of such ehange : in this area ap-
 pears the embryonal trace, in the form of the parallel lines called 'plica primitive,'whieh diverge to form the eephalie dilatations. Concurrently with the appearance of the myelencephalous columns, ib . p, p, the blood-lakes expand in the surrounding halones, and tracts, ib. h, h, along which pass colourless blood-particles, extend from below the cephalie expansion, b, to the peripheral sinuses: as the pro-to-vertebre, ib. v, v, begin to appear at the sides of the myelon, the red colour is aequired by the blood, and the heart is made more manifest, by its movements, as the 'punctum saliens;' ib. c. A distinet membrane, 'serous layer,' ib. s, s, is formed upon the germ and blastodern: ${ }^{1}$ the eephalie end of the embryo rises from the surface of the blastoderm, and then eurving down, sinks into it, forming for itself a kind of hood of the serous layer: it is refleeted at l, to show the fossa, f. This hood gradually extends from the margin of the fossa over the body, and, meeting a similar fold formed by the projecting and incurved tail, eloses over the germ on the upper side, 'making a circumscribed eavity which is the amion,' ${ }^{2}$ fig. 134, a. The progress of differentiation of layers of the blastoderm has gone on beneath: in fig. 183, the 'serous layer' b is

[^82]partially reflected from the 'vaseular' and 'mucous layers.' ${ }^{1}$ The mncous layer is concerned in the formation of the intestinal canal; and beyond this part, which is at first an open groove, the mucous layer expands over the yolk, which it ultimately incloses, the margins of the 'vitellicle' so formed, fig. 134, c, contracting and uniting at the side opposite to the embryo at a sort of 'cicatrix, to which the last part of the slime adheres.' ${ }^{2}$ The vitellicle is richly vascular, and the surface next the yolk is augmented by rugx, the yolk in contact with which becomes more liquid, and loses its coagulability.

At about the fortieth hour in the Common Fowl the limbs begin to bud forth, and a vesicle to protrude from near the anal end of
 the intestine which, rapidly expanding, fig. $134, b$, spreads over the embryo, acquiring a elose adhesion to the amnios, ib. a, but remaining distinct from the vitellicle, ib. e, c, over which it spreads, finally inclosing the albumen, and interposing itself between the latter and the lining membrane of the shell. Bloodvessels called ' umbilieal,' fig. 134, i, are coextended with this bag, which Hunter ' called " allantois," from its containing urine.' ${ }^{3}$ But that it 'answers other important purpowes, must appear evident from its extent being far beyond what would answer that purpose. I conceive that the side of the bag which surrounds and is in contact with the albumen, acts as the chorion or phacenta, for it must be by this surface that the albumen is absorbed and the chick supported. The external part of the bag, which connes in contact with the shell, I conceive to act as lungs, for it is the only part that comes in contact with the air: and on opening an egg with the chick pretty far adranced I find that the blood in the veins is scarlet, while it is of the Modena colour in the arteries of the bag.' Schwann's experiments show that the developement of the chick may go on without oxygen to the fifteenth homr, and that the life of the germ is not destroyed till between the twenty-fourth and thirtieth hour, but that the presence of oxygen is essential to further developement. ${ }^{5}$ As the embryo

[^83]grows it turns upon its left side, exhibiting a profile view ; it then indents the yolk, and finally almost divides it into two portions.

The formation of the digestive tulue and glands closely follows the course described in Vol. I. pp. 604, 605, 606.

The embryo of the bird is that which best admits the obscrvation of the commencement of the developement of the organ of hearing by a superficial depression of the cephalic blastema, fig. $135, f$, to meet the process from the epencephalon, ib. e, which forms the acoustic nerve. The lining of the depression becomes, on the closure of the slit, the proper tunic of the labyrintll. ${ }^{1}$

The resicle of the labyrinth, f, swells into four dilatations, of which three are 'ampullar,' and the fourth 'cochlear:' the anpullar dilatations extend into very slender canals, at first almost in the same plane, by which they are brought into mutual communication : as the canals expand and elongate, they assume their characteristic relative positions as external, supcrior, posterior : the liinder end of the external canal being extended bencath the posterior canal. The cochlear dilatation curves as it elongates: an inner layer becomes distinct from the common membrane, and forms the acoustic lamina.

As in the developement of the eye, the production of the nerveprocess from the cerelbral centre is the first step, the infolding of the supcricial blastema to meet the nerve is the next: the socalled ' cutaneous follicle' becomes a circmmscribed sac or vesicle, in which the changes and developements next proceed, converting the vesicle into 'acoustic labyrinth' or 'eyeball.' In each case neural elements of two vertebre become modified to lodge and protect the sense-organs, forming respectively the recesses called 'otocrane' and 'orbit,' the one between the occipital and parictal vertebre, the other between the frontal and nasal vertebre. The part of the outer blastemal layer of the head which sinks to meet the process from the mesencephalic dilatation, rapidly changes its follicular into a vesicular state: the vesicle elongates, bending round the cell-mass in which the crystalline lens is formed (as in the Fish, Vol. I. fig. 423), and by the mecting of the two ende, the 'choroid fissure,' at the lower part of the eyeball, fige. 134, 13.5, results. The mesencephalic process, or 'optic nerve,' expands at

[^84]the back part of the circular sac, and, in the course of its mutation into eycball, lines its posterior part with the layer called retina, intcrrupted only by the cicatrix of the inferior and rapidly blended ends of the primitive eyc-sac. The transparent layer eovering the forc-part of that sac and the inclosed lens is metamorphosed into cornea. Other layers of the sac are differentiated into choroid, ciliary processes, iris; and a fold of the vascular layer protrudes throngh the choroid fissure as a persistent structure in birds, in which the ' pecten' significantly marks a curious stcp in the developement of the cye in all Vertebrates. Of the appendages of the eye the mombrana nictitans, fig. 137, a, is the first to appear, the lower lid and then the upper lid follow. It is a mistake to spcak of the labyrinth or eyeball as being formed by the integument, or beginning as 'cutaneous follicles,' for the structurcs of the skin are not differentiated when they first appear ; a layer of cellular or primitive blastemal tissuc represents the integument, and a greater number of cells is aggregated at the points which tend inward to meet the productions from the nervous centres. After the essential organs of sense are established, then is the skin developed and modificd morc or less for their protection, forming the outer car and the cyelids: but both passages arc closed by transparent membranes, as 'car-drum' and 'cornea.' Only in the case of the olfactory organ does the primitive depression, fig. 135, r, retain its outlet, and in the bird and other air-breathers, it also communicates with the air-passage: having the tegument superadded and modified, in most, as external nostril and nosc.

As in the Lizard and Snake (Vol. I. fig. 444), so in the Bird, the four vertebral segments constituting the head are shown ly the embryologieal characters and course of formation of the 'maxillary' arch, figs. 135, 136, a, the ' mandilyular arch,' ib. b, the 'hyoidcan arch,' ib. c, and the scapular arch, ib. d. The transitory branchial artc-
ries, fig. 136, from the aortic bulb traverse the tissue between the hyoidean and scapular arches.

The channels which return the blood from the vitellicle are the 'transverse' and 'longitudinal vitelline' veins: the first are so called because these trunks pass to the embryo at right angles to its axis; they are the largest returning channels: the longitudinal veins run parallel with the axis of the embryo and are of smaller size. The right anterior longitudinal vein, fig. 136, p^{\prime}, becomes the right precaval and receives the remains of the right transverse vitclline vein, ib. s, as the right vena azygos. The left anterior longitudinal vitelline vein, ib. p, is also persistent as the left precaval, and enters in the mature bird, as in the embryo, the posterior or lower (sacral) part of the auricle. The left transverse vitelline vein, $\mathrm{ib} . r$, is also subsequently reduced, by receiving only the vertebral veins of that side, t, to the condition of a so-called 'azygos vein.' The main trunk of the postcaval is the result of the returning channcls from the abdominal a viscera and the hind-limbs, at a later stage of developement. There is but one principal posterior longitudinal vitelline vein, ib. q, which anastomoses with the left transverse vein as it enters the embryo: the homotype of the right side appears as one of the ordinary small tributaries of the right transverse vein.

The auricle which by the dilatation of the left side, ib. u, appears to be double, receives the venous blood at its right division. The left onc, subsequently receiving the veins from the lungs, is ultimately separated from the left precaval and right auricle to which that vein is conducted and restricted.

The ventricular part of the heart, ib. v, at the secoud day of incubation, is in the form of a bent tube, curving from bchind downward, forward, to the right and upward, continued insensibly into the part representing the 'aortic bulb,' ib. f, in which the septum first appears, ultimately dividing the rentricle into two.

At this stage the piers of the maxillary arch, ib. a, appear as buds from beneath the eycballs; the naso-premaxillary process, ib. l, is above their interspace; the piers of the mandibular arch, il. b, b, and those of the hyoidean arch, ib. c, c, follow in close succession. The blastemal base of the scapular arch, ib. d, d, slightly projects at the sides of the 'fovea cardiaca:' the piers, now scparate, ultimately mect in front of the heart, and accompany it in its retrograde course. The mesencephalon, ib. m, is the largest segment of the brain, in eomection with the eyeballs, o, o.

When the heart has assumed its form, as such, distinct from the great trunks rising from it, the arteries from the base of the
ventricle appear, during the foctal cireulation of the chick, to be two: that to the right bifurcates, one division supplying the head and wings, the other winds over the right bronchus: that to the left also bifureates: its left division arches over the left brouchus and anastomoses with the right arch a little below and behind the apex of the heart: its right division arches over the back of the heart, bending rather to the right, and anastomoses with the right aortic arch, just above the other 'ductus arteriosus.' Eaeh of these divisions of the left primary artcrial trunk sends off a branch to its corresponding lung, and as the lung expands, and especially begins to act as such, toward the close of incubation, the blood is diverted into the pulmonary vessels, and the channels below them shrink and disappear. The left primary artery is retained as the trunk of the pulmonaries, and, through the changes in the interior of the ventricle, this arises exclusively from the ventricle answering to the 'right' in Mammals, whilst the retained aorta rises from -the 'left' ventricle. It arelies, however, over the right bronchus. There is no left aorta in birds distinct (as in fig. 335, A, Vol. I. p. 509) from the trunk (ib. p) which gives off the artery to the left lung: only one arterial trunk arises from the right ventricle instead of two.

The air-cells begin at the lower point of the lungs, like a small hydatid, and extend further and further into the abdomen, before the kidneys: they are at first full of a fluid; as they extend, they are, as it were, squcezed among the iutestines and at last fill with them the whole abdomen. Soon after other air-cells are forming. The lungs are, at first, free, as in Reptiles, but afterwards begin to be attached to the ribs and spine. In the female embryo we
 first 'obscrve two oriduets, one on each side' (as in fig. 127, g); but 'before latching the right seems to decay.' ${ }^{1}$ - There are two kinds of down on the chick, one long, which comes first, about two or three days before hatching; a second, or fine, down forms at the roots of the otlicr:' 'The little horny knob at the end of the bcak, fig. $137, b$, with which it hreaks the shell when arrived at full time, is also gradually forming into a more regular and determinate point, the progress of which is seen from the first figmee to the

[^85]sixth.' As the contents of the egg become condensed by embryonal developement, the air-carity, fig. $130, f$, expands. :The chick some time before birth has a kind of mixed action of life, for it breathes, and we can hear it pip and chirp in the egg ; and we find the adult circulation through and out of the heart is formed before birth : yet it is receiving its nourishment from the remaining slime.' ${ }^{2}$

The 'slime' or albumen is reduced to the small mass adhering to the cicatrix of the vitellicle, and with this and its yolk little decreased in bulk, it is taken into the abdomen, where it serves to nourish the chick in the first fecble days of its free life: the pedicle of the vitellicle communicates with a loop of the small intestinc. The allantois is left, lining the shell: the urachns is obliterated. The anus has a dorsal position near the hind end of the trunk in the nestlings, fig. 113, A.

The degree of developement under which the young bird quits the egg differs in different groups of the class. It is naked or covered with down only, and is dependent on the parents for shelter and support, in the orders Raptones, Scarsores, Volitores, Cantones, in the Rasorial suborder Gemitones (Doves, 1. 9) ; in the Grallatorial Cultrirostres (Herons, \&c. p. 9) ; in the Natatorial Longipennatce (Gulls, \&c. 1. 9), and Totipalmatce (Pelicans, \&c. p. 9). The young bird is exchnded well clothed and able to run or swim about and provide food for itself in the suborder Galuinacese, in the Cunsores, in the Natatorial Brevipennatze (Penguins, Awks, \&c.) and Lamellirostres (Duck, Goose, \&c.), and in all the Grallatores save the Cultrirostral gronp or part of it. Of these 'precocions' birds (Pracoces) most are polyganous, and the females hatch many young; whereas in the 'nursing' groups (Altrices) the species are monogamons, and have few young. ${ }^{3}$

[^86]
CIAPTER XXV

CHARACTERS AND PRIMARY GROUPS OF THE CLASS MAMMALEA.

§ 172. Class Characters. - Mammals are outwardly distinguished by a covering of hair, entire or partial, and (with two exceptions) by teats, fig. 138, a, b, whence the
 name of the class. ${ }^{1}$ All possess mammary glands and suckle the young : the embryo or foctus is developed in the womb. The male has a penis, and impregnation is preceded by intromission. The lungs, fig. 139, $7 g$, minutely cellular throughout, are suspended freely in a thoracic cavity separated by a musculo-tendinous partition or ' diaphragm,' ib. d, from the abdomen.

Mammals, like Birds, have a heart, ib. h, composed of two ventricles and two auricles, and have warm blood: they breathe quickly; but inspiration is performed chiefly

by the agency of the diaplragm; and the inspired air acts only on the capillaries of the pulmonary circulation.

[^87]The blood-dises are smaller than in Reptiles, and, save in the Camel-tribe, are circular. The right auriculo-ventricular valve is membranous, at least never entirely fleshy; and the aorta bends over the left bronchial tube. The abdominal aorta terminates by dividing beyond the kidneys into the iliac arteries, from which spring both the femoral and isehiadic branches: if continued beyond, it is as a caudal or sacro-median artery.

The kidneys, ib . k, are relatively smaller and present a more compact figure than in the other Vertebrate classes; their parenchyme is divided into a cortical and medullary portion, and the secreting tubuli terminate in a dilatation of the excretory duct, called the pelvis. They derive their secretion exclusively from the arterial system. Their veins, commencing by minute capillaries in the renal parenclyme, terminate generally by a single trunk on each side in the abdominal vena cava: they never anastomose with the intestinal veins.

The liver, ib. l, is generally divided into a greater number of lobes than in Birds. The portal system is formed by veins derived exelusively from the spleen and ehylopoietic viseera. The eystic duct, when it exists, always joins the hepatic, and does not enter the duodenum separately. The pancreatic duct is commonly single.

The mouth is elosed by soft flexible muscular lips:
 the upper jaw is composed of palatine, fig. 140, 20, maxillary, 21, and premaxillary, 22 , boner., and is fixed; the lower jaw consists of two rami, formed each by one bony piece, $\mathrm{ib} .30-32$, and articulated by a convex or flat coudyle, ib. 29, to the squamosal, ib. 27 , not to the tympanic, ib. 28.

The jaws of Mammals, with few exceptions, are provided with teeth. These are limited to the premaxillary, maxillary, and mandibular bones, and are there arranged in a single row; they are lodged in sockets, not anchylosed with the sulstance of the jaw. Only in the present elass are teeth implanted by two or more
fangs: when they are of limited growth, and usually molars : evergrowing teeth require the base to be kept open for the persistent pulp. Some Mammals are 'monophyodont,' ${ }^{1}$ or lave but one set of teeth: the majority are 'diphyodont,' ${ }^{2}$ or have two sets: none have more. The tongue is large, fleshy, with the apex more or less frec. The posterior nares are protected by a soft palate, and the larynx by an epiglottin, fig. l39, ep : the rings of the trachea are generally cartilaginous and incomplete behind: there is no inferior larynx. The œsophagus, ib. α, is continued without
 partial dilatations to the stomach, ib. g, which varics in its structure according to the nature of the food, or the quantity of nutriment to be extracted therefrom.

The vertebral bodics, fig. 141, c, are ossified fiom three centres, and present for a longer or shorter period of life a discoid epiphysis at each cxtremity. They are articulated by concentric ligaments with interposed glairy fluid, fig. 199, forming what are called the intervertebral substances; the articulating surfaces are generally flattened, but, in the neck of certain Ungulates, they are concave bchind and convex in front. The cervical vertebre, in all Manmals save two, are seven in number, neither more nor less. The atlas is articulated by concave zygapopliyses to two convex condyles, which are developed from the neurapophyses (cxoceipitals) of the last cranial vertebra.

The scapula is gencrally an expanded plate of bone; the coracoid, with two (monotrematous) exceptions, appears as a small process of the scapula. The sternum is usually narrow, and consists of a simple longitudinal series of boncs: the sternal ribs are gencrally cartilaginous. The ecntrums of two cranial vertebre (hasisphenoid and presphenoid) preserve their distinetness to a late period of growth, in the species where they ultimately coalesec.

[^88]The brain has a cerebellum with large lateral lobes, fig. 142, d, and the grey superficies much folded; the commissural fibres form, as they cross the under surface of the epencephalon, a defined tract or prominence called 'pons Varolii,' fig. 143, p. The optic

lobes, fig. 142, c, are medial in position and divided by a transverse furrow. The cerebral lobes, ib. b, are not only united by a round

commissure, but by a 'lyra' and hippeampal commissure, fig. $14 t, m$ from which is developed, in the majority of the clate,
a' corpus callosum' or great commissure, fig. 145, l. The rhinencephalon, fig. 142, ${ }^{\prime}$, is in contact with the prosencephalon, b, and sends off numerous olfactory nerves which perforate a 'cribriform' plate of the prefrontal.
§ 173. Mummalian Subclasses.-The primary subdivisions of the present class are characterised by conditions of the brain. ${ }^{1}$

When the hemisphcres are connected by the 'round commissure ' and ' hippocampal commissure' only, fig. 144, m, this cerebral condition is associated with the absence of a vascular chorion or placenta, and with prematurely born young, compared with the rest of the class (fig. 138 shows the natural size of the new-born Kangaroo of the largest species).

The ccrebral hemispheres are usually without folds, and leave, as in fig. 142, the cerebellum, d, olfactory lobes, a, and part of the optic lobes, c, exposed. The subclass so characterised is called Lyencefhala. ${ }^{2}$ Mammals of this low type existed as far back, in time, as the oolitic and triassic periods, and are the oldest known. ${ }^{3}$

The next stage of complexity in the Mammalian brain is where the 'corpus callosum,' fig. $145, l$, is present; but connects hemispheres as little advanced in relative bulk or outward character as in the preceding subclass; the surface being smooth, fig. 146, e, or with folds, in the largest members of the group, not more numerous or complex than in the larger Lyencephala. The hemispheres, ib. e, leave the cerebcllum, c, d, and part of the olfactory lobes, f, exposed. The subclass so characteriscd is called Lissencerimala. ${ }^{4}$ In the species with this condition of brain the testes remain in the abdomen, or are protruded into a temporary scrotum only at the brecding period, to be again retracted : in most there is a common external urogenital aperturc: there arc two precaval veins. The squamosal in most, and the tympanic in many, retain their primitive condition as distinct bones. The orbits have not an entire.

[^89]rim of bone. Besides these general characters of affinity to Birds and Reptiles, there are other striking indications of the same low position in particular orders or genera of the subclass. Such, e.g., are the cloaca, convoluted trachea, supernumerary cervical vertebre and their floating ribs, in the Three-toed Sloth; the irritability of the muscular fibre, and persistence of contractile power in the Sloths and some other Bruta; the long, slender, beak-like edentulous jaws and gizzard of the Anteaters; the imbricated scales of the equally edentulous Pangolins, which have both gizzard and gastric glands like the proventricular ones in Birds; the dermal bony armour of the Armadillos like that of loricated Saurians; the quills of the Porcupine and Hedgehog; the proventriculus of the Dormouse and Beaver; the prevalence of disproportionate developement of the hind-limbs in the Rodentia; coupled, in the Jerboa, with confluence of the three chicf metatarsals into one bone, as in Birds; the keeled sternum and wings

of the Bats; the aptitude of the Cheiroptera, Insectivora, and certain Rodentia to fall, likc Reptiles, into a state of torpidity, associated with a corresponding faculty of the heart to circulate carbonised or black blood:-these, and the like indications of co-affinity with the Lyencephata to the Oviparous air-breathing Vertebrata, concur with the cerebral character in demonstrating the low position of the Lissencephala in the Mammalian class.

The third leading modification of the Mammalian brain is such an increase in the relative size of the cerebrum, fig. $147, b$, that it extends over half or more of the cerebellum, and of the olfactory lobes. The surface of the hemispheres may be smooth, or with few and simple folds, in the smallest species; but, as a rule, it is disposed in many gyri or convolutions, fig. 148,
whenee the name Gyrencepilala, ${ }^{1}$ proposed for this third subelass of Mammalia.

In this subelass, there are no sueh marks of affinity to the Oviparous Vertebrates as have been instaneed in the preeeding. The testes are eoneealed, in allaptation to aquatie life, in Cetaeea; but, in the rest of the subelass, with the exeeption of the Elephant, they pass out of the abdomen, and the Gyrencephalous quadrupeds, as a general rule,
 have a serotum. The vulva is externally distinet from the anus. With the exeeption, again, of the Elephant, the blood from the head and anterior limbs is returned to the right auriele by a single preeaval trunk. The Mammalian modifieation of the Vertebrate type attains its highest physieal perfeetions in the Gyrenceplata, as manifested by the bulk of some, by the destruetive mastery of others, by the address and agility of a third order. And, through the superior psyehological faeulties-an adaptive intelligenee predominating over blind instinet-whieh are asso-
 eiated with the higher developement of the brain, the Gyrencephala supply those speeies whieh have ever formed the most eherished eompanions and scritors, and the most valuable sources of wealth and power, to Mankind.

In Man the brain presents an aseensive step in developement, higher and more strongly marked than that by which the breeeding subclars was distinguished from the one below it. Although in the highest Gyrencepheth the cercbrum, figs. 148, ${ }^{1}$ रupów, I wind abont; є̇ชкє́филоs, brain Lxiv'.
$149, b$, may extend over the cercbellum, d, in Man not only do the cerebral hemispheres, fig. 149, b, overlap the olfactory lobes and cerebellum, d, but they extend in advance of the one, and further back than the other. Their posterior developement is so marked, that anatomists have assigned to that part the character of a third lobe; it is peculiar, with its proportionally developed posterior ventricular horn and 'hippocampus minor,' to the genus IIono. ${ }^{1}$ Concomitantly with the correspondingly developed anterior lobes of the cerebrum, the ventricle is, in like manner, produced into a
${ }^{1}$ Kuhl in Ateles Belzebuth, ${ }^{\text {a }}$ Tiedemann in the Macaeque ${ }^{\text {b }}$ and Orang, ${ }^{c}$ Vrolik in the Chimpanzec, ${ }^{\text {d }}$ and myself in the Gorilla, ${ }^{\text {e }}$ bave severally shown all the homologous parts of the human cerebral organ to exist, under modified forms and low grades of developement, in Quadrumana.

Kuhl rightly eharacterises the homologue of the posterior cornu, which he found in a platyrrhine monkey, Anfang des bintern, dritten Horns des Seitenventricels ' (op. cit. p. 70)-'the beginning of the posterior or third horn of the lateral ventricle.' Tiedemann, with equal aceuracy, defines the answerable part in the catarrhine quadrumana, as, Serobiculus parvus loco cornu posterioris (op. cit. p. 14). In regard to the posterior eornu in the brain of the Orang he is silent as to any 'hippocampus minor.' It exists, however, in the condition deseribed by Vrolik, in that Ape and in the Cbimpanzee, as "une éminence que nous croyons avoir le droit de nommer indiee de pes hippocampi minor' (Verst. en Mededeel. der Kon. Akad. 1862, p. xiii.) These 'beginnings' and 'indications' of structures which reach their full developement in Man in no way affect the value of the latter as zoological eharaeters. In proponnding them as such to the Linnæan Society in 1857, I forbore to encumber my nemoir with reference to facts known to all who possessed the clements of Comparative Anatomy. Tiedemann's definition was the accepted one :-' Pedes hippocampi minores vel ungues, vel calcaria avis, quæ a posteriore corporis eallosi tanquam processus duo medullares proficiscuntur, inque fundo cornu posterioris plicas graeiles et retroflexas formant, in cerehro Simiarun desunt; nee in cerebro aliorum a me examinatorum manmalium oecurrunt; IIomini ergo proprii sunt.' (Ib. p. 51.) In like manner Cuvier had characterised the species of his order Quadrumana as having, 'Ponce libre et opposable au lieu du grand orteil.' And he rightly affirms: 'L'homme est le scul animal vraiment bimane et bipide.' (Règne Animal, i. p. 70.) To adduce leginnings of structures in one group which reach their full developement in another, as invalidating their zoological application in sueh higher gronp, is pucrile; to reproduce the facts of such incipient and indieatory structures as new discoveries is ridiculous; to represent the statement of the zoological character of a higher group as a denial of the existence of homologons parts in a lower one is disgraceful. Mr. Flower was not the first to see in the hippocampal commissure the beginning of the corpus callosum : the homolognes of 'cornu posterius' and of 'hippocampus minor' were known in the Orang before Prof. Rolleston : and the homologics of the bones of the hind foot in mammals had been determined before Prof. IIuxley pronounded them to show that the hind thumb of the Ape was a great tee, and that Man was not the only animal who possessed two hands and two feet.

[^90]hornlike form, in advance of the 'corpus striatum.' The superfieial grey matter of the cerebrum, through the number and depth of the convolutions, attains its maximum of extent in Man.

Peculiar mental powers are assoeiated witl this highest form of brain, and their consequenees strikingly illustrate the value of the ecrebral eharaeter; aecording to my estimate of which, I am led to regard the genus Homo as not merely a representative of a distinet order, but of a distinct subelass of the Mammalia, for whiel I have proposed the name of "Archencepial a." "

With this preliminary definition of the organie characters, which guide to a eonception of the natural primary groups of the class Mammalia, I next proeced to define those of seeondary importanee, or the subdivisions of the foregoing subclasses.
§ 174. Characters of Orters.- In the Lyeneephalous Manmalia some have the optie lobes less definitely divided into 'eorpora quadrigemina' than others. Those with the more simple optie lobes are 'edentulous' or without ealeified teeth, are devoid of external ears, serotum, nipples, and ovidueal fimbrix; they are

[^91]true 'testiconda,' and are ovoviviparous, fig. 151: they have a coracoid bone extending from the scapula to the sternum, and also an epicoracoid and episternum, as in Lizards; they are unguiculate and pentadactyle, ${ }^{1}$ with a supplementary tarsal bone supporting a perforated spur in the male. The order so characterised is called 'Monotremath,' in rcference to the single exeretory and generative outlet, which, however, is not peculiar to them among Mammalia. The Monotremes are insectivorous, and are limited to Australia and Tasmania; where they are represented by the Platypus or Duek-Mole (Ornithorhynchus),
 and by the Spiny Anteater (Echidna).

The Marsuplalia are Mammals distinguished by a peenliar poueh or duplieature of the abdominal integument, which in the males is everted, forming a pendulous bag containing the testes, and in the females is inverted, forming a hidden poueh containing the nipples and usually sheltering the young for a certain period after their birth: they have the marsupial bones, fig. $152, \mathrm{~m}$, in common with the Monotremes; a mueh-varied dentition, espeeially as regards the number of ineisors, but usually ineluding four true molars; and never more than three premolars: the angle of the lower jaw is more or less inverted.

With the exeeption of one genus, Didelphys, whieh is Ameriean, all the known existing Marsupials are Melanesian, i. e. belong to Australia, Tasmania, New Guinea, and some adjaeent isles. The grazing and browsing Kangaroos are rarely seen abroad in full daylight, save in dark rainy weather. Most of the Marsupialia are noeturnal. Zoological
 wanderers in Australia, viewing its plains and seaming its serubs hy broad daylight, are struck by the seeming absenee of manmalian life; but during the brief twilight and dawn, or by the light of the moon, numerous forms are seen to emerge from their hiding-places and illustrate the variety of marsupial life with which many parts of the eontinent abound. We may associate
with their low position in the mammalian scalc the prevalent habit amongst the Marsupialia of limiting the exercise of the faculties of active life to the period when they are shielded by the obscurity of night.

The Lissencephala or smooth-brained Placentals form a group,
 equivalent to the Lyencephala or Implacentals, and include the following orders, Rodentia, Insectivora, Cheiroptera, and Bruta. The Rodentia are characterised by two large and long curved incisors in each jaw, fig. 153, i, separated by a wide interval from the molars; and these teeth are so constructed, and the jaw is so articulated, as to serve in the reduction of the food to small particles by

acts of rapid and continucd gnawing, whence the name of the order. The orbits, ib. o, are not seprarated from the temporal fosse. The testes pass periodically from the abdomen
into a temporary scrotum, and are associated with prostatic and vesicular glands. The placenta is commonly diseoid, but is sometimes a circular mass (Cavy), or flattened and divided into three or more lobes (Lepus). The Beaver and Capybara are now the giants of the order, which chiefly consists of small, numerous, prolific and diversified unguiculate genera, subsisting wholly or in part on vegctable food. ${ }^{1}$ Ccrtain squirrels achieve short flights by means of expansions of skin between the fore and lind limbs, fig. 154. Some Lemmings perform remarkable migrations, the impulse to which, unchecked by dangers or any surmountable obstacles, seems to be mechanical. Many Rodents build very artificial nests, and a few manifest their constructive instinct in association. In these inferior psyehical manifestations we are reminded of Birds. Many Rodents hibernate like Reptiles. They are distributed over all continents. They have not been found in older deposits than eocene tertiary.

The transition from the Marsupials to the Rodents is made by the Wombats; and the transition from the Marsupials is made, by an equally easy step, through the smaller Opossums to the Insectivora. This term is given to the order of small smooth-brained Mammals, the molar tecth of which are bristled with cusps, fig. 150, m, p, and are associated with canines and incisors: they are
 unguieulate, plantigrade, and pentadaetyle, and they have eomplete clavieles. The testes pass periodically from the abdomen into a temporary scrotum, and are associated with large prostatic and resicular glands: like most other Lissencephala, the Insectivora have a diseoid or eup-shaped placenta. Their place and office in South Ameriea and Australia are fulfilled by Marsupialia; but true Insectivora exist in all the other eontinents.

The order Cheiroptera, with the exception of the modification of their digits for supporting the wide webs that serve as wings, fig. 156, repeat the chicf characters of the Insectivora; but a few of the larger speeies are frugivorous and have corresponding modifieations of the tecth and stomach. The mammæ are pectoral in position, and the penis is pendulous, in all Cheiroptera.

The most remarkable examples of periodically torpid Mammals are to be found in the terrestrial and volant Insectivora. The frugivorous Bats differ much in dentition from the true Cheiroptera, and would seem to conduct, through the Colugos or Flying Lemurs, directly to the Quadrumanous order. The

Cheiroptera are cosmopolitan. They have not been found in older deposits than eocene tertiary.

The order Bruta (Edentate of Cuvier) includes two gencra which are devoid of teeth, figs. 157 and 158 ; the rest possess those organs, whieh, however, have no true cmamel, are never displaced by a second series, and are very rarely implanted in the premaxillary bones. All the species have very long and strong claws. The ischium as well as the ilinm unites with the sacrum ; the orbit is not divided from the temporal fossa. Besides the illustration of affinity to the oviparons Vertebrata which the Three-toed Sloths afford by the supernumerary cervical vertebre supporting false ribs and by the convolntion of the windpipe in the thorax, it may
be remarked that the unusual number-three and twenty pairsof ribs, forming a very long dorsal, with a short lumbar, region of the spine in the Two-tocd Sloth, recalls a lacertine structure. The same tendency to an inferior type is shown by the abdominal

testes, the single eloacal outlet, the low cerebral developement in all Bruta, by the bony scutes of the Armadillos and the horny scales of the Pangolins, fig. 158; by the absence of medullary canals in the long bones in the Sloths, and by the great tenacity of life and long-enduring irritability of the muscular fibre, in both the Sloths and Anteaters.

The order Bruta is but scantily represented at the present period. One genus, Mernis or Pangolin, is common to Asia and Africa; the Orycteropus is pcculiar to South Africa; the rest of the order, consisting of the genera Afyrmecophaga, or true Antcaters, Dasypus or Armadillos, and Bradypus or Sloths, are confined to South America. The carliest known fossil of this order is of miocene agc. ${ }^{1}$

In procecding to con-ider the subdivisions of the Gyrencephala, we seem at first to descend in the scale in meeting with a group of animals in that subclass, having the shape and life of Fishes; but a high grade of mammalian organisation is masket beneath this form. The Gyrencephala are primarily subdivided, aceord-

[^92]
ing to modifications of the locomotive organs, into three series; viz. Mutilata, Ungulata, and UnIniculata, the maimed, the hoofed, and the clawed series; and these are of higher value than the ordinal divisions of the Lisseacephala; just as those orders are of higher value than the representative families of the Marsupials.

The Mutilata, or maimed Mammals with folded brain, are so called because their hind-limbs seem, as it were, to have been amputated, fig. 159, 66 ; they possess only the pectoral pair of limbs, and these in the form of fins, ib. 54 : the hind end of the trunk expands into a broad, horizontally flattened, tegumentary eaudal fin. They have large brains with many and deep convolutions, are naked, and have neither neek, scrotum, nor external ears. Like the wingless group among Birds, the present includes speeies allied to, or derived from, different types.

The first order, ealled Cet.acea, in this division are either edentulous, fig. 159 , or monophyodont: the latter have teetl of one kind and usually of conical shape: the pectoral digits, ib. in., may have more than three phalanges. They are testiconda and have no 'resieule seminales.' The mamme are pudendal; the placenta is diffused ; the external nostrils - single or double-are on the top of the head, and ealled spiraeles or 'blow-holes.' They, for the most part, range the occan;
though with certain geographical limits as respects species. They feed on fishes or marine animals. Some undoubted Cetacean fossils are of eocene age : and there are indications of the order in the upper oolitic period. ${ }^{1}$

The second Mutilate order, called Sirenia, have teeth of different kinds, incisors, i, fig. 160, which are preceded by milk-teeth, $d i$, and molars, m, with flattened or ridged crowns, adapted for vegetable food. No digit has phalanges in excess of the mammalian number, three. The nostrils are two, situated at the upper part of the snout; the lips are beset with stiff bristles; the mamme are peetoral; the testes are abdominal, but are associated with vesiculæ seminales. The Sirenia exist near eonsts or ascend large rivers; browsing on fuci, water

Molars of lower jaw, African Elephant. plants, or the grass of the shore. The oldest known Sirenian is of miocene age. There is much in the organisation of this order that indicates its affinity to members of the succeeding division.

In the Ungulata the four limbs are present, but that portion of the toe which toucles the ground is ineased in a hoof, figs. 162 and 163, which blunts it sensibility and deprive the foot of prelensile power. With the limbs restricted to support and

[^93]loeomotion, the Ungulata have no elavicles; the fore-leg is prone: the molar teeth are massive, with infleeted folds of enamel: they feed on vegetables.

A remarkable order, most of the members of which have passed away, is characterised by two incisors in the form of long tusks; in one genus (Dinotherium) projecting from the under jaw, in another genus (Elephas) from the upper jaw, fig. 162, i, and in some of the speeies of a third genus (Mastodon) from both jaws. There are no canines; the molars are few, large, and

transterely ridged, fig. 161, the ridges sometimes few, sometimes mammillate, often numerous and with every intermediate gradation. The nose is prolonged into a cylindrical trunk, flexible in all directions, highly sensitive, and terminated by a prehensile appendage like a finger, fig. 162, n : on this organ is founded the name Proboscidia given to the order. The feet are pentadactyle, but the digits are outwardly indieated only by divisions of the hoof; the testes are abdominal; the placenta is annular ; ${ }^{1}$ the mamma are pectoral.

[^94]The present order rests with the Ungulata mainly upon its hoofs: the dentition and some other partieulars of the organisation of the Elephant, indieate an affinity to the Rodentia: the abdominal testes, the two precavals and exposed cerebellum, are characters of the inferior subclasses: but the cerebrum, concomitantly with the bulk of the mammal, is large and well convoluted, and the psyehical qualities correspond. The earliest known cvidences of Proboscidian Ungulates are from miocene strata.

The typical Ungulate quadrupeds are divided, according to the odd or even number of the toes, into Perissodactyla and ArtioDactyla. ${ }^{1}$ In the former the hoofs may be one (Horse) or three (Rhinoceros, fig. 163): in the latter the hoofs may be two (Giraffe), or four (Hippopotamus), or two functional and two rudimental (most Ruminants, fig. 164).

In the Perissodactyle Ungnlata-odd-toed

Perissudactyle hoofed limb Hind leg, Rhinoceros. in regard to the hind-foot in all, and with the fore-foot unsymmetrically tetradactyle in the Tapir--the dorsolumbar vertebre, fig. $165, \mathrm{C}, \mathrm{D}$, differ in number in different species, but are never fewer than twenty-two; the femur has a third trochanter, ib. 65; and the medullary artery penetrates the back-part of its shaft. The fore-part of the astragalus is divided into two very unequal facets. The os magnum and the digitus medius which it supports are large, in some disproportionately so, and the digit is symmetrieal: the same applies to the ectocuneiform and the digit which it supports in the liind-foot. If the species be horned, the horn is single: or, if there be two, they are placed on the median line of the head, one behind the other, each being thus an odd horn. The nasals
 expand postcriorly. ${ }^{2}$ There is a well-developed post-tympanic process which is separated by the true mastoid from the paroccipital in the Horse, but unites with the lower part of the paroccipital in the Tapir, and seems to take the place of the mastoid in the Rhinoceros and Hyrax. The hinder half, or a larger proportion

[^95]of the palatines enters into the formation of the posterior nares, the oblique aperture of which commences in advance cither of the last molar, or, as in most, of the penultinate one. The pterygoid process has a broad and thick base, and is perforated lengthwise by the cetocarotid. The crown of from one to three of the linder premolars is as complex as those of the molars : ${ }^{1}$ that of the last lower milk-molar is commonly bilobed. To these osteological and

dental characters may be added some important modifications of internal structure, as, e.g., the simple form of the stomach and the capacious and sacculated carcum, which equally evince the mutual affinities of the Perissodactyle hoofed quadrupeds, and their clains to be regarded as a natural group of the Ungulata. The placcnta is replaced by a diffused rascular villosity of the chorion in all the recent genera of this order, excepting the little Hyrax, in which there is a localised annular placenta, with decidua, as in the Elephant. But the diffused placenta occurs in some genera of the next group, showing the inapplicability of that character to exact classification. The oldest known Perissodactyles are from the lowest tertiary strata. Many extinct genera, e.g. Coryphodon, 1'liolophus, Lophiodon, Tapirotherium, Palaotherium, Ancitherium, Hipparion, Acerotherium, Elasmotherium, \&c., have been discovercd, which once linked together the now broken series of

[^96]Perissodactyles, represented by the existing genera Rhinoceros, Hyrax, Tapirus, and Equus.

In the even-toed or 'artiodactyle 'Ungulates, the dorso-lumbar vertebre are the same in number, as a general rule, in all the species, being nineteen, fig. 166, d, l. The vertebral formule of the Artiodactyle skeletons show that the difference in the number of the so-called dorsal and lumbar vertebre does not affeet the

number of the entire dorso-lumbar series: thus, the Indian Witd Boar has d. 13, l. $6=19$; the Domestic Hog and the Pcccari have $d .14, l .5=19$; the Hippopotamus has $d .15, l .4=19$; the (inu and Aurochs have d. $14, l .5=19$; the Ox and most of the true Ruminants have d. $13, l .6=19$; the aberrant Ruminants have $d .12, l .7=19$. The natural character and affinities of the Artiodactyle group are further illustrated by the absence of the third troehanter in the femur, ib. 65, and by the place of perfora-
tion of the medullary artery at the fore and upper part of the shaft, as in the Hippopotamus, the Hog, and most of the Ruminants. The fore part of the astragalus is divided into two equal or sub-equal facets: the os maguum does not exceed, or is less than the unciforme, in the earpus; and the ectocuneiform is less, or not larger, than the cuboid, in the tarsus. The digit answering to the third in the pentadactyle foot is unsymmetrical, and forms, with that answering to the fourth, a symmetrical pair. If the species be horncd, the horns form one pair or two pairs; they are never developed singly, of symmetrical form, from the median line. The post-tympanic does not project downward distinctly from the mastoid, nor supersede it, in any Artiodactyle; and the paroccipital always exceeds both those processes in length. The bony palate extends further back than in the Perissodactyles ; ${ }^{1}$ the hinder aperture of the nasal passages is more vertical and commences posterior to the last molar tooth. The base of the pterygoid process is not perforated by the ectocarotid artery. The crowns of the premolars are smaller and less complex than those of the true molars, usually representing half of such crown. The last milk-molar is trilobed.

To these osteological and dental characters may be added some modifications of internal structure, as, e.g., the complex form of the stomach in the Hippopotamus, Peccari, and Ruminants; the comparatively small and simple cecum and the spirally folded eolon in all Artiodactyles. The placenta is diffused in the Camel-tribe, Chevrotains, ${ }^{2}$ and Non-ruminants; is cotyledonal in the true Ruminants. The oldest known Artiodactyles were nonruminants, and from cocene beds. Many of the extinct genera, e. g. Chœeropotamus, Anthracotheriun, Hyopotamus, Entelodon, Dichodon, Merycopotamus, Xiphodon, Dichobune, Anoplotherium, Microtherium, \&c., linked together the now broken series of Artiodactyles, represented by the existing genera, Hippopotamus, Sus, Dicotylcs, Camelus, Auchcnia, Moschus, Camclopardalis, Cervus, Antclope, Ovis, and Bos.

A well-marked, and at the present day very extensive subordinate group of the Artiodactyles, is called Ruminantia, in reference to the second mastication to which the food is sulbject after having been swallowed; the act of rumination requiring a peculiarly complicated form of stomach. The Ruminants have the ' cloven foot,' i.e. two hoofed digits on each foot forming a symmetrical pair, as by the cleavage of a single hoof; in most species two small supplementary hoofed toes are added, fig. $166, s p$.

[^97]The metacarpals of the two functional toes coalesce to form a single 'cannon-bone,' fig. 166, 57, as do the corresponding metatarsals, ib. 69. The Camel-tribe have the upper incisors reduced to a single pair; in the rest of the Ruminants the upper incisors are replaced by a callous pad, figs. 167, 168. The lower canines, fig.168, c, are contiguous, and, save in the Camel-tribc, similar, to the six lower incisors, forming part of the same

Ruminant skull, Giraffe. terminal series of eight teeth, between which and the molar series there is a wide interval. The true molars have their grinding surface marked by two double crescents, the convexity of which is turned inward in the upper, fig. 168, *, and outward in the under jaw, fig. 169, *.

Many fossil Artiodactyles, with similar molars (Dichodon, Microtherium, \&e.), appear to have differed from the existing Ruminants ehiefly by retaining structures which in them are transitory and embryonic, as, e.g., upper ineisors and eaniner, first premolars, and separate metacarpal and metatarsal bones; these are among the lost links that once connected more intimately the Ruminants with the Hog and Iippopotamit.

The third division of the Gyrenerphuta enjoy a higher degree
of the sense of touch through the greater number and mobility of the digits, and the smaller extent to which they are covered by horny matter. This substance forms a single plate, in the shape of a claw or nail, which is applied chiefly to one of the surfaces of the extremity of the digit, leaving the other, usually the lower, surface possessed of its tactile faculty, fig. 170; whence the name Unguiculata, which, in the present classification, is restricted to this group. All the species are 'diphyodont,' and the teeth have a simple investment of enamel.

The first order, Carnivora, includes the beasts of prey, properly so called. With the exception of a few Seals, the incisors, fig. $171, i$, are $\frac{3-3}{3-3}$ in number; the canines, ib. $c, \frac{1-1}{1-1}$, always longer than the other teeth, and usually exhibiting a full and perfect developement as lethal weapons; the molars, ib. p, m, graduate from a trenchant to a tuberculate form, in proportion as

the diet deviates from one strictly of flesh to one of a more miscellaneous kind. The clavicle is rudimental or absent ; the innermost digit is often stunted or absent; there are no vesicule seminales; the teats are abdominal ; the placenta is zonular. The Carnivora are divided, according to modifications of the limbs, into 'pinnigrades,' 'plantigrades,' and 'digitigrades.' In the

Pinnigrades (Walrus, Seal-tribe) both fore and hind feet are short, and expanded into broad, webbed paddles for swimming, fig. 173, the hinder ones being fettered by continuation of integument to the tail, fig. 172. In the Plantigrades (Bear-tribe) the whole or nearly the whole of the hind foot, fig. 174, forms a sole, and rests

on the ground. In the Digitigrades (Cat-tribe, Dog-tribe, \&e.) only the toes toueh the ground, the heel, $c l$, being much raised, fig. 175.

It has been usual to plaee the Plantigrades at the head of the Carnivora, apparently because the higher order, Quadrumana, is plantigrade ; but the affinities of the Bear, as evidenced by internal structure, e. g. the renal and genital organs, are closer to the Seal-tribe; the broader and flatter pentadactyle foot of the plantigrade is nearer in form to the flipper of the Seal than is the more perfect digitigrade, retrac-tile-clawed, long and narrow hind foot of the feline quadruped, which is the lighest and most typical of the Carnivora. The oldest known speeics of the order are of eoceue tertiary date.

The next perfection which is
 superinduced upon the unguiculate limb is such a modification vol. 1 .
in the size, slape, position, and direction of the innermost digit, that it can be opposed, as a thumb, to the other digits, thus constituting what is termed a 'hand.' Those Unguiculates which lave both fore and hind limbs so modified, or at least the hiud limbs, figs. 176, 180, form the order Quadrumana. The incisors are commonly $\frac{2-2}{2-2}$, and the molars $\frac{3-3}{3-3}$, broad and tuberculate; they have perfect clavicles, an os penis, pectoral

mamme, vesicular and prostatic glands, a simple or slightly bifid uterus, and a discoid, sometimes double, placenta. The Quadrumana have a well-marked threefold geographical as well as structural division. The Strepsirhines are those with curved or twisted terminal nostrils, with much-modified incisors, commonly $\frac{3-3}{3-\frac{3}{3}}$; premolars $\frac{3-3}{3-8}$, Lichanotus, fig. 177, or $\frac{2-2}{2-2}$ in number, and

molars with sharp tubercles; the second digit of the hind limb has a claw. This group includes the Galagos, Pottos, Loris, Ayc-Ayes, Indris, and the true Lemurs; the three latter genera being restricted to Madagasear, whence the group diverges in one
direetion to the continent of Afriea, in the other to the Indian Arehipelago. The Platyrhines are Quadrumana with the nostrils simple, subterminal, and wide apart ; premolars $\frac{2-3}{\frac{2-3}{3-3} \text { in number, the }}$ molars with blunt tubereles, fig. 178; the thumbs of the fore-hands not opposable, or wanting ; the tail in most prehensile ; they are peeuliar to South Ameriea. The Catarhines have the nostrils oblique and approximated below, and opening above and behind the muzzle : the premolars are $\frac{2-2}{2-2}$ in number, fig. 179 ; the thumb of the forehand is opposable. They are restrieted to the Old World, and, save a single species on the roek of Gibraltar, to Afriea and Asia. The highest organised family of Catarhines is tailless, and offers in the Gorilla, or, as some contend, the Siamang, fig. 180, the nearest approach to the human type.

In all the tailless A pes the pelvic limbs are short, and, like the longer peetoral ones, are organised for grasping. The pelvis is long and narrow; the spine shows one eurve, and artieulates with the hinder part of the skull. There is a sexual distinetion in the teeth, the canines being long and laniariform in the males. All Quadrumana are elothed with hair. The oldest known species of the Quadrumanous order are of mioeene date.

The struetural modifieations in the genus Homo,-sole representative of the A rchencepherla,
-more especially those of the pelvic limbs, by which the ercet stature and bipedal gait are maintained,-are sucl as to claim for Man, on merely external zoological eharacters, ordinal distinction, at least. The consequences of the liberation of one pair of limbs from all scrvice in station and progression, due to the extreme modification of the other pair for the exclusive discharge of those functions, are greater, and involve a superior number and quality of powers, than those resulting from the change of an ungulate into an unguiculate condition of limb: and they demand, therefore, an cquivalent value in a zoological system. But, as I have elsewhere argued, Man's psychological powers, in association with his extraordinarily de eloped brain, entitle the group which he represents to rank with the primary divisions of the class Memmatia founded on cerebral characters. In this subclass Man forms but one genus, Homo, and that genus but one order, called Bmini, on account of the opposable thumb being restricted to the upper pair of limbs. In every Ape the pelvic limb is terminated by a 'hand,' fig. 176 ; in every Man by a ' foot,' fig. 181. ${ }^{1}$ In Bimana the testes are scrotal; their serous sae does not communicatc with the abdomen; they are associated with vesicular and prostatic glands. The penis is pendulous, without bone, and the prepuce has a freenum. The mamme are pectoral. The placenta is a single, subcircular, cellulo-rascular, discoid body.

Man is naked, and is the sole terrestrial Mammal in that predicament: of the partial growths of hair, the chief protects the head, and is distinctive of sex.

[^98]The dentition of the genus Homo is redueed to thirty-two teeth by the suppression of the outer incisor and the first two premolars of the typical series on each side of both jaws, the dental formula being:-

$$
\text { i. } \frac{2-2}{2-2}, c \cdot \frac{1-1}{1-1}, p \cdot \frac{2-2}{2-2}, m \cdot \frac{3-3}{3-3}=32 .
$$

The teeth are of equal length, show no sexual distinctions, and there is no break in the series; they are subservient in Man not only to alimentation, but to beanty and to speech, fig. 182.

The human foot is broad, plantigrade, with the sole, not inverted as in Quadrumana, but applied flat to the ground; the

leg, fig. 183, 66 , bears vertieally on the foot; the lieel, 68 , is expanded beneath; the toes are short, but with the innermost, i, longer and much larger than the rest, forming a 'hallux' or great toe, whieh is placed on the same line with, and cannot be opposed to, the other toes: the pelvis, 62,63 , is short, broad, and wide, keeping well apart the thighs; and the neek of the femur is long, and forms an open angle with the shaft, 65, increasing the basis of support for the trunk. The whole vertebral column, with it, slight alternate curves, and the well-poised, short, but capacion: suloglobular skull, are in like harmony with the requirements of
the erect position. The midely-separated shoulders, with broad
 scapule and complete clavicles, 58 , give a favourable position to the upper limbs, now liberated from the serviee of locomotion, with complex joints for rotatory as well as flcxile movements, and terminated by a hand of matehless perfection of strueture the fit instrument for executing the behests of a rational intelligenee and a free will. Hereby, though naked, Man can clothe himself, and rival all native vestments in warmth and beauty ; though defenceless, Man can arm himself with every variety of wcapon, and become the most terribly destructive of animals. Thus he fulfils his destiny as the master of this earth, and of the lower Creation.

The system of Cuvier being still in use in some estimable works, and the one aecording to which groups of Mammals are most commonly referred to in physiological and paleontological propositions, an outline thereof, as applied to that class, is here appended, with a similar outline of the classification adopted in the present work.
table of the subclasses and orders of the mammalia, according to cuvier. ${ }^{1}$
\quad EXAmpLz
Man
Ape
Marmoset
Lemur
Bat
Hedgehog
Shrew
Mole
Bear
Dog
Seal
Opossum
Phalanger
Kangaroo
Wombat
Rat
Ifare
Sloth
Armadillo
Anteater
Echidna
Ornithorhy
Elephant
IIog
Tapir
Horse
Sheep
Dugong
Whale
\qquad $\left\{\begin{array}{l}\text { Insectivora } \\ \text { Carnivora }\end{array}\right\} \begin{aligned} & \text { Didelphys }\end{aligned}$ Phalangista $\left\{\begin{array}{l}\text { Macropus } \\ \text { Phascolomys }\end{array}\right.$ Phascolomys
Claviculata . $\left\{\begin{array}{l}\text { Claviculavialata } \\ \text { Non-clavicula }\end{array}\right.$
Bradypus
Dasypus $\left\{\begin{array}{l}\text { Dasypus } \\ \text { Myrmecophaga } \\ \text { Monotremata }\end{array}\right.$ Monotremata $\left\{\begin{array}{l}\text { Ordinaria } \\ \text { Solidungula }\end{array}\right.$ Solidungula. $\left\{\begin{array}{l}\text { Ilerbivora } \\ \text { Ordinaria }\end{array}\right.$
${ }^{2}$ Written 'Carnassiers' by Cuvier, ib.

order
 Quadromana

$\square \longrightarrow$
With thrce kinds
of teeth

Carnaria ${ }^{2}$

Marsopialia
Without canines Rodenta
Edentata
Without incisors Edentata

MUTILATA ('point du tont d'extrémités posté- Ceracea

UNGULATA

xxiv. vol. i. p. 65.
class
Mammalia
'TABLE OF THE SUBCLASSES AND ORDERS OF THE MAMMALIA, $\triangle C C O R D I N G ~ T O ~ T I I E ~ C E R E B R A L ~ S Y S T E M . ~$
\quad Example
Man
Ape
Marmoset
Lemur
Dog
Bear
Seal
Hog
Sheep
IIorse
Tapir
Elephant
Dinothere
Sea-eow
Dugong
Porpoise
Whale
Sloth
Armadillo
Auteater
Roussette
Bat
Mole
Hedgehog
Shrew
Hare
Rat
Wombat
Iangaroo
Phalanger
Oposum
Echidna
Duck-mole
genus or family
Homo .
\qquad Streps Plantigrada Omnivora
Ruminantia Solidungula Elephas Minotherium Manatus Delphinidae Bradypodide Masypodide Frugivora Insectinora Tulpida.
Erinaceide Erinaceider
Soricidae. Non-claviculata客 Rhizophaga Poephaga Carpophaga
Echidnct Orwithorhynchus

CHAPTER XXVI.

OSSEOUS SYSTEM OF MAMMALIA.

§ 175. General Characters of the Skeleton.--The osseous tissue and the bone-cells characteristic of it in the higher members of the Mammalian class are shown in Vol. I. p. 23, figs. 14, 15. In the Lyencephala (Ornithorhynchus, Echidna, Kangaroo, Rat, Beaver, Sloth, IIedgehog, Mole), ${ }^{1}$ the Haversian canals resemble those of Birds in their smaller relative size, as do the bonc-cells in the number and peculiar branchings of their canaliculi, compared with higher Mammalia; in these the radiated disposition of the canaliculi, concomitantly with the shorter and wider form of the cells, becomes more marked, as shown in fig. 14, Vol. I. In the larger Cetacea the bone-eells have a larger size and less regular shape, and send off long branehing canaliculi. ${ }^{2}$ The osseous tissue in Mammals is less dense and compact than in Birds: the long bones have medullary cavities, as a rule, relatively larger than in Reptilia, smaller and with thicker walls than the homologous pnemmatic cavities in Birds. In the Cetacea and the Sloths, recent and extinct, the long, like the other, bones are solid, the central tissue being cancellous: in the Sirenia the bone of the thick ribs is dense and compact throughout: the hardest bone in the present elass is that which is aecordingly termed 'petrosal,' especially in the Whale-tribe, in which its speeifie gravity reaches $2 \cdot 433$, that of ivory being $1 \cdot 744$.

The proportion of the Mammalian skeleton which is pneumatic is noticed in Vol. I. p. 25. The vertebral bodies and the limbbones have the articular surfaces, in the growing state, supported on distinet plates, called 'epiphyscs,' which usually coalesee with the rest of the bone, at maturity. Examples of the exoskeleton are seen in the Armadillos and their huge extinet congeners the Glyptodons: small detached bony nodules were also developed in parts of the thiek tegument of the Megatherioids. ${ }^{3}$ The laerymal is properly a mucous seale-bone. The bone of the heart

[^99]in large Ruminants is referable to the 'splanehnoskeleton;' the
 ossified tendous in some small Musk-Deer to the 'seleroskeleton.'

In the Mammalian elass the eentrum, figs. 141, 184, c, eoalesees with the neural areh, ib. n, throughout the vertebre of the trunk. In the seven anterior vertebre, fig. 185, 1-7, the pleurapophyses are short and commonly coalesee with the eentrum and diapophysis, eireumseribing the lateral foramina for the 'vertebral' arteries. In the Monotremes they retain, as in Reptiles, their individuality, fig. 186, a. In Cetacea the interspace between the eervieal par- and di-apophyses is not always elosed by bone. Oeeasionally the pleurapophyses
 of the seventh, fig. 185, A, b, and, more rarely, also of the sixth, a, vertebre, manifest their rib-like nature by inerease of length, and freedom of articulation, even in Man; but these segments are not eompleted by the hæmapophyses and hæmal spine. This resumption of type takes plaee in the eighth vertebra, ib. c, d; and the dorsal series of vertebrex here begins, as a rule, in Mammals. The most marked exeeption oeeurs in the Ai (Bradypus tridactylus); and if the vertebre, fig. 185, в, 8, 9, supporting the pleurapophyses,
 a, b, be regarded as homologous with the first two dorsals in other Nammals, the exeeption is so far saved: but the presence of short pleurapophyses in all the eervieal vertebre and their oeeasional developement in the last two, as in fig. 185, A, support the reeognition of the tenth vertebra in the Three-toed Sloth, ib. в, $10, c, d$, as the first dorsal. The pleurapophyses of the dorsal ver-
tebrex, figs. 184, and 186, pl, are subjeet to slight displacement, and their articulations, like those of the neurapophyses in the Bird's saerum, extend over the interspace between their own and a contiguous centrum. The hæmapophyses, ib. h, are rarcly ossified: the exceptions occur in the lowest subelasses (DuckMole, Armadillo, Sloth): in the Monotremes a portion of cartilage
 intcrvenes betwcen the pleur- and hæmapophyses. Some of the posterior hrmapophyses have no hemal spine, but terminate freely, fig. 187, 7 , or in conneetion with each other. The segments typieally eompleted, as in fig. 184, are ealled 'vertebræ with true ribs,' those not so completed ' vertebre with false ribs,' in Anthropotomy.

The hæmal spine of eaeh thoracic segment is separately devcloped. They commonly remain distinet, fig. 187, 9, 9 , forming a ehain of ossieles, answering in number to those anterior dorsal segments which they complete: they coalesee with each other in some Mammals, and form colleetively the 'sternum.' Only in Monotremes is there an cpisternum, figs. 186, $b, c, 187,9, i$, or hæmal spine of a cervical segment, to whieh the clavieles artieulate. As the dorsal vertcbree recede in position the pleurapophyses beeome shorter, return to their proper segment, and usually become appended to its diapophysis. When therewith, or replaces that proeess, the 'dorsal ' series ends and the ' lumbar' one, figs. 166, l, 183, 1-5, begins. These vertebre are eommonly more numerous in Mammals than in Reptiles. Their hemapophysesthe abdominal ribs of Reptiles-are represented by the 'interseetiones tendinear museuli reeti,' \&e., the lowest pair are partially ossified as ' marsupial bones,' fig. 187, 6, in Lyencophala. In the Mutiluta the 'sacrum' is defined by the reappearanee of the ossified hæmapophyses, fig. 159, 63, of a seginent at the end of the trunk. In Cetacea it is suspended beneath its scgment, as in Fishes, and may support some rudiment of a pelvic or ventral fin, ib. 65, 66.

In Sirenia, the hemapophyses, fig. 188, $h, 3$, are conneeted by pleurapophyses, ib. $p l$, a, completing the haemal arch with the diapophyses $l l$, 1 ; and the Batrachian condition of pelvis (Vol. I. p. 48, p. 163, fig. 101, D) is resumed. In the rest of the elass two or more segments following the lumbar series become, like tlose in the head, the seat of modifications by anchylosis of the centrums, flattening and broadening witl an expanse of the neural canal: and with these modifications is associated great developement of the hrmal arehes of two of those segments, fig. 187, 4 and 5 , which, therefore, have got special names, as 'ischium,' ib. 4, and 'pubis,' ib. 5. These are, however, connected with their respeetive segments by a concomitant expanse of the single pleurapophysial element, fig. 188, pl, which, so modified, has the name of 'ilium,' and in some Lyencephala (Sloths, Megatherioids, Armadillos) resembles that bone in Birds, by the number of saeral segments with which it articulates or coalesces.

The caudal segments in Mammals are elaracterised by the abrupt eessation of the pleurapoplysial developement forming the ilium, by the retention of the riblet, or beginning of the pleurapophysis, anchylosed, as a diapophysis, fig. 188, d, and by the approximation of the hemapophyses, ib. $k, 3$, to the under surface of the centrum, c, as at $h, 4$, the divergent bases articulating therewith, and the apices converging to unite with, or develope, a hæmal spine, ib. 5. The wider pelvic hæmal canal encompassed terminal parts of the gencrative and intestinal canals; the narrower caudal one has only to defend the main blood-vessels of the tail. The terninal caudal vertebre are progressively reduced in size and complexity, and vary greatly in number: anchylosis is an exception (Dasypus, e.g.) in this region.
§ 176. General Characters of the Skull.-Pursuing the survey of the Mammalian modifications of the Vertebrate arehetype as they appear in the segments of the skeleton forming the skull, with the light of the stage of developement manifested in an immature Mamnal when a certain growth has proceeded from the several points of ossification established in the primordial membranous and cartilaginous basis, we find that the neural arch of the occipital vertebra, fig. 189, Ni, 1, 2, and 3, agrees with that of the Bird and Crocodile in the connation of the diapophysis, 4, with the neurapophysis, 2 ; but the process, called ' paroccipital,' now deseends from the lower part of the arch, and, in many Mammals, is of great length. An articular condyle is developed from each neurapophysis, 2 , which articulates with the concave anterior zygapophysis of the atlas, and is the homotype of the
posterior zygapophysis in the trunk-vertebre. The centrum, 1 , is reduced to a compressed plate, and its hinder articular surface is not more developed than is the front one of the centrum of the atlas, with which it is connected by ligament. The expanse of

the occipital spine, 3 , has been governed by the superior developement of the cerebellum in the Mammalian class.

The hemal arch of the occipital vertebra is here represented, like those of the cervical vcrtebræ, by the pleurapophysial elements only; but thesc are developed into broad triangular plates with outstanding processes: that called 'spine,' 51 , is exogenous; but that called 'coracoid' is developed from an independent osseous centre, which is a rudiment of the hemapophysis, coalesces with the pleurapophysis, and, in the present class, only attains its normal proportions, completing the arch at figs. 186, $d, 187,2$, with the hacmal spine, ib. 9 , in the Monotrenes. The diverging appendage (fore-himb, $53-57$) of this arch, though retaining the general features of its primitive radiated form, has been the seat of great developement and much modification and adjustment of its different subdivisions in relation to the locomotive office it is now called upon to perform.

With the exception of this excess of developement of the appendage, the defective developement and displacement of the hamal arch, and the coalescence of the diapophyses in the neural arch, there are few points of resemblance which are not sufficiently salient between the segment represented ly the lowne, Ni, 1,2 , and 3 , in the Mammal, and that so marked in the Fi-h, Vol. I.
fig. 81. And, if the interpretation of the more normal or arehetypal condition of this segment in the lower Vertebrate animal, fig. 101, a, Vol. I., be aeeepted, so also must be the explanation here given of the nature of the modifieations of the speeial homologues of the eonstitnents of the oecipital segment by which that arehetype is masked in the Mammal. A single nerve supplies the appendage, 53-57, in Protopterus; subsequent developement of that appendage in higher forms presses more nerves from other eentres into its serviee; these do not originate the eomplex conditions calling for them. And if the simple limb, fig. 101, A, 53-57, be the speeial homologue of the complex one, fig. 189, 53-57, neither the number of nerves, of vessels, or of terminal rays ean affeet the eonelusions deducible from fig. 101, as to its general nature in relation to the Vertebrate arehetype.

In the seeond segment of the skull, Nir, the eentrum, 5, is long distinet from both 1 and 9 ; and the hæmal areh (hyoid bone) retains its natural connection with the rest of the segment, and by means of a more eomplete developement of the pleurapoplyses, 38, than in any of the inferior air-breathing Vertebrates. In the Hog, as in other Mammals, may be separated, without artifieial division of any eompound bone, the entire parietal segment, but with it is brought away the petrified eapsule of the aeoustic organ and the anehylosed distal pieee, 27 , of the maxillary appendage, which more or less eoneeals the typieal eharaeter of the neural arel of the parietal vertebra in every Mammal: least so, however, in the Monotremes and Ruminants. The neurapophyses, 6 , of the parietal vertebre have coalesced with the eentrum, 5 , but retain mueh of the proportions they present in the cold-blooded elasses; for the meseneepbalie segment of the brain is, in fact, but little more developed in the Mammal : they are notehed in the present example, but are perforated in the Sheep, by the larger divisions of the trigeminal, and they send down an exogenous process, whieh artieulates and sometimes coalesees with the appendage, 24, of the palato-maxillary arch, and with the pleurapophysis, 20 , of the same arel. The neural spine, 7 , always developed from a pair of eentres in Mammals, often vastly expanded, and sometimes eomplieated with a third, interealary or interparietal osseous pieee, in subservieney to the large size of the proseneephalon, is oeeasionally uplifted and renoved from the neurapophyses by the interposed squamous expansion of the bone, 27 ; but this, whieh reminds one of the oecasional separation of the neural areh from the eentrum of the atlas in Fishes, is a rare modifieation in the Mammalian class. The diapophysis, 8 , always eommenees as an
autogenous element by a distinct centre of ossification; in most Mammals it speedily coalesces with the petrosal, but not in the Babyroussa, ${ }^{1}$ c.g.: it usually coalesces with the squamosal, 27 , as in the H_{og}; but retains its distinctness in the Eehidna; its apophysial character is usually well-marked, and it is known as the ' mastoid process' in Anthropotomy. In most Mammals the pleurapophysis, 38, retains its primitive independency and rib-like form, with usually the 'head' and 'tuberele;' but by reason of its arrested growth it has been ealled 'styloid' bone or process. Sometimes it is separated from the short hæmapophysis, 40 , by a long ligamentous traet, sometimes is immediately articulated with it, or by an intervening piece. The hromal spine, 41 , is usually small, and always single. The rudiments of hypobranchial elements, 46 , are retained as diverging appendages of the parieto-hæmal areh in all Mammals, and have received the special names of 'posterior cornua,' or 'thyrohyals,' from their subservient relationship to the larynx.

In the frontal segment, Nur, the ecntrum, 9 , and ncurapophyses, 10 , very early coalesce. Two separate osseous centres mark out the body, and cach neurapophysis has its distinct centre, the optic foramina, op, being first surrounded by the course of the ossification from these points. The superior developement of the ncurapophysial plates, 10 , as compared with those of the parietal vertebra, 6 , in most Mammals, harmonises with the greater developement of the prosenecphalon; but the clief bulk of this segment is proteeted by the expanded spines of the frontal, 11 , and parictal, 7 , vertebre, and the interealated squamosal, 27. This appendicular piece not only fulfils some of the functions of the proper cranial neurapophyses, but, likewise, the normal office of the frontal pleurapophysis, 28, in the support, riz., of the distal elements of the hamal arcll, 29-32, which now articulate directly with 27 , in place of 28 , as in all oviparous Vetebrates. The true pleurapophysis of the frontal vertebra, ${ }_{28}$, is almost restricted in the Mammalian class to functions in subserviency to the organ of hearing; is sometines, as in the Hog , swollen into a large bulla ossea, like the parapoplyses and pleurapophyses of the cervical vertebre of Cobitis; is sometimes produced into a long auditory tube, and sometimes reduced to the ring supporting the tympanic membrane. Yet, under all these changes, since its special homology is demonstrable with 28 in the Bird, fig. 26, Turtle, fig. 91, Vol. I., and Crocodile, fig. 92, Vol. I., as well as with the teleologically compound bone, 2s, a, b, c, d, in the Fish, fig. 81, Vol. I., so likewise must its gencral

[^100]homology be equally recognised. The froutal hemapophysis, fig. 189, 29, and the corresponding half of the hemal spine, ib. 32, are connate on each side in all Mammals. The areh, as in other air-breathing Vertebrates, has no diverging appendage.

The nasal segment, Niv, is chiefly complieated by the confluenee of parts of the enormously developed olfactory eapsules, 18, and its typieal eharaeter is further masked by the compression and mutual coalescence of the neurapophyses, 14 . The centrum is nsually mueh elongated, as at 13 , and soon coalesees with both neurapoplysses, 14, and with the nasal eapsules, 18. The neural spine, 15 , is bifid. The pleurapophysis, 20 , or proximal element of the laemal areh of the nasal vertebra has its real charaeter and import almost concealed by the excessive developement of the second element of the areh, 21, which resumes in Mammals all those extensive collateral conncetions which it presented in the Crocodile; and to which are sometimes added attachments to the expanded spine of the frontal vertebra, as well as to that of its own segment. The pleurapophysis, however, besides its normal attachment to its centrum, 13 , sends up a process to the orbit, in order to effect a junction with its neurapoplysis. The lıæmal spine, 22 , is developed in two moicties, which never coalesee together, although, in the higher Apes, and at a very early period in Man, cach half coalesees with the hæmapophysis, and repeats the simple homogencous eharaeter of the corresponding elements of the suceceding (mandibular) arel.

The appendicular element, 24 , which diverges from the pleurapophysis, 20 , contributes to fix and strengthen the palato-maxillary arel by attaching it to the deseending process of the parictal centrum, 6 : with which, in most Mammals, it ultimately coalesces. The other elements of the diverging member of the arch correspond in number and in the point of their divergence with those in Birds, Chelonians, and Crocodiles. They are two in number, suceceding each other, and both become seats of "that expansive developement which is followed by the multiplieation of the points of conncetion; thus the proximal picee, 26 , ' malar bone,' is connected in the Hog not only with the liæmapophysis, 21, from which it diverges, but likewise with the muco-dermal bone, ealled 'laerymal,' 73. The distal piece of the appendage, 2:, cxpands as it diverges, and fixes the naso-homal arch not only to the frontal pleurapophysis, 28 , and parietal parapophysis, 8 , but also to the frontal, parietal, and, sometimes, oceipital neurapophyses and spines: it also affords, in the Hog, as in other Manmals, an articular surface to the frontal hamaperphysis, 29.

The steps by which the bony capsule of the otic organ is finally differentiated and individualised in Mammals are instructive examples of that character of advance in organisation. The ex- and par-oecipitals which contribute a partial bony support to the back part of the gristly capsule in Fishes and Reptiles, and coalesce with that fully ossified capsule in Birds, remain distinct from the petrosal in all Mammals. The alisplienoid, which contributes a partial bony support to the fore part of the gristly otic eapsule in Hæmatocrya, and coalesces with the same part of the bony capsule in Birds, has likewise permanently liberated itself therefrom in Mammals. The mastoid, which contributes a bony support to the outer part of the otic capsule in cold-blooded Vertebrates, and is extensively confluent with the same part of the ossified capsule in Birds, retains such confluence in some Mammals, but instructively manifests its primitive indcpendency in others. In the Cetacea, where the mastoid and paroccipital are distinct from the petrosal, this capsule coalesces with the tympanic, which, having lost its mandibular function, is fixed and contracts anchylosis with the petrosal. The Babyroussa cxemplifies the cssential individuality of the acoustic capsule, the petrosal not only being ossified from its own centrc, but remaining distinct from every bone of the oto-
 crane. ${ }^{1}$
§ 177. General Characters of the Limbs.-The diverging appendage of the occipital vertebra is never absent in Mammals, and

[^101]VOL. II.
offers its most simple condition in the Horse, fig. 190. It is cssentially, as in Protopterus, a jointed ray, but every part is adaptively modified for special ends and reciprocal adjustment and interplay; in the monodactyle Manmal it is, in fact, the result of simplification from a morc complex ancestral condition of limb, in reference to the application of that limb to a more vigorous kind of locomotion. Viewing the framework of such limb, here, in merely its archetypal relations, we remark that the supporting arch is incomplete, as in most Mammals; the pleurapophysis, a, h, is expanded into a 'scapula,' with its coaleseed lrmapophysis as a 'coracoid ' process, ib. k. The first segment of the appendage is modified as ' humerus,' a; the second segment as 'radius,' o, with which lias coalesced the process s, u, developed in most Mammals as 'ulna.' In the blastema between the second and third ray have bcen formed a cluster of ossicles called 'carpal,' $w, z, 2,3$; the third segment, 4,5 , is a metacarpal, and with it are connected two

styliform appendages, 6, 7; the abortive remnants of other metacarpals. Next follow the three terminal shorter segments of the limb-ray ealled 'phalanges', $13,14,15$; the whole forming the 'digit' which answers to the middle finger, min, in the pentadactyle foot of beast and in the hand of man. Gradational steps to this perfect condition of 'hand' are selected from the Mammals with claws, in fig. 191. In the Unau or Two-toed Nloth (Bradypus diductylus), the digits which are functionally developed answer to the second, ir, and third, ini, in Man; the fourth, iv, and first, i, are represented by styliform beginnings of their metacarpal. The carpal ossicles include one, s, t, answering to the separate seaphoid, s, and traperium, t, in Man, a 'lunare,' l, and 'cunciform,' c, a' trapezoiles,' d, supporting the metacarpal of the second
digit; a ' magnum,' m, supporting that of the middle digit, and an ' unciforme,' u, limited to the rudiment of iv.

In the huge extinct congener of the Sloths (Megatherium), the fourth, IV, as well as the third and second digits are developed, as in the Bradypus tridactylus, for the support of claws. There is a metacarpal of the fifth digit, supporting stunted rudiments of the first, 1 , and second, 2 , phalanges ; the first digit is still represented by a like rudiment of its metacarpal, i. The earpal ossicles include, as in Slotlis, a 'scapho-trapezium,' s, t, with a well-marked 'pisiforme,' p, and a larger 'unciforme,' u. In the Hyœna the fifth digit, v , is functionally developed: the first, I , retains the rudimental state. The scaphoid and lunare, s, l, have here coalesced : the trapezium, t, is distinct, but very small : the unciforme supports, as usual, the metacarpals of the fourth, IV, and fifth, v, digits. In the Spider-Monkey (Ateles), the metaearpal representative of the first digit, I, is longer: the scaphoid, s, is distinct, and the 'intermedium,' s ', is a dismemberment thereof, answering to e, fig. 173, Vol. I.

In the Orang the carpus also has the dismembered scaphoid, s, or 'intermediun,' s ' The inner digit, I , is short and feeble, but with the usual mammalian number of two phalanges. In the hand of Man, this digit, which is the last to be completed in that class, attains its highest functional developement: it is articulated in such a way and at such an angle as to be opposable to any of the joints of any of the other digits. Of these the third, iII, which is the most constant in the class, is the longest. The carpus consists of eight bones in two rows; the first including the undivided' scaphoides,' s, 'lunare,' l, 'cunciforme,' $c,{ }^{\prime} 1$ isiforme,' p; the second including 'trapezium,' t, 'trapezoides,' d, 'magnum,' m, ' unciforme,' u. These names, suggested
 by the shapes and proportions of the carpal bones in the human skeleton, become arbitrary signs of their homologues in lower animals.

The appendage of the pelvic arch may be wholly wanting, as in Sirenia and most Cetecea, or represented by a two-jointed ray, as in the Right Whale, fig. 192, and fig. $159,65,65$; articulated to two elements, 63 and 64, of the pelvic arch, which, as in Fishes, are loosely suspended in the flcsh.

The suecessive gradational steps by which the pentadaetyle condition of the limb or appendage is attained are seleeted from the series of hoofed Mammals in fig. 193.

The pelvie limb, fig. 195, slows the same monodaetyle simplieity as the peetoral one, in the Horse. The ossieles developed in the conneetive substance between the seeond and third prineipal segments of the long-jointed ray, are the 'astragalus,' a, ' ealcaneum,' $c l$, ' navieulare,' s, ' mesocunciforme,' cm , ' 'eetoeuneiforme,' $c e$, 'euboides,' b. The metacarpal supporting the three joints or 'phalanges' of the digit artieulates eliiefly with the eetocuneiform, e, whieh aecords in size. The largely developed digit, or continuation of the main limb-ray, fig. 193, answers to the third, iII, of the pentadaetyle foot. At its base are rudiments of the metatarsals of the seeond, if, and fourth, Iv, digits. In the Ox the navieulare, ib. s, is connate with the 'euboides,' b : and, as this supports one-half of the single metatarsal, sueh half is held to be the developed homologue of the rudimental fourth metatarsal in the Horse: whilst the half supported by the ' eetoeuneiforme,' re, in the Ox , is held to answer to the metatarsal of the developed digit, iII, in the Horse.

Embryology here lends partial proof to this view : the so-ealled 'eanuon-bone' being developed from a single eentre and epiphyses in the Horse, and from a pair of shafts or eentres and epiphyses in the Ox: it aeeordingly supports a pair of toes, whieh answer to the third, III, and fourth, IV, in the pentadaetyle foot. The Camel and Giraffe have not rudiments of any other toes: in the Ox sueh rudiments of the distal parts of
the seeond, ir, and fifth, \mathbf{v}, digits are appended to the coalesced metatarsals of the funetional pair of toes, III and IV.

In the miocene fossil Horse (Hipparion, fig. 194) a similar pair of 'spurious' hoofs, $i i$, $i v$, dangled behind the main toe, $i i i$, completing the digits, $i i$ and $i v$, indieated by the 'splint-bones' or proximal parts of the metatarsals in the modern Horse, fig. 193, iI, iv, but stunted in growth. In the eocene Palcotherium these digits were nearly equal in size to the middle one. The Rhinoeeros at the present day preserves these proportions of the toes, II, III, IV, but with shorter and more massive proportions of the whole foot. Aeeordingly, in fig. 193, it will be seen that the ' mesoeunciforme,' cm, and 'cuboides,' b, have a larger proportional size than in the Horse; but the structure of the tarsus is essentially the same: the euboid, b, articulates direetly with the ealeaneum, $c l$; the navieulare, s, intervenes between the two cuneiform bones and the astragalus, a. The affinity of these 'perissodactyles' is obvious, and the eloser links of affiliation are supplied by the extinct forms above cited. In like manner we find the affinity of the Ox and Hippopotamus illustrated in the strueture of the hind-foot, the Hog holding a similar intermediate step in the developement of the toes, iv and v. In the tarsus the cuboid, b, and naviculare, s, show the same near equality of size, but they are distinct bones in the Hippopotamus as in all Artiodactyles exeept the restricted or horned Ruminants: a mesocuneiforme, cm , now supports the metatarsal of the toe, iI, that of the fiftli, v, articulates with the cuboid. In the Elephant the innermost digit, I , is present-the last to appear in the ungulate as in the unguiculate scries, and the tarsal group shows the completeness which it manifests in Man. The human anatomist will

Foot of extinet Hurse (IIippurion) recognise the astragalus, a, calcaneum, $c l$, naviculare, s, extended transversely and presenting articular facets to the three 'cunciform' bones, 'intermal,' 'middle,' and 'external,' which for convenience of definition I have called 'entocuniform,' ci, 'mesocuneiform,' cm , ' ectocuneiform,' ce ; the 'cuboides,' b, supports as usual the metatarsals of the fourth and fifth toes. The toe, I, has a short metatarsal and some bony representative of a phalawx imbedded in the innermost part of the hoof: the other toes have the normal complement of phalanges, whieh, in Mammalia, ho not exceed (save in Cetacea) three in number, nor two in the imermost digit,, in both pectoral and pelvic limbs.

The 'serial homology' of the parts of the respective arehes of these limbs is illustrated in Vol. I. p. 188. In the limbs themselves, or appendages of the arches, the femur, fig. 195, a, answers to, or is the homotype of, the humerus, fig. 190, a; the tibia, fig. 195, u, is the homotype of the radius, fig. 190, o; the fibula, fig. $195,1,2$, of the ulna, s, u : the tarsus repeats the earpus, the metatarsus the metacarpus, and the three phalanges, as respeetively named 'proximal,' 'midlle,' and 'distal' or 'ungual.' In the tarsus it will be seen that the cuboid, in the 'Elephant,' fig. 193, b, supports the two outer metatarsals, as does the unciforme the two outer metacarpals, in the Orang and Man, fig. 191, u :
 the ectocuneiform in the tarsus, ce, and the 'magnum' in the earpus, m, respectively support the middle digit, III: the mesocuneiforme, $m c$, holds the same 'serial' relation to the trapezoides, d, and the 'entocuneiform,' ec, to the 'trapezium,' t. The bone of the earpus, fig. 191, s, in Man articulates with the three innermost carpals of the second row ; and, in the Orang, but in a divided statc, s and s^{\prime}, leaves a larger share of the wrist-joint with the radius to the bonc l, and in the same degrec tends to repeat in the carpus the position and connections of the bone s in the tarsus: so I infer that the carpal scaphoid and tarsal naviculare are homotypes: the carpal lunare, fig. 191, l, answers to the tarsal astragalus, and the carpal euneiforme and pisiforme to the tarsal calcaneum, in which bonc the lever-process forming the 'hecl' more immediately repeats the pisiforme, which also in many quadrupeds, fig. 191, p, Hyæna, makes a 'heellike ' projection in the carpus.
§ 178. Special Homologies.-As that which is engendered by a Mammal is mammalian from its beginning, each step of its building up has the finishing of the Mammal for its end, and slows it the more as it nears the goal. The developemental phe-
nomena of the head neither supersede nor can supply the better evidences of homology afforded by relative position and connections any more than do those of the foot. The caunon-bone of the ox is developed from three terminal and two middle centres of ossification; but embryology does not show which of these signify bones distinct in other Mammals: it is neither here nor elsewhere the criterion of homology. In the foregoing account of the Mammalian modifications of the Vertebrate skeleton, the general and serial homologies are given, as determined in my work on the Vertebrate Archetype. But as a few of the special homologies of cranial boncs are still unaccepted by fellow-labourers in this field of anatomy, I offer the following remarks in excuse for the retention of my opinions on such moot-points.

To rightly determine the cranial bones in Manmals, as in Birds, we must pass to their investigation from the previously determined bones in the skull of an inferior Vertebrate. Thus, placing the skull of a young Ostrich or Apteryx, showing the sutures, by the side of that of the low, bird-like Monotreme (Echidna, fig. 197), we find that the transversely extended, medially notehed oceipital condyle, in the Bird, fig. 27, has become bisected or divided into two in the Manmal, fig. 202 ; each moicty being developed wholly (Echidna) or in great part (some Cetacea) from the exoceipital, 2. The basioccipital either wants, or developes only the lower end of, the divisions of the occipital condyle. The exoccipital, in most Mamnals, sends off a ' paroccipital' process, 4 , as in Birds. The basi-, ex-(2), and super-(3)occipitals coalesce into one bone, but rarely are fused, as in Birds, with the sensc-capsule and segment in adrance. The basisphenoid, fig. 202, 5 , differs from that of the Bird, figs. 27, 32, in not being coossified with the presphenoid, 9: laterally it contributes to form part of the otocrane and tympanum, in adrance of which it articulates with the alisphenoid, figs. 196, 197, 6 . In the Echidna a bone, fig. 197, \&, coossified with or anclyylosed to the outside of the petrosal, expands beyond it to articulate with the ex-(2) and super-(3)occipitals, with the parietals, 7 , and the alisphenoids, 6 . This bone, in many other Mammals, developes a 'mastoid' process, as in Birds: it is developed, as in them, in and from the lateral cranio-cartilage enveloping the otic capsule: it is plainly the homologue of s in the Bird, fig. 196. Between 8 and 6 in Echidua there is a vacuity in the bony skull. The parietal, 7, is relatively larger, the frontal, 11 , is smaller, than in the liird. The nasal, 15 , is simply elongate, in Echidna as in Rheen: it does not bifureate anteriorly by sending down a maxillary prong or process as in the Ostrich, fig. 196, 15 , and most Birds : but it is longer
and articulated, or is united, throughout its length, with its fellow in the Mammal. The premaxillary, 22, is eorrelatively shorter in the Mammal, not medially eonfluent nor sending off a nasal proeess from the symphysis, as in the Bird. The maxillary, 21, is larger, and the nasal proeess, of whieh the beginning is shown in Struthio, is a broad and high plate in Echidna and most other Mammals. The hind part of the maxillary unites with a malar,

fig. 197, 26, styliform in Echidna and some Bruta, as it is in Birds, fig. 196, 26. The bone, 27, artieulates with 26 , but expands in Echidna, as in Chelonians, as it extends baekward, and applies

itself, in most Mammals, to elose the gap in the side-wall of the eranium left between 8 and 6 , before articulating with the tympanie, 28: it also developes the artieular surface for the mandible, 29-32. This is one of the marked modifieations of the squamosal in the Mammalian elass. The retroduced part or appendage of the upper jaw again affords the joint to the lower jaw, as in the Plagiostomous Fishes: but the common pedicle, 28, is redueed
in the Mammal mainly to the support of the ear-drum, the accessory function with which it is charged wholly or in part in all airbreathing Vertebrates.

Remove 27 and 28 from the cranium of the Bird and Monotrenc, as in figs. 196 and 197, and the homology of the remaining cranial bones, especially of $\varrho, 3,8,6$, is unmistakable. The mastoid, ε, in both Bird and Monotreme, is developed from cartilage ; articulates posteriorly with 2 , 3 , superiorly with 7 , anteriorly with 6 ; coossifies internally with the petrosal, and gives attachment inferiorly to the bone, 28 , which supports wholly or in part the 'membrana tympani.' The squamosal, 27, is a backward prolongation of the bar, 2 f, attaching the upper jaw to the tympanic ; it is developed in the embryonal scaffolding external to the proper cranial eartilage; it articulates posteriorly with the tympanic, 28. It forms no part of the outer wall of the eranium in Birds, and is equally excluded from that cavity in Cetacea, fig. 198, in most Ruminants, fig. 140, and in many Rodents: the supplementary function of completing such eranial wall is peculiarly mammalian, and does not supersede the share taken in sueh lateral wall by 8 and 6, in all Verte-

bratcs. Morcover, 27 eonstitutes the linder and major part of the zygomatic areh in both Birds and Mammals, as in most Reptiles; with sueh homologieally unimportant modifieations of shape as are exemplified in the Turtle and Crocodile (Vol. I. figs. 91 and 95,27), and in the figures $26,140,196,197,27$, of the present Volume.

The bony pediele whieh suspends the mandible to the sideproeesses of the eranium, is that which is marked 28 in the Fish (Vol. I. figs. 81, 84), the Serpent (figs. 96, 97), the Tortoise (figs. 91 and 92), and the Crocodile (figs. 93, 95). As those side-processes are homotypes of the transverse processes (par- di-apophyses) of the trumk-vertebre, so 28 bears the same serial relation to the 'pleurapophyses,' the mandibular rami eompleting 'hæmapophysially' the inferior or hemal arel of the eranial segment. This vertelral character is shown in the developement of the Vertebrate skull: the simple rib-like eartilage formed in the seeond (counting backward) of the embryonal, 'visceral,' or hamal arehes, manifests always its upper or 'plemapophysial' and its lower on 'hemapo-
$p^{\text {hyssial }}$ ' portions: and these are more equal in length in Birds and Hematoerya than in Manmals; for the embryo of a highly modified and adranced class carly shows the characters of its class, which become deceptive when exelusively used as a light to general vertebral homologies. The true guide to the lomology of $2 s$ is its articular connections to one or more cranial diapophyses: in Fishes and Crocodiles, e.g., to the post-frontal and mastoid, in Lizards and Snakes to the mastoid, in Birds to the mastoid and paroccipital, in Mammals to the mastoid. The connection with the squamosal is later and supplementaty in the Vertebrate series.

The tympanie pedicle mindergoes varions and extreme modifications in relation to the functions, as various, allotted to the second hemal arch (counting lackward) in the head. In Fishes, much of the mechanical part of the respiratory functions is performed by the 'tympano-mandibular' areh: hence the length, subdivision, and resultant elasticity of the suspensory piers or pedicles. In air-breathing Hamatocrya the branchial duty ceases; but a special organ of sense, claiming more direct relation with the air, presses the tympanic pedicle into a service unknown to it in the watcrbreathers. In Chelonia, fig. 91 (Vol. I.), the tympanic, 28, is developed to form a fiame for the ear-drum, and it contributes more or less of that frame in Crocodiles, Lizards, and Birds: it las least concern with the tympanum in Scrpents; and, as these are exclusively air-breathers, 28 is restricted to its function of suspending the mandible, and retains most of its simple rib-like form as it descends from the lengthened diapophysis, 8 , fig. 97 (Vol. I.) to the dentigerous hanapophysis, 31. The proximal articular end of the tympanic may have a double condyle, as in some Fishes and Birds, a single condyle, as in Lizards and Serpents, or a sutural margin for fixed junction, as in Chelonin, fig. 91, 28, and Crocodilia, fig. 95, 28. Such is its mode of articulation in all Mammals, in which class it manifests its extreme simplicity of function and reduction of size. To the ear-drum, which it sustains, is articulated, in Birds, a columelliferm 'stapes,' by the intermedium of a cartilage ; and in Monotremes and Marsupials, fig. 197, d, by the intermediun of "a bone, c. This ossicle in higher Mammals is divided into 'incus' and 'malleus,' which, like the columelliform 'stapes' in Birds and Reptiles, is developed, as in fig. 444, B, e (Vol. I.), in connection with, but not like the tympanic (d) and mandible in and from, the periphery of the primary 'visceral' or hemal cartilaginous areh, called, from its discoverer, 'Meckel's cartilagc.'

Having premised so much in reference to the Mammalian skeleton generally or typically, its main modifications as exemplified in the several orders of the class, will next be noticed.
§179.-Skeleton of Monotremata.-A. Vertebral Column.-The principal osteological characters of this order are:-The extension of the 'coracoid,' fig. 199, 52,0 , as in Birds and Lizards, from the scapula, 51 , to the sternum, s, and anchylosing at full growth with the scapula, as at G, fig. 199 ; the epicoracoid, ib. n, as in Lizards; the marsupial bones, ib. x, x; the supplementary tarsal bone, ib. d, supporting the perforated spur, e, in the male; the long persistence of distinct pleurapophyses, $p l$, in the vertebra dentata.

Both the genera have twenty-six 'true vertebre,' of which

Lumbrar vertehre, intervertebral cavities, Echidua. seven are cervical; but the Ornithorhynchus has seventeen and the Echidna sixteen dorsals, the lumbar vertebre being three in the latter, and reduced to the lacertian number two in the Ornithorhynchus.

The intervertebral substance is dense and fibrous at its periphery, fig. 200, a, but the fluid central part, b, fills a more definite cavity in the Echidna than in higher Mammals. ${ }^{1}$

In the dorsal vertebre the nerves perforate the nemrapophyses; but escape, as usual, at their intervals in the cervical and lumbar regions. The dorsolumbar neural spines are short and subequal, fig. 201. The ribs of the first six dorsals have ossified sternal portions which articulate with the stcrnum; iu the succeeding vertebrex to the fifteenth the sternal portions are cartilaginous, expanded, and overlap each other, fig. 199 ; the last two pairs of ribs terminate freely. Most of the vertebral ribs articulate over the interspace of their own and the antecedent centrum; a small tubercle defines the neck of the rib, save in the last four; but, save in the first and second, docs not articulate with the diapophysis. The first dorsal pleurapophysis is broad, the others are cylindrical and slender; cartilage is interposed between the bony pleur- and ham-apophyses of the anterior dorsal vertebre, as in the Crocodile. The sternum convists of four bones in Ornithorhynchus, and of five in Echidna. The first, fig. 199, s, is an musually expanded 'manubrimm,' receives the hemapophyse of the first and sccond ribs, and supports a large T-shaped

[^102]episternum, ib. t. The saerum consists of two vertebre in Ornithorhynchus, and of three in Echidnu.

There are thirteen eaudal vertebre in the Eehidna, fig. 201. The first is the largest, with broad transverse processes, the rest progressively diminishing, and reduced, in the six last, to the

eentral element. The Ornithorlynclus, fig. 199, has twenty-one caudal vertebre, of which all but the last two have transverse processes, and the first eleven liave also spinous and articular proeesses. The pleurapophysial parts of the transverse processes are distinguishable in half-grown animals. The transverse processes are broad and depressed ; they gradually increase in length to the tenth eaudal, then as gradually diminish to the twentieth; their extrenities are expauded, and, from the fifth backward, are thickened and tubereulate. The spinous proeesses progressively diminish in height from the first eaudal. Hypapophyses are developed from the bodies of the third to the nineteenth eaudal vertebra inelusive; but there are no hæmapopliyses artieulated to the vertebral interspaces, as in many Marsupial.. In the Eehidna hypapoplyses are absent; but rudiments of hemapophyses are conneeted with the interspaces of one or two of the middle vertebre of the tail. The eaudal vertebre in the Ornithorhynelus are of nearly the same length to the two last; they progressively diminish in vertieal diameter as they recede from the trunk, and are ehiefly remarkable for their breadth and flatness; resembling in this respeet the eaudal vertebre of the Beaver and of the Cetacea; the horizontally extended tail having a similar relation
to the frequent need which an aquatic animal with hot blood and a quiek respiration of air has to ascend rapidly to the surface of the water.

The cervical vertebre, fig. 186, have short and broad centrums confluent with neurapophyses; the former developing a par- the latter a di-apophysis: the pleurapophysis, $p l$, is short and broad, and circumscribes the 'vertebrarterial' canal by junction with both the transverse processes: which joints in the last five ecrvicals are oblitcratcd earlier in Ornithorhynchus than in Echidna. In the latter not any of the ecrvicals have zygapophyses save the atlas. The true centrum of this vertebra supports a great part of its neural arch, and long continues distinct from that of the axis: it has a long ' odontoid ' process. The lower part of the ring of the atlas sends off in Ornithorhynchus a pair of long divergent hypapophyses.
B. Skull.-The skull in both genera of Monotremata is long and low, but characterised by a relatively larger cranium in proportion to the face than in most Marsupials. The parietes of the expanded cercbral cavity are rounded, and their outer surface

is smootl. These characters are most conspicuous in the Echidna, in which the jaws are slender, elongated, and gradually diminish forward to an obtuse point, so that the whole skull resembles the half of a pear split lengthwise. The facial angle of the Echidna is 36°, that of the Ornithorhynchus 20°, being almost the lowest in the mammiferous elass. The cranial bones and their constituent pieces continue longer distinct in the Echidna than in the Ornithorlhynchus, in which they ultimately coalesce to a degree resembling that in Birds.

In the Echidna the basioccipital, fig. 202, 1 , is flat and hexagonal, with the hind-border notched to complete bclow the large vertical 'foramen magnum,' and contributing to the lower part of each condyle, 2, 2: these are large and formed chiefly
by the exoccipitals, fig. 203, 2,2 , whiel are separated above the foramen magnum by a noteh, elosed by membrane, in the recent state. The superoccipital, ib. s, is a transversely oblong quadrilateral plate, articulated by 'harmonia,' not only with the exoeeipitals, but with the large mastoids, 8 , and anteriorly with the parietals, fig. 197, 7. The basisphenoid, fig. 202, 5, supports laterally a pair of alisphenoids, fig. 197, 6, which are notelied posteriorly by the trigeminal nerves, and expand as they rise to articulate with the parietals, 7 , the mastoid, 8 , and anteriorly with the orbitosphenoid and frontal, 11. The mastoid, 8 , is ehiefly eonspicuous by its great size, in the Echidna, and the share whieh it takes, eonjointly with the petrosal, in the formation of the lateral, lower and posterior parts of the cranial cavity: in this character it retains much of its ornithic condition, fig. 196, 8 . The small vacuity, left in the Monotreme, between the mastoid and alisphenoid, is closed by the application thereto of the posteriorly expanded squamosal, fig. 197, 27. The presplienoid, fig. 202, 9, is connate witl orbitosphenoids, fig. 197, 10 , pierced by the small optic nerves: the frontals, 11 , expand as they rise, but without developing superorbital ridges, and meet at a toothless suture along the middle of the narrow forehead. The vomer and prefrontals are chiefly
 remarkable for their connection with enormons and obscuring turbinals, supporting an olfactory organ of rast extent. The anterior part of the frontals is largely overlapped by the lases of the naval bones, which encroach upon the interorlital space. These, fig. 197, 15 , receive the upper edge of the maxillary into a groove at their outer margin, and articulate anteriorly with the premaxillaries, ib. 22, which meet above the nasal canal in front of the masal bones for an extent of about three lines, and thus exelusively form the boundary of the single, oval, and terminal external nostril. The lower or palatal process of the premaxillary extends backward in the form of a long and slender pointed process which is wedged into a fiswre of the maxillary. The incisive fissure is narrow and extends from the premaxillary symphysis some way between the palatine plates of the maxillarics. The palatines, fig. 202, zo, are long aud entire where they form the hinder half of the roof of the mouth, divereging
posteriorly to form the narrow median nasal opening. The roof is continued by the pterygoids, ib. 24 and 16^{\prime}, which artieulate, as in many Birds, with the tympanie, e, 28, and the basisphenoid, 5 . Another mark of ornithie affinity is the eonfluenee of the malar and squamosal, fig. 197, 27: unless the slender proeess of the maxillary, ib. 26, may represent the malar. The tympanie cavity is exeavated in the petromastoid and partly elosed by the slender tympanie, fig. 202, 28, e, whieh sends forward a slort homologue of the orbital proeess of that of the lird: about three-fourths of the ear-drum are attaehed to the tympanie, and one-fourth to the mastoid: the plane of the drum is nearly horizontal and looks downward. The 'stapes' is eolumelliform, fig. 197, d : one erus of the ineus anehyloses with the redueed tympanie at o; the other is eonfluent with the malleus, c.

The lower jaw eonsists in the Eehidna, fig. 197, 29-32, of two long and slender styliform rami without a symphysial joint, but loosely eonneeted together at their anterior extremities. An angular proeess, 30 , divides the horizontal from the aseending

ramus, whieh rises at an open angle and terminates in a small oblong eonvex eondyle, 29. A short obtuse eoronoid proeess, 31 , extends from the upper part of the horizontal ramus as far in advanee of the angle as the eondyle is behind it. The rest of the ramus is rounded like a rib, and diminishes to the anterior extremity. The dental canal eommenees below the eoronoid proeess and divides in its progress, one brancl terminating near the
middle of the smooth alveolar border, the other elose to the end of the ramus. In no mammiferous animal does the lower jaw bear so small a proportion to the skull or to the rest of the skeleton as in the Echidna.

In the Ornithorhynehus the lower jaw, fig. 204, e, is mueh more developed. Each ramus eommences posteriorly by a large convex condyle. The aseending ramus is nearly horizontal, flattened below, and eontinued upward in the form of a low vertieal eompressed plate, on each side of which there is a deep fossa. The ascending is continued by a gentle curve into the horizontal ramus, and the angle of the jaw is very feebly indicated. The horizontal ramus suddenly expands and sends off above in the same transverse line two short obtuse processes, both of which might be termed 'coronoid; ' this structure is peculiar to the Ornithorhynchus. The innermost process, c, although the largest, is the superadded structure, as it affords insertion to the internal pterygoid. The socket, d, e, for the horny grinder, is shallow; its floor is perforated by several large foramina. The dental canal divides; one branch opens by a wide elliptical foramen on the outside of the ramus imnediately anterior to the alveolus, the other terminates at the lower part of the end of the ramus. The rami of the jaw converge and are united at a symphysis of more than half an inch in length; there they become expranded and flattened, then again disunite, and are continued forward as two spatulate processes, b, which diverge from each other to their broad rounded terminations, and are situated just behind the infleeted extremities of the similarly separated premaxillaries, ib. 1 , and fig. 205, 22. On the outer sides of the upper surface of the broad symplysis are the long and narrow sockets of the two anterior trenchant horny teeth. The Monotremes differ from the Marsupials in the absence of the inflected process developed from the angle of the lower jaw.

The exoccipitals, fig. 205, $2, b$, and superoccipital, ib. 3, are separate in the skull of the young (ruithorlynchus here figured of the natural size. The mastoid, ib. e, e, contributes to part of the occi-
 nat. size. pital surfice, and advances anteriorly to the small cranial expansion of the squamosal at f. This expansion does not exeecal vol. II.
in size the glenoid process, whieh it meets at a right angle, and from the union of which the zygomatic process is continued forward to join the malar process of the maxillary: there is no distinet malar bone. The parietal, ib. 7 , is long and large, undivided by a sagittal suture, from the plaee of whieh a bony falx is developed internally, fig. 204, в. The frontals are small, and in fig. $205, h, h$, retain the frontal suture. The nasals, ib. n, n, are long and large: they eontribute to the rim of the orbit, and form the posterior half of the large bony nostril, p. The maxillary, ib. m, after sending off a proeess whieh eurres over the antorbital foramen, extends forward, diverging from the nasal to form the angular fissure which receives the premaxillary, 0,22 . Each of these bends inward at the anterior extremity, but is separated by a wide space. There is a small prenasal ossiele at p, fig. 205, and b, fig. 204, A. The vomer forms a bony vertieal septum dividing the nasal earity from the presphenoid forward. The palatine plate of the maxillary, fig. 204, A, 21, is piereed by large oblique eanals for the transmission of palatine branches of the trigeminal nerve. The bony palate is continued baekward entire between the large shallow alveoli, g, h, of the upper horny molars to the posterior nostrils, i, which resemble those of the Crocodile in their backward position. The sutures defining the palatines and pterygoids are soon effaced.

The Ornithorhynchns differs from the Eehidna in the large vacuities behind and in front of the tympanie eavity, the one representing the combined jugular and preeondyloid foranen, the other the foramen ovale. The notch above the foramen magnum, fig. 204, c, is better defined; as is also the orbit.

There is a small laerymal foramen at the anterior and inner part of the orbit in both the genera of Monotremes; a little lower down is the commeneement of the antorbital eanal. This canal branches in the Eelidna, and terminates on the outer side of the maxillary bone by a suecession of small foramina ; but in the Ornithorlıynchus, where it transmits a much larger sensitive nerve, it divides into three eanals, of which one emerges beneath the uncinated process of the maxillary above mentioned; a seeond deseends and opens upon the palate; and the third passes forward into the substance of the facial fork, and terminates by a large foramen at the outside of the premaxillary bone.

On the exterior of the eranium the ridges indieating the extent of the temporal museles are elearly developed in the Ornithorhynehns, and correspond with the stronger zygomata and the more complete apparatus for mastieation in this Monotreme.

Four linear impressions upon the upper surface of the skull diverge from the middle of the lambdoidal ridge, and terminate at the temporal ridges.

The interior of the skull offers many unusual modifieations. The sella turcica is elongated and narrow in both Monotremes; it is bounded by two very distinct lateral walls in the Eehidna. The posterior elinoid processes are chiefly remarkable for their height in the Ornithorhynchus. The semieireular eanals stand out in high relief in this species, as in Birds. In the Echidna the olfactory eapsule encroaches upon the anterior part of the eranial cavity in the form of a large convex protuberance, and a very extensive eribriform plate is developed. In the Ornithorhynchus the olfactory tract is comparatively small in the form of a depression, and the nerve eseapes by a single foramen in the prefrontal: this is likewise an interesting mark of affinity to the Bird and Reptile. But the most renarkable feature in the interior of the skull of the Ornithorhynchus is the bony falx, fig. 204, в. This is not present in the Eehidna. The tentorium is membranous in both Monotremes.
C. Bones of the Limbs.--The scapula, fig. 199, G and 51, are eompressed eurved plates, vertical in position, like the other pleurapophyses: they have coaleseed with their hæmapophyses, the coracoids, 52 and G, o, which articulate below to the expanded hæmal spine, ealled 'episternum,' t, and also with the suececding spine, called 'manubrium,' s, or first bone of the true sternum. A dismemberment of the coracoid, n, extends its attachments also to the elongated T-shaped episternum.

The whole scapula is broader, thicker, and less curved in the Echidna, fig. 201, 51, than in the Ornithorhynchus. In both Monotremes, the posterior margin or costa is concave, most so in the Ornithorhynchus, and in both it is turned toward the trunk, so that the subseapular surface looks obliquely forward and inward. The articular surface is divided into two facets: the one, internal and flat, articulates with the coracoid; the other, external, is slightly concave, and eontributes, with a similar but narrower concave surface of the coracoid, to form the glenoid cavity for the humerus.

The coracoid, fig. 199, G, o, and 52, early coalcsces with the scapula in the Ornithorhynchus; it maintains its independent condition to a later period in the Echidna. In both it is a strong, subcompressed, subelongate bone, expanded at both ends: one of these is articulated and anchylosed with the scapula, as above described; the other is joined to the anterior and external facet
of the manubrium sterni. The posterior margin of the coracoid is concave and free; the anterior margin is straight and articulated with a narrower 'epicoracoid' in the Echidna than in the Ornithorhynchus.

The clavicles, fig. 199, m, m, are two curved styles, extending from the acromion along the transverse bar of the episternum, t. The humerus, ib. 53, is remarkable for its shortness and breadth, especially of its two extremities. There is a small sesamoid ossicle, above the iuternal tuberosity, answering to the 'os humerocapsulare ' in the shoulder-joint of Birds (p. 67). The proximal expansion terminates by a broad thick convex border, the middle part of which is developed into the articular head, which is so adapted to the glenoid cavity, that the bone is maintained in a horizontal position, and the distal expansion is nearly vertical. The deltoid and pectoral crests are strongly developed; both condyles are remarkably produced, especially the internal one, which is perforated, fig. 199, II, a. The distal articular surface searcely occupies a fourth part of that broad termination of the humerus: it presents, in the Echilna, fig. 201, 53, a convex tubercle, which is broadest in front for the articulation of the radius, narrow behind for that of the ulna. The artieular surfaces of botlo antibrachial bones are concave: so that the elbowjoint admits freely of flexion and extension, abduction and adduction, but is restricted in the movement of rotation.

The radius, fig. 199, 54, and ulna, ib. 55 , are in contact and pretty firmly connected together through nearly their whole extent; the interosseous space being reduced to a slight fissure. The utna is chiefly remarkable for the olecranon, fig. 199, i, u. which is bent forward upon the humerus, and transversely expanded at its extremity, especially in the Omithorhynchus, in which the lower or inner angle of the expanded extremity is considerably produced. The şhaft of the ulna is compressed, and inereases in breadth, in the Echidna, as it approaches the broad carpus. In the Ornithorhynchus it is bent like the italie \int, is more cylindrical, and more suddenly expanded at the distal end. The radius offers little worthy of notice, execpt that in the Ornithorliyuchus it is flattened next the ulna, and so applied to that bone as to prevent altogether a rotation of the hand upon the ulna. In the Echidna the distal articular surface of the ulna, fig. 207, n, presents two convex trochlex separated by a median concarity; that of the radius, ib. r, offers a reverse condition; here two concavities are divided by a median convex ridge: all the four faeets at the carpal joint of the antibrachium are in the
same transverse line. The two radial concavities reccive the two articular convexities of the broad scapholunar bonc, fig. 206, a; the two convex trochlere of the ulna play upon two concavitics, one-half of each of which is contributed by the cunciform, ib. b, and pisiform, c. This complicated joint limits the movement of the hand upon the fore-arm to flexion and extension.

Notwithstanding the confluence of the scaphoid with the lunar bone in the carpus of the Echidna, as in that of the Marsupials and Carnivora, it includes eight ossicles, a sinall sesamoid bone, fig. 206, x, being developed in the tendon of the flexor carpi radialis, and articulated with the scapholunar bone, a, and radius. The distal series of the carpus includes the four nor-

mal bones, the trapezium, ib. d, supporting the imermost digit or pollex, the trapezoides, e, the index, the of magmme, f, which is almost the smallest, sustaining the medius, and the unciforme, g, the two outer digits: in the Ornithorhynchus the of magnum contributes a greater share to the articulation with the ring-finger.

In the Echidna all the bones of the fore-cxtremity are relatively larger and stronger than in the Ornithorhynchus, but this difference is especially remarkable in the motacarpals and two first rows of phalanges, fig. 206, h, i, k, which are singularly short, broad, and thick. The paim is strengthened loy two large sesamoids developed in the flexor tendons; thexe are sometimes
confluent, fig. 207, l. The number of phalanges in both Monotremes is the same as in other Mammals, viz. two to the thumb and three to each of the fingers. This is not the case in any Saurian, and the retention of the Mammalian type at the peripheral segment of the limb, with the singular deviation from it at the central supporting arch, is not one of the least remarkable points in the osteology of the Monotremes.

There is a sesamoid bone at the palmar aspect of each of the distal articulations of the phalanges in the Echidna, fig. 207, m, and at all the digital articulations in the Ornithorhynchus, fig. 199, н, d. The ungual phalanges are long, depressed, nearly straight, of great strength in the Echidna, in which each of them is perforated at the palmar aspect, fig. 207.

The pelvis of the Monotremes bears a resemblance to that of Reptiles in the length of time during which the three components
 of each os innominatum remain distinct, especially in the Echidna ; and in the great developement of the ilio-pectineal spine, which equals in size that of the Tortoise, in the Ornithorhynchus: the pelvis of the Echidna resembles that of Birds in the perforation of the acetabulum, fig. 208,g; but the pelvis in both Monotremes chiefly resembles that of the higher Lyencephala in the presence of the marsupial bones, ib. e, fig. 199, x.

The ilium, figs. 199, 208, 62, is a short, strong, trihedral bone, with the upper extremity expanded and everted in the Ornithorhynchus: the ischium, ib. 63, has its tuberosity prolonged backward in an obtusely-pointed form: the pubis in the same animal, besides having the spinous process directed forward, gives off a second smaller process, which projeets outward; this process is present, but less developed, in the Echidna, fig. 208, 64. The pubis and ischium contribute an equal slare to the formation of the foramen obturatorium, ib. l, and to the symphysis, d, which closes the pelvis below.

The marsupial bones, fig. 199, $x, x, 208, e$, are relatively larger and stronger in the Monotremes than in the ordinary Marsupialia, the Koala excepted; their base extends along the anterior margin
of the pubis from the symphysis outward to that of the spinous process: they are relatively longer in the Echidna than in the Ornithorhynchus; they always remain moveably articulated with the brim of the pelvis.

The femur, fig. 199, 65, is short, broad, and flattened; its head rises, like that of the humerus, from the middle of a broad expanded proximal end, having on each side a strong process, the outer one representing the great, the inner one the small, trochanter. In the Echidna a projecting ridge extends from the great or outer trochanter beyond the middle of the bone; the whole of the inner part of the shaft is bounded by a trenchant edge ; both outer and inner margins of the bone are trenchant in the Ornithorhynchus. The distal end of the femur is expanded transversely, but compressed from before backward. The rotular trochlca is flat transversely, convex vertically, in the Echidna; it is hardly definable when the cartilage is separated from the bonc; but the patella itself is wall developed, and ossified in both Monotremes, fig. 199, p.

The tibia, ib. 66, is straight in the Echidna, but bent, with the convexity next the fibula, in the Ornithorhynchus; its cristr are slightitly marked.

The fibula is slightly bent in the Echidna, fig. 201, 67, but is straight in the Ornithorhynchus, fig. 199, 67 ; in both Monotremes it is longer than the tibia by the extent of a process, ib. v, which rises upward beyond the proximal articulation of the fibula, and strongly expresses the homotypal relation of this bone with the ulna: this process reaches halfway up the back of the femur in the Ornithorhynchus, and, like the olecranon, is greatly expranded at its termination.

The tarsus, figs. 209, 210, consists of a nariculare, a, astragalus, b, a calcaneum, e,
 three cuneiform bones, d, e, f, and a cuboid, g, in the Echiilna;
but the cuboid in the Ornithorhynchus is divided into two bones,
as in some Reptiles, one for the fourth and the other for the fifth metatarsals. In both Monotremes there is a sesamoid bone, fig. 209, , placed at the interspace between the astragalus and the naviculare; a second supernumerary bone, ib. ${ }^{* *}$, is articulated to the posterior part of the astragalus, and supports the perforated spur which claracteriscs the male sex, fig. 199, к, d, e. The calcaneum of the Ornithorhynchus, $c l$, terminates by sending outward a short obtuse tuberosity; in the Echidna this part is more slender, and is singularly directed inward and forward nearly in a line with the digits, fig. 210, c.

The astragalus in the Ornithorhynchus presents a double trochlea above for the tibia and fibula, and a depression on its
 inner side, which receives the incurved malleolus of the tibia, almost as in the Sloths. The toes have the same number of bones as in other Mammals; their size and form are more alike in the two Monotrematous genera than those of the fingers: the ungual phalanges, like the claws they support, are more curved than those on the fore-foot, but like them they are perforated on their inner and coneave sile, fig. 210.
§ 180. Skeleton of Marsupialia.-A. Vertebral Column.-The number of 'true' vertebre is the same in all the Marsupiatia, viz. 26 ; that of the dorsal and lumbar series varying aecording to the number of long and free ribs, e. g. $d 12 l 7$ in Petaurists, $d{ }_{15} l_{4}$ in Wombats, $d_{13} l_{6}$ in other genera; the cervicals are seven in all.
In the Koala the length of the spine of the first dorsal hardly exceeds that of the last cervical, but in all other Marsupials the difference is considerable, the first dorsal spine being much longer ; those of the remaining dorsal vertebra progressively diminisli in length and increase in breadth and thiekness. They slope toward the centre of motion, which is shown by the verticality of its spine: this, in the Perumeles, is at the eleventh dorsal vertebra, in Potoroos and Kangaroos, fig. 211, at the ninth-twelfth, in the Petaurists at the thirteenth vertebra. In the Phalangers, Koala, and Wombat, the flexibility of the spine is much diminished, and the contre of motion i, not defined ly the convergence of the spinous process toward a single vertebra, but tlicy all incline slightly baekward, fig. 212.

The metapophyses which begin to increase in length in the three posterior dorsal vertebre, attain a great size in the lumbar vertebre, and are locked 'into the interspace between the anapophyses and post-zygapophyses. The diapophyses of the lumbar vertebre progressively increase in length as the vertebrex approach the sacrum; they are most developed in the Wombat, where they are directed obliquely forward. In the Kangaroos, Potoroos, and Peramcles, they are curved forward and obliquely downward. The length of these and of the metapophyses is relatively least in the Petaturists, Phalangers, and Opossums.

In the Wombat the metapophysis rises suddenly from the outside of the prezygapophysis of the twelfth dorsal, increases in length to

the second lumbar, diminishes by degrees to the second sacral, and is rudimental in the following sacral and caudal vertebre. A rudiment of the anapophysis is first disecrnible on the eleventh dorsal : the process gradually inereases to the last dorsal, diminishes in the lumbar, and disappears in the last of that series. The diapophysis, moreover, is not supressed on the last dorsal vertebra. The serial homology of the transerse processes of the lumbar vertebre is lere manifested in the most unequivecal way; both metapophyses and anapophyses coexist with diapophyses in the last four dorsal and the first three lumbar vertebrae. Whether, therefore, the metapophysis or the anapophysis be the part called 'tubercle' hy some Anthropotomists, neither of them is, in the lumbar vertebre, the process named 'transverse' in the thoracie vertebre: that provess, to which the name "diapophysis' is restrieted in the prenent work, is continued distinctly into the lumbar recrion, and is there lengthened out by a super-
added 'pleurapophysis,' which is ossified from a distinct centre in the Wombat.

The free or thoraeic ribs eonsist of bony pleurapophyses and gristly hæmapophyses, aequiring bone-earth only in aged Marsupials: in the Wombat the six anterior pairs articulate directly with the sternum, in the nine following the hæmapophyses are attached to one another. The pressure which the trunk of the Wombat must occasionally have to resist in its burrowing work may be the condition of the unusual number of bony arches of the trunk. In the Kangaroo seven anterior pairs of ribs join the sternum ; several of the postcrior pairs terminate freely, fig. 211.

The sternum consists of a longitudinal series of four bones in the Wombat, of five in the Petaurist, and of six in most other Marsupials. The first, or 'manubrium,' is the largest; in many a longitudinal crest is devcloped from the middle of its outer surface, which in Wombats and Phalangers is produced, and gives attachment to the clavicles. The first pair of ribs abut upon the anterior angles of the triangular manubrium of the Wombats, but in Dasyurcs, Opossums, Petaurists, and Kangaroos, the manubrium is compressed and elongated, and the clavicles join the produced anterior end. The hæmapophyses articulate at the interspaces of the succeeding sternebers, the last of which supports a broad Hat ' xiphoid' cartilage.

The number of vertebre succeeding the lumbar which are anchylosed together in the sacral region of the spine, amounts in
the Wombat to seven, fig. 213; but if we regard those vertcbræ only as sacral which join the ossa innominata, then there are but four. In the Phalangers there are generally two such saeral vertebra, but in the Phalangista Cookii the last lumbar assumes the character of the sacral vertebre both by anchylosis and partial junction with the ossa innominata.

In the Kangaroos and Potoroos the impetus of the powerful hinder extremities is transferred to two anchylosed vertebre. In the Perameles there is only a single sacral vertebra, the spine of which is shorter and thieker than those of the lumbar vertebre, and is turned in the contrary direction, viz. backward.

In the Myrmecobius there are four sacral vertebre by anchylosis, two of which join the ilia. In Mauge's Dasyure, two sacral vertebre are anchylosed, but it is to the expanded transverse processes of the anterior one only that the ossa innominata are joined. The same kind of union exists in the Viverrine Dasyure, but three vertebre are anchylosed together in this species. In
 the Phalangers and Petaurists there are two saeral vertebre. In Petaurus macrurus three are anchy losed together, though only two join the ilium. In the Wombat, fig. 213, the transverse processes of the numerous anchylosed vertebræ are remarkable for their length and flatness: those of the first four are direeted outward and are confluent at their extremities; the remaining ones are turned in a slight degree backward, eoalesee, and very nearly reach the tuberosities of the isehia: behind these they gradually diminish in size and disappear in the three last caudal vertebrex. The transition from the sacral to the caudal vertebre is here very obscure. If we limit the sacral to the three or four which join the ilium, then there remain twelve vertebre for the tail. The spinal eanal is eomplete in all but the last three, whieh consist only of the body. There are no hæmal spines, and as only the six posterior vertebra, which progressively diminish in length, extend beyoud the posterior aperture of the pelvis, the tail is scareely visible
in the living animal. In the Koala, fig. 227, the tail is also very short. In the Cheropus it seems to be wanting. In one species of Peramcles I find cighteen caudal vertebre; in another twenty-three. In two species of Potoroo there are twentyfour caudal vertebre, but the relative length of the tail differs in these by one third, in consequence of the differcut length of the bodics of the vertebra. In Hypsiprymnus ursinus there are more than twenty-six candal vertebre. In the Great Kangaroo there are twenty-two caudal vertebree. In Bennett's Kangaroo there are twenty-four caudal vertebre, which are remarkable for their size and strongth. In the l'halangista vulpina, there are twenty-one caudal vertcbra. In the Petaurus macrurus I find twenty-cight caudal vertebre, while in the Pet. sciureus there are but twenty; the bodies of the middle caudal rertebre in both these species are remarkably long and slender. The Myrmecobins has twenty-three caudal vertebre: in Didelphys cancrivora there are thirty-one; in the Virginian Opossum there are twenty-two caudal vertebre. In the latter species the spinal canal is continued along the first six; beyond these the neural spines cease to be developed, and the body gives off, above, only the two anterior and two posterior zygapopliyses which are rudimental, and no longer subservient to the mutnal articulation of the vertebre. The transverse processes are single on the first five caudal vertebre, and are nearly the brcadth of the body, but diminish in length from the second caudal, in which vertebre they are generally the longest. In the other vertebre a short obtuse process is developed at both extremities of the body on either side, so that the dilated articular surfaces of the posterior caudal vertebre present a quadrate figure.

In most of the Marsupials which have a long tail, this appendage is snbject to pressure on some part of the under surface. In the Kangaroo, fig. 211, this must obviously take place to a considerable degree when the tail is used as a fifth extremity, to aid in supporting or propelling the body. In the Potoroos and Bandieoots the tail also transnits to the ground part of the superincumbent pressure of the body by its under surface, when the animal is erect, but it is not used as a crutch in locomotion as in the Kangaroos. In the Phalangers and Opossums the tail is prehensile, and the vessels situated at the under surface are liable to compression when the animal hangs suspended by the tail. To protect these vessels, therefore, as well as to afford additional attachment to the muscles which execute the varions movements for which the tail is adapted in the above-mentioned Marsupials,

V-shaped bones, or hæmal archcs, are developed, of various forms and sizes, and are placed beneath the articulations of the vertebrap, a situation which is analogous to that of the ncural arches in the sacral region of the spinc in Birds, and in the dorsal region of the spinc in the Chelonian Reptiles. The two crura of the hæmal arch embrace and defend the bloodvessels, and the spinous process continued from their point of union presents a variety of forms in different gencra. In Cook's Phalanger the hæmapophyses commence between the second and third caudal vertebre, increase in length to the fourth, and then progressively diminish to the end of the tail; the penultimate and antepenultimate presenting a permanent separation of the lateral moieties, and an absence of the spinc, fig. 214. In the Great Kangaroo the spine of the first hamal arch only is simple and elongated, the extremities of the others are expanded, and in some jut out into four obtuse processes, two at the sides, and two at the anterior and posterior surfaces.

The cervical vertebre, seven in number in all Marsupials, show usually to the last the circumscription of the vertebrarterial foramen by confluence of a short plcurapophysis, fig. 216, pl, with di- and met-apophyscs: but I have seen the plcurapophyses still unanchylosed in a full-grown Peramelcs. In Dasyures, Opossums, Phalangers, and Pcrameles, the scventh cervical has the diapophysis only: in the Kangaroos both atlas and dentata may lave the transverse process mercly grooved by the vertebral arteries: in the Koala and Wombat the atlas presents only the perforation on each side of the superior arch. In the Perameles and some other Marsupials, the ncurapophyses of the atlas, fig. $216, n$, are distinct from the hypapophysis, fig. 215, h, as well as from their proper

Terminal caudal vertebre, centrum, the odontoid, fig. 216, col. In the Koala and Wombat the hypapophysis remains cartilaginous, and the lower part of the vertebral ring is completed, in the skeleton, by dried gristly substancc, fig. 216. In the Petaurists, Kangaroos, and Potoroos, the atlas is completed below by an extension of ossification from the neurapoplyses into the cartilaginous hypapophy-

Atlas of Perameles luguts. sis, simulating the body, and the ring of the vertebra is for a long time interrupted by a longitudinal fissure in the middle line, the
breadth of whieh diminishes with age. In all the Marsupials the spine of the dentata is well developed both in the vertical and longitudinal directions, but most so in the Virginian and Crab-eating Opossums, fig. 217, where it inereases in thiekness posteriorly; in these species also the third, fourth, and fifth cervical vertebræ

Atlas, axis, and third cervical vertebra, Koala. have their spines remarkably long and thiek, but progressively diminishing from the third, fig. 218, whieh equals in height and thiekness, but not in longitudinal extent, the spine of the dentata. These spines are four-sided, and being elosely impacted together, one behind another, must add greatly to the strengtl, while they diminish the mobility, of this part of the spine. The structure of the transverse processes of the eervical vertebræ, fig. $218, d$, is also adapted to the strengthening and fixation of this part of the vertebral column: they are expanded nearly in the axis of the spline, but so that the posterior part of one transverse process
 overlaps the anterior part of the suceeeding. This strueture is exhibited in a slighter degree in the cervical vertebre of the Dasyures, Phalangers, and Great Kangaroo. In the Petaurists, Potoroos, Wombat, and Koala, the direction and simpler form of the transverse processes allow of greater freedom of lateral motion. In the Koala and Wombat a short obtuse process is given off from the under part of the transverse process of the sixth cervical vertebre. In the Potoroos, Kangaroos, Petaurists, Phalangers, Opossums, and Dasyures, this process is remarkably expanded in the dircetion of the axis of the spinc. In the Bandicoots corresponding processes are observed, progressively increasing in size, on the fourth, fifth, and sixth cervieal vertebre.
B. Sknll.--The form of the skull varies mueh in different Marsupials, but it may be said, in general terms, to resenible an elongated cone, being terminated by a vertical plane surface behind, and in most of the species converging toward a point
anteriorly: it is also generally more depressed or flattened than in the placental Mammalia. The skull is also remarkable in all the Marsupial genera for the small proportion which is devoted to the protection of the brain, and for the great expansion of the nasal cavity immediately anterior to the cranial cavity.

In the stronger carnivorous Marsupials the exterior of the cranium is characterised by bony ridges and muscular impressions, but in the smaller herbivorous and insectivorous species, as the Petaurists, Potoroos, and Myrmecobius, the cranium presents a smooth convex surface as in Birds, corresponding with the smooth unconvoluted surface of the simple brain contained within, fig. 219.

The breadtl of the skull in relation to its length is greatest in the Wombat, ${ }^{1}$ Ursine Dasyure, ${ }^{2}$ and Petaurists, in which it equals three-fourths of the length, and is least in the Perameles lagotis, in which it is less than one-half.

The occipital region, which is generally plane, and vertical in position, forms a right angle with the upper surface of the skull, from which it is separated by an occipital or lambdoidal crista. This crista is least developed in the Myrmecobius, Petaurists, and Kangaroos, and most so in the Thylacine and larger Opossums, in which, as also in the Koala, the crest curves slightly backward, and thus changes the occipital plane into a concavity for the firm implantation of the strong muscles
 from the ncek and back.

The upper surface of the skull presents great diversity of character, which rclates to the different developement of the temporal muscles, and the varieties of dentition in the different genera.

The extinct Nototherium offers the singular exception of an expansiou of the facial part of the skull, vertically and transverscly, from the orbits to the terminal muzzle. ${ }^{3}$

In the Wombat the coronal surface offers an almost flattened tract bounded by two slightly elevated temporal ridges, which arc upwards of an inch apart posteriorly, and slightly diverge as they extend forward to the anterior part of the orbit. In the skall of the Virginian Opossum the sides of the cranium meet above at an acute angle, and send upward from the line of their

[^103]union a remarkably elevated sagittal crest, which, in mature skulls, is proportionally more developed than in any of the placental Carnivora, not even excepting the strong-jawed Hyæna. The Thylacine and Dasyures, especially the Ursine Dasyure, exhibit the sagittal crest in a somewhat less degree of developement. It is again smaller, but yet well marked, in the Koala and Perameles. The temporal ridges meet at the lambdoidal suture in the larger Phalangistce and in the Hypsiprymni, but the size of the muscle in these does not require the developement of a bony crest. In the Kangaroo, the temporal ridges, which are very slightly raised, are separated by an interspace of the third of an inch. They are separated for a proportionally greater extent in the Petaurists, especially Petaurus flaviventer; and in the smooth and convex upper surface of the skull of Petaurus seiureus, Pet. pigmaus, Myrmecobius, the impressions of the feeble temporal muscles almost cease to be discernible.

The zygomatic arches are, however, complete in these as in all the other genera; they are usually, indeed, strongly developed; but their variations do not indicate the nature of the food so clearly, or correspond with the differences of animal and vegetable diet in the same degree, as in the placental Manmalia. And this is not surprising when we recollect that no Marsupial animal is devoid of incisors in the upper jaw, like the ordinary Ruminants of the placental series: accordingly the more complete dental system with which the herbivorous Kangaroos, Potorcos, Phalangers, \&c., are provided, and which appears to be in relation to the seantier pasturage and the dry and rigid character of the herbage or foliage on which they browse, requires a stronger apparatus of bone and musele for the action of the jaws, and especially for the working of the terminal tecth. There are, however, well-marked differences in this part of the Marsupial skull; and the weakest zygomatic arehes are those of the Insectivorous Perameles and Acrobates, in which structure we may disecrn a correspondence with the Edentate Auteaters of the placental series. Still the difference in the developement of the zygomata is greatly in favour of the Marsupial Insectivora.

The Hypsiprymni come next in the order of developement of the zygomatic arches; which again are proportionally mueh stronger in the true Kangaroos. The length of the zygomata in relation to the entire skull is greatest in the Koala and Wombat. In the former animal they are remarkable for their depth and straight and parallel course, as well as for their longitudinal extent, fig. 221. In the Wombat, fig. 220, they have a considerable
eurve outward, so as greatly to diminish the resemblance which otherwise exists in the form of the skull betweeu this Marsupial and the Herbivorous Rodentia of the placental series, as, e. g., the Viscaecia.

In the earnivorous Marsupials the outward sweep of the zygomatie areh, which is greatest in the Thylacine and Ursine Dasyure, is also accompanicd by a slight curve upward, but this curvature is chiefly expressed by the eoneavity of the lower margin of the zygoma, and is by no means so well marked as in the placental Carnivora. It is remarkable that this upward curvature is greater in the slender zygomata of the Peramelcs than in the stronger zygomata of the Dasyures and Opossums. In the Koala and Plalangers there is also a slight tendency to the upward curvature; in the Wombat the outwardly expanded arch is horizontal. In the Kangaroo the lower margin of the zygoma deseribes a slightly undulating eurve, the middle part of which is convex downward.

In many of the Marsupials, as the Kangaroo, the Koala, some of the Phalangers, Petaurists, and Opossums, the superior margin of the zygoma begins immediately to rise above the posterior origin of the arch. In the Wombat an external ridge of bone commences at the middle of the lower margin of the zygoma, and gradually extends outward as it advances forward, and being joined by the upper margin of the zygoma, forms the lower boundary of the orbit, and nltimately curves downward in front of the antorbital foramen, below which it bifureates and is lost. This ridge results, as it were, from the flattening of the anterior part of the zygoma, which thus forms a snooth and slightly concave horizontal platform for the eye to rest upon.

The same structure obtains, but in a slighter degree, in the Koala. In the Kangaroo the anterior and inferior part of the zygoma is extended downward in the form of a conical process, which reaches below the levcl of the grinding-tecth; it is developed from the maxillary. A much shorter and more obtuse process is observable in the correspouding situation in the Phalangers and Opossums.

The relative length of the facial part of the skull anterior to the zygomatic arches varies remarkably in the different Marsupial genera. In the Wombat it is as six to nincteen; in the Koala as five to fourteen; in the Petaurus sciureus and Petourus Bennettii it forms about one-fourth of the entire skull ; in the Phalangers about one-third; in the carnivorous Dasyures and Opossums more than one-third; in the Thylacine ncarly one-half; in Peramoles, VOL. II.

Macropus, and Hypsiprymnus murinus, the length of the skull anterior to the orhit is equal to the remaining posterior part ; but in a species from Van Dieman's Land (Ilypsiprymnus myosurus, Ogitb.), the facial part of the skull anterior to the orbit exceeds that of the remainder, and the arboreal Ilypsiprymni fiom New Guinca present a still greater length of muzzle. In most Marsupials the skill gradually converges toward the anterior extremity; the convergence is more sudden in the Petaurists, especially Pet. Bennettii; but in the Perameles layotis the skull is remarkable for the sudden narrowing of the face anterior to the orbits, and the prolongation of the attennated snout, preserving the same diameter for upwards of an inch before it finally tapers to the extremity of the nose. In the Koala the corresponding part of the skull is as remarkable for its shortness as it is in the Per. lagotis for its length, lut it is bounded laterally by parallel lines through its whole extent. In neady all the Marsupials two long parapophyses project downward from the inferior augles of the occipital region. These processes are longest in the Kangaroos and Koala; in the Wombat they cocxist with the true mastoids, which are of larger size, fig. 220,8. In the Opossums and Dasymes the paroceipitals are short and obtuse; in Acrobates they cease to cxist, but they are present in the larger Petaurists.

The elements of the occipital neural arel remain longer distinet in Marsupials than in most other Mammals. In the skull of a half-grown Thylacine the basioccipital has coalesced with the exoccipitals, which almost meet above the foramen magnum. The lateral sinus impresses the fore part of each exoccipital, and then sinks into a canal which communicates or opens into the precondyloid canal: from this anotleer canal extends forward through the side of the hasioccipital. The superoccipital has coalesced with the parietals and interparictal. The hasisphenoid has eoalesced with the alisphenoids and the presphenoid, but not with the pterygoids: it has no 'sella' nor clinoid processes: it is perforated by the entocarotid at its back and outer angle: the canals converge forward and slightly upward, and terminate above the middle of the basisphenoid. The alisphenoids have the foramen avate near their posterior borders: the foramen rotundmen is a longer canal. The posterior angles of the alisphenoid expand into tympanic bullie: pterapophyses are sent off in advance which join both pteregoids and palatines. The parietals have coalesced with each other, with the frontal, with the interparictal, and the superoccipital. The orbitosplienoids
are very small; thcir coalesced bases arch backward over the optic nerves and presphenoidal prolongation of the basisphenoid, as in the bird, and their under part is grooved (not perforated) by the optic nerves, which escape by the fissura lacera anterior.

The nasal portion of the coalesced frontals is more expanded than the cerebral one: the frontal sinuses extend to the coronal suture and raise the outer far above the vitreons table: in this table the frontal and coronal sutures remain, but they are obliterated in the outer table. The vomer is carinate below. The nasals are distinct from each other and from the frontals: they are grooved externally for the premaxillaries. The petromastoid, tympanic, and temporal bones continue permanently separate, though confluent ossification proceeds to blend the occipital, parietal, and frontal into one bonc. The petrosal is small, its tentorial ridge or angle is sharp, and its cerebellar fossa very deep, though small: a branch of the lateral sinus perforates the petromastoid and the adjoining part of the temporal to open behind the root of the zygoma: the mastoid part is compressed and abuts against the outer side of the base of the paroccipital. The tympanic is a simple scoop-shaped bone, or half-cylinder, cut obliquely. The pratatine process of the premaxillary is very decply notched, and is excavated behind the outer incisor.

In the skull of the mature Wombat, fig. 220, the exoccipitals were still unanchylosed ; the left is figured separate at 3.

In the skull of a Perameles nasuta the exoccipitals are separated by an interspace, so that a fissure is continued from the upper part of the foramen magnum to the superoccipital element. The same structure may be observed in the Great Kangaroo, and it is very remarkable in the young sknlls of this species. In the Wombat the corresponding fissure is very wide, and the lower margin of the superoccipital is noteched, so that the shape of the foramen magnum somewhat resembles that of the trefoil leaf. In the Opossum, the exoceipitals meet above and complete the foramen magnum. The petrosal and mastoid are commonly confluent. So loose is the connection of the tympanie, that without due care it is liable to be lost in preparing the skulls, of the Marsupials. In the Kangaroo and Wombat, it forms a complete bony tube, fig. 220, 28, and in the Potoroo the bony circle is incomplete at the upper part; in the Perameles and Dasyures the tympanic bone forms a semicircle, the posterion part being deficient, and the tympanic membrane being there attached to the mastoid, as in Birds. In the Dasyures, Petauristr, Perameles, Potoroos, and Koalia, fig. 221, f, there is a large bullin
ossea for inereasing the extent of the auditory eavity, formed by the expansion of the base of the sphenoid. In Acrobates and Pera-
 meles lagotis, there is also an external dilatation of the petrosal, fig. 222, 16, which thus forms a second and smaller bulla on each side, behind the large bulla ossea formed by the alisphenoid, b. In other Marsupials the petrous bone is of small size, generally limited to the office of protecting the parts of the internal ear, and sometimes, as in the Koala, is barely visible at the exterior of the base of the skull. The mastoid portion appears in the oceipital region of the skull of the Koala, fig. 221, 8 , between the exoceipital and squamous portion of the temporal. In the Wombat the mastoid sends outward the strong compressed process, fig. 220,8 , which terminates the lateral boundaries of the oceipital plane of the eranium ; but this process is entirely due to the exoceipitals in the Koala, fig. 221, 4 , and other Marsupials.
The auditory elamber of the ear is algmented in the Phalangers, the Koala, the Kangaroos, and Potoron, ly a continuation of air-cells into the base or origin of the zygomatic process; but the extent of the bony air-chambers communieating witl the tympanum is proportionally greatest in the Flying Opossums, where, bexides the sphenoid bulla, the mastoid and the whole of the zygomatic process of the squamosal are expanded to form aircells with very thin and smooth walls, fig. 219.

The direction of the bony eanal of the organ of hearing corresponds with the habits of the species. The meatus is direeted
outward and a little forward in the carnivorous Dasyures; outward and a little backward in the Perameles and Phalangers; outward, backward, and upward in the Kangaroos, and directly outward in the Petaurists and Wombat; but the differences of direction are but slightly marked in these timid regetarians.

The squamosal generally reaches half-way from the root of the zygoma to the sagittal ridge or suture; it is most developed in the Wombat, in which its superior margin describes a remarkably straight line. The zygomatic proeess is generally compressed and much extended in the vertical direction in the Opossum, Dasyure, Phalanger, Koala, fig. 221, 27, and Kangaroo. In the Wombat it eurves outward from the side of the head in the form of a compressed and almost horizontal plate, fig. 220, 27 ; it is then suddenly twisted into the vertical position, to be received into the notch of the malar portion of the arch, ib. 26. In Macropus the back part of the zygoma is perforated by a pneumatic foramen which receives air from the tympanum.

The eavity corresponding to the sphenoidal bulla ossea in other Marsupials is in this species excavated in the lower part of the squamosal at the inner side of the articular surface for the lower jaw. This articular surface, sitnated at the base of the zygomatic process, presents in the marsupial as in the placental Manmalia various forms, each manifesting a physiological relation to the structure of the teeth and adapted to the required movement of the jaws in the various genera. In the herbivorons Kangaroo the glenoid cavity forms a broad and slightly convex surface, as in the Ruminants, affording freedom of rotation to the lower jaw in every direction. In the Phalangers and Potoroos the articular surface is quite plane. In the Perameles it is slightly convex from side to side, and eoneave from behind forward. In the Wombat it is formed by a narrow convex ridge considerably extended, and slightly concarc, in the transverse direction. This ridge is not bounded by any desconding process posteriorly, so that the jaw is left free for the movements of protraction and retraction. In the Koala the glenoid cavity is a transversely oblong depression with a slight convex rising at the bottom, indicating rotatory movements of the jaw. In the carnivorous Dasyures it forms a concavity still more clongated transversely, less decp than in the placental Carnivora, but adapted, as in them, to a ginglymoid motion of the lower jaw. In all the genera, save in the W'ombat, retraction of the lower jaw is opposed by a descending process of the temporal bone immediatcly anterior to the meatus auditorius and tympanic bone.

The glenoid eavity presents a characteristic structure in most of the Marsupialia in not being exelusively formed by the squamosal. With the exception of the Petaurists, the malar bone forms the outer part of the artieular surface for the lower jaw, and in the Thylacinus, Dasyurus Mangei, Dasyurus ursinus, Prameles, Hy/fsijnrymnus, and Macropus, the alisphenoid forms the inner boundary of the same surface. In the Kangaroo, Dasyures, Koala, and Wombat, the alisphenoid articulates with the parietal, but by a very small portion in the two latter speeies:
 in the Perameles and Potoroos the alisphenoid docs not reach the parietal.

In the parietals, fig. 221, \because, the sagittal suture is obliterated in those species in which a bony crista is developed in the corresponding place. They present a singularly flattened form in the Wombat, in an aged skull of whieh, and in a similar one in the Kangaroo, I observe a like obliteration of the suture. In the Kangaroo, Potoroo, Petaurus, Phalanger, and Myrmecobius, there is a triangular interparietal bone. The corresponding bone I find in three pieces in the skull of a Wombat.

The fromtals, ib. 11, are chiefly remarkable for their anterior expansion and the great share which they take in the formation of the nasal caxity. In the Thylacine the part of the eranium occupied by the frontal sinuses exceeds in breadth the cerebral cavity, from which it is divided by a constriction. The coronal suture presents in most of the Marsupials an irregular angular course, forming a notel in the frontals on each side which receives a corresponding triangular process of each parietal bone. Λ process corresponding to the posterior frontal augments the bony boundary of the orbit in the Thylacine, the Ursine Dasyure, and in a slighter degree in the Virginian O_{p} onsmin; it is relatively most developed in the skull of the Myrmerolines fasciatus, where the orbit is large; but the bony boundary of the orbit is not complete in any Marsupial. In the Myrmecobius there is a deep notch at the middle of the superorbital ridge. A corresponding but shallower notch is pesent in the skull of Petanrus sciareus. I have found the frontal suture obliterated in old specimens of
the Thylacine, the Virginian Opossum, Cook's Phalanger, the taguanoid, and yellow-bellied Petaurists; but the frontal suture exists in Petaurus sciureus, Acrobates, and other Marsupials. The interorbital space is coneave in the Phalangers and in the Petcurus taguanoides, but is quite flat in the other Petaurists.

The lacrymals vary in their relative size in different Marsupials. In the Koala, fig. 221, 73, they extend upon the faee about a line beyond the anterior boundary of the orbit, and at this part they present a groove with one large and two or three small perforations. In the Wombat their extent upon the face is slightly increased; it is proportionally greater in the Kangaroos, Potoroos, Phalangers, and Petaurists, in whieh this part of the lacrynal bone presents two perforations close to the orbit. In the Thylacine, besides the two external holes there is a large perforation within the orbital margin. This carnivorous Marsupial, as compared with the Wolf, presents a greater extent of the facial portion of the laerymal bone, and thus indicates its inferior type. In the Nyrmecobius the laerynal bone exhibits its greatest relative developement. The extraorbital laerymal formen is a good marsupial charaeter: it is present in the Thylacoleo, where it is single, as in Dasyurus ursinus.

The malurs, figs. 220 and 221, 26, are very strong and of great extent in almost all the Marsupialia. They are least developed in Acrobates, fig. 219, Myrmecolius, and Perameles lagotis. In the latter, fig. 222, the malar bone presents a singular form, being bifureate at both extremitics: the processus zygomaticus maxillce superioris is wedged into the eleft of the anterior fork; the corresponding process of the squamosal fills up the posterior noteh. The anterior bifurcation of the malar bone is not present in the Marsupials generally: the external malo-maxillary suture forms an oblique and almost straight line in the Wombat, Phalanger, Opossum, Dasyures, and Kangaroo. Owing to the inferior derelopement of the zygomatic proeess of the superior maxillary in the Wombat, the malar bone is not suspended in the zygomatic arch as in the Rodentia. It is also of relatively much larger size and of a prismatic form, arising from the developement of the oblique external ridge above described. In the Kangaroos, Potoroos, (treat Petaurus, and Phalangers, it is traversed externally by a ridge showing the attachment of the masscter, of which muscle the extent of origin is augmented by the descending zygomatic process of the maxillary; this is most developed in the gigautic fossil Notothere and Diprotodon.

The nasal bones vary in their form and relative size in the
different genera; they are longest and narrowest in the Perameles, shortest and broadest in the Koala, fig. 221, 13. Their most characteristie structure is the expansion of their upper and posterior extremity, which is well marked in the Wombat, Myrmeeobius, Petaurists, Phalangers, Opossums, and Dasyures. In the Potoroos the anterior extremities of the nasal bones eonverge to a point which projects beyond the premaxillaries. In the Perameles lagotis the bony case of the nasal passage is further inereased by the presence of two small rostral bones, resulting, as in the Hog, from ossifieation of the nasal eartilage.

The premaxillaries always eontain teeth, and the ratio of the developement of these bones corresponds with the bulk of the dental apparatus which they support. They are consequently largest in the Wombat, where they extend far upon the side of the face and are articulated to a considerable proportion of the nasals, but do not, as in Rodentia, reael the frontal or divide the maxillary bone from the nasal. They present a somewhat lower degree of developement in the Koala, fig. 221, 22, but both in this species and in the Wombat they bulge outward, and thus remarkably increase the transverse diameter of the osseous cavity of the nose. In Hypsiprymnus and Macropus the incisive palatal foramina are chiefly in the premaxillarics, but a small proportion of their bony cireunference is due to the anterior extremity of the palatal process of the maxillary: the same structure obtains in the Wombat, Koala, and Opossums. In the Dasyures and Phalangers a greater proportion of the posterior boundary of the incisive foramina is formed by the maxillaries ; in the Petaurists they are entirely surrounded by the maxillary bones, while in the Perameles they are, on the contrary, entirely included in the maxillaries. They always present the form of two longitudinal fissures, fig. 222, a.

The maxillary, fig. 221, 21, in the Koala and Wombat sends upward a long, narrow, irregular nasal process, which joins the frontal and nasal bones, separating them from the premaxillaries. The antorbital foramen does not present any marked variety of size, which is generally moderate. It is much closer to the orbit in the carnivorous Marsupialia than in the corresponding placental quadrupeds. It is relatively largest in the Ursine Dasyure. It presents the form of a vertical oblique fissure in the Wombat. I have observed it double in the Kangaroo. In this and some other herbivorous Marsupials the malar process of the maxillary sends down a process for inereasing the power and size of the masseter muscle.

In Phalangista Cookii, in Petaurus flaviventer, and Petaurus sciureus, in Macropus major, and some other Great Kangaroos, the bony palate is of great extent and presents a smooth surface, eoneave in every direetion toward the mouth; it is piereed by the two posterior palatine foramina at the anterior external angles of the palatine bones, either within or close to the transverse palato-maxillary sutures. Behind these foramina, in the Kangaroo, there are a few small irregular perforations. The bony palate is similarly entire in the Hypsiprymnus ursinus. In Macropus Bennettii there are four orifiees at the posterior part of the bony palate. The two anterior ones are situated upon the palato-naxillary suture, and are of an ovate form with the small end forward. The two posterior foramina are of a less regular form and smaller size. In the Brush Kangaroo (Macropus Brunii, Cuv.) the posterior palatal foramina present the form of two large fissures placed obliquely and converging posteriorly. They eneroach upon the posterior borders of the maxillary plate. Anterior to these vacaneies there are two smaller foramina, and posterior to them are one or two similar foramina.

In the Potoroos, Wombat, and Koala, the posterior palatal openings aro large and oval, and situated entirely in the palatal bones. In Hyps. setosus they extend as far forward as the interspace between the first and second true molars; in Hyps, murinus they reach to that between the second and third true molars: posterior and external to these large vaeuities there are two small perforations. In the Phalangers, with the exception of $P /$. Cookii, the palatal openings are proportionally larger; they extend into the palatal process of the maxillaries, and the thin bridge of bone whieh divides the openings in the Potoroo, \&c., is wanting; the two perforations at the posterior external angles of the palatine bones are also present. In the Virginian Opossum the bony palate preseuts eight distinct perforations, besides the incisive foramina; the palatal processes of the palatine bone extend as far forward in the median line as the third molars: a long and narrow fissure extends for an equal distance (three lines) into the palatal processes both of the palatines and maxillaries: behind these fissures and nearer the median line are two smaller oblong fissures; external and a little posterior to these are two similar fissures, situated in the palato-maxillary suture; lastly, there are two round perforations close to the posterior margin of the bony palate.

In the Usine Dasyure a large transversely oblong aperture is situated at the posterior part of the palatal processes of the
maxillary bones, and encroaches a little upon the palatines. In Mauge's Dasyure there are two large ovate apertures crossing
 the palato-maxillary sutures separated from each other by a hroad plate of bone; posterior to these are two apertures of similar size and form, which, being situated nearer the mesial line, are divided by a narrower osseous bridge; each posterior external angle of the bony palate is also perforated by an oval aperture. In the Viverrine Dasynre the two vacancies which cross the palato-maxillary suture are in the form of longitudinal fissures, corresponding to the fourth and fifth grinders; the posterior margin of the bony palate has four small a pertures on the same transverse line.

Since the defective condition of this part of the cranium is one of the characteristics of the skull of the Bird, it might be expected that some approximation would be made to that structure in the animals which form the transition between the Placental and Oviparous Vertebrates. We have already noticel the large vacuities which occur in the bony palate of nearly all the Marsupials; but this imperfectly ossificd condition is most remarkable in the Promeles lagotis, in which, fig. 222, the bony roof of the montl is perforated by a wide oral space extending from the second premolars to the pennltimate molars, exposing to view the vomer and the convolutions of the inferior spongy bones in the nasal cavity. The pterygoids, fig. 220,24 , long maintain their individuality; and repeat the connections they present in Birds.

The parietes of the cranial cavity are remarkable for their thickness in some of the Narsupial genera. In the Wombat the two tables of the parictal bones are separated posteriorly for the extent of more than half an inch, the interspace being filled with
a coarse ccllnlar diploë; the frontal bones are about two and a half lines thick. In the Ursine Dasyure the cranial bones have a similar texture and relative thickness. In the Koala the texture of the cranial bones is denser, and their thickness varies from two lines to half a line. In the Kangaroo the thickness varies considerably in different parts of the skull, but the parietes are generally so thin as to be diaphanous, which is the casc with the smaller Marsupials, as the Potoroos and Pctaurists. The union of the body of the second with that of the third cranial vertebra takes place in the marsupial as in the placental Mammalia at the sella turcica, which is overarchect by the backward extension of the orbitosphenoids. The optic foramina and the fissurx lacere anteriores are all blended together, so that a wide opening leads outward from each side of the sella. Immediately posterior and external to this opening are the foranina rotunda, from each of which in the Kangaroo a remarkable groove leads to the fossa Gasseriana at the commencement of the foramen ovale; the same groove is indicated in a slight degree in the Dasyures and Phalangers, but is almost obsolete in the Wombat and Koala. The entocarotid canals pierce the basisphenoid, as in Birds, and terminate in the cranial eavity very close together behind the sella tureica, which is not bounded by a posterior clinoid process. The sphenoidal bulla, which forms the chief part of the tympanic cavity in the Perameles lagotis, forms a large convex protuberance on each side of the floor of the cranial cavity in that species. The petrosal in the Kangaroo, Koala, and Phalangers, is impressed above the meatus auditorius by a deep, smooth, romid pit, which lodges the lateral appendage of the cerebellum, as in Birds. The corresponding pit is shallower in the Dasyuri, and is almost obsolete in the Wombat. The middle and posterior fissure lacere have the usual relative position, but the latter are small. The condyles are cach perfmated anteriorly by two foramina in most of the Marsupials, the Thelacinus forming the exception and showing only one. The foramen magnum is of great size in relation to the capacity of the cranium; the aspeet of its plane is backward and slightly downward. A venous canal leads from the lateral sinus between the upper part of the petrosal and the squamosal, and perforates the latter behind or above the root of the zygoma.

In the Kangaroo and Phalanger a thin ridge of bone extends for the distance of one or two lines into the periphery of the tentorial process of the dura mater, and two sharp spines are sent down into it from the upper part of the erasium in the Iherthen-
gista vulpina. The tentorium is supported by a thick ridge of bone in the Thylacine; but it is not completely ossified in any of the Marsupials: in some species, indeed, as the Dasyures, the Koala, and the Wombat, the bony crista above described does not exist. There is no ossification of the falciform ligament as in the Oruithorhynclus.

The rhinencephalie division of the cranial cavity is well defined from the prosencephalic one. It is relatively smallest in the Koala. In all Marsupials it is bounded anteriorly by the cribriform plate, which is converted into an osseous reticulation by the number and size of the olfactory apertures. The cavity of the nose, from its great size and the complication of the turbinal boncs, forms an important part of the skull. It is divided by a complete bony septum to within onc-fourth of the antcrior aperture; the anterior margin of the septum is slightly concave in the Koala; describes a slight eonvex line in the Wombat, Kangaroo, and Phalanger, and a sigmoid flexure in the Dasyure. A longitudinal ridge projects downward from the inside of each of the nasal bones, and is continued postcriorly into the superior turbinal; this bone extends into the dilated space anterior to the cranial cavity, which corresponds with the frontal sinuses. The convolutions of the middle turbinal are extended chiefly in the axis of the skull; the processes of the anterior turbinal are arranged obliquely from below upward and forward. The nasal carity communieates freely with large maxillary sinuses, and finally terminates by wide apertures behind the bony palate. In the skull the nasal cavity communicates with the mouth, as before mentioned, by means of the various large vacuities in the palatal processes.

In the carnivorous Marsupials, as the Thylacine, the lower maxillary bone resembles in general form that of the corresponding species in the placental series, as the Dog: a similar transverse condyle is placed low down near the angle of the jaw, on a level with the series of molar teeth; a broad and strong eoronoid process riscs high above the condyle, and is slightly eurved backward; there is the same well-marked depression on the extcrior of the ascending ramus for the firm implantation of the temporal muscle, and the lower boundary of this depression is formed by a strong ridge extended downward and forward from the outside of the condyle. But in the Dog and other placental Carnivora (some Seals excepted), a process, representing the angle of the jaw, extends directly backward from the middle of the above ridge, which process gives precision and force to the articulation of the
jaw, and inereases the power by whieh the masseter aets upon the jaw. Now, although the same eurved ridge of bone bounds the lower part of the external muscular depression of the aseending ramus in all the Marsupials, it does not in any of them send backward, or in any other direetion, a proeess eorresponding to that just deseribed in the Dog. The angle of the jaw itself, in the Marsupials, is as if it were bent inward in the form of a proeess, eneroaching in various shapes and various degrees of developement in the different genera upon the interspace of the rami of the lower jaw. On looking directly upon the lower margin of the jaw, we see, therefore, in place of the margin of a vertieal plate of bone, a more or less flattened triangular surfaee extended between the external ridge, and the internal proeess or infleeted angle. In the Opossums the internal angular proeess is triangular and trihedral, direeted inward, with the point slightly eurved upward, and more produced in the small than in the large speeies. In the Dasyures it has a similar form, but the apex is extended into an obtuse proeess. In the Thylaeine the base of the inverted angle is proportionally more extended, and a similar structure is presented by the fossil Phaseolothere. In the Perameles the angle of the jaw forms a still longer proeess; it is of a flattened form extended obliquely inward and lackward and slightly eurved upward. It presents a triangular, slightly ineurved, and pointed form in the Petaurists, in whieh it is longest and weakest in the pigmy speeies (Acrobates, Desm.). It is shorter and stronger in the Myrmecobius, fig. 223, a. In the Potoroos and Phalangers the process is broad with the apex slightly developed; it is bent inward and bounds the lower part of a wide and deep depression in the inside of the aseending ramus. In the Great Kangaroo the internal margin of this proeess is turned upward, so as to augment the depth of the internal depression alove mentioned. The internal angular process arrives at its maximun of developement in the W ombat, fig. 220, a, and the breadth

Lower jaw of the base of the ascending ramus very nearly equals the lieight of the same part. In the Koala the size of the process in question is also eonsiderable, but it is eompressed, and directed backward with the obtuse apex only bending inward, so that the characteristic flattening of the base of the aseending ramus is least marked in this species. There is no depression on the inner side of the ramus of the jaw in the Koala, but its smooth surface is simply
piereed near its middle by the dental nerve and artery. The surface of the external muscular depression bounded below by a broad angular ridge, as above described, is eutire in the Dasyures, Opossums, Bandicoots, Petaurists, and Plalangers; but in the Wombat the outer surface of the ascending ramus is directly perforated by a round aperture immediately posterior to the commeneement of the dental canal: ${ }^{1}$ the eorresponding aperture is of larger size in the Kangaroo. But in the Potoroos both the external and internal depressions of the aseending ramus lead to wide canals, or continuations of the wide depressions which pass forward into the substanee of the horizontal ramus, and soon uniting into one passage, leave a vacant spaee in the intervening bony scptum.

In the Thylacinc, Ursine Dasyure, and the allied fossil earnivores called Phascolothere, Thylacoleo, and Plagiaulax, ${ }^{2}$ the condyle of the lower jaw is plaeed low down, on a level with the molar series: it is raised a little above that level in the smaller Dasyures and Opossums, and ascends in proportion to the vegetable diet of the species.

In all those Marsupials which have fer or very small incisors the horizontal rami of the jaw converge toward a point at the symphysis. The angle of convergenee is most open in the Wombat, in which the symphysis is longest. The suture becomes obliterated in aged individuals. In other Marsupials, the rami of the lower jaw are less firmly united at the symphysis; they permit independent movements of the right and left incisors in the Kangaroos: and in the Opossum, both the rami of the lower jaw and all the bones of the face are remarkable for the loose nature of their comnections.
C. Bones of the Limbs.-The scapula varies in form in the different Marsupials. In the l'etaurists it is a scalene triangle, with the glenoid cavity at the convergence of the two longest sides. In the Wombat, fig. 212, 51, it presents an oblong quadrate figure, the neck being produced from the lower half of the anterior margin, and the onter surface being traversed diagonally by the spine, which in this species gradually rises to a full inch above the plame of the scapula, and terminates in a long narrow compressed acromion arching over the neck to reach the clavicle.

In the Koala (fig. 224), the superior costa does not run parallel

[^104]with the infcrior, a, d, but recedes from it as it advances forward, and then passes down, forming an obtuse angle, c, and with a gentle concave curvature, to the neck of the scapula; a small process extends from the middle of this curvature. In the Potoroo, the upper costa is at first parallel with the lower, but this parallel part is much shorter; the remainder describes a sigmoid flexure as it approaches the neck of the scapula. In the Great Kangaroo, the Perameles, Phalangers, Opossums, and Dasyures, the whole upper costa of the scapula describes a sigmoid curve, the convex posterior position of which varies as to its degree and extent. The subseapular surface is remarkable in the Peramoles for its flatness, but presents a shal-
 low groove near the inferior costa. In most other Marsmpials it is more or less convex or undulating.

In the Kangaroos, fig. 211, the supraspinal fossa is of less extent than the space bclow the spine, and the spine is inclined upward. In the Perancles and Dasyures the proportions of the supra- and infra-spinal surfaces are reversed, and the whole spine is bent downward over the infraspinal surface. In the Potoroos and Phalangers the acromion is bent downward so as to present a flattened surface to the obscrver; in the Potoroos and Opossums this appearance is produced by a truc expansion of the acromion. In the Perameles the coracoid process is merely represented by a slight production of the superior part of the glenoid cavity. In the Kangaroo and Potoroo it forms a protuberance on the upper part of the head of the seapula. In the other Marsupials it assumes the character of a distinet prowess from the same part, and attains its greatest developement in the Wombat and Koala, in the latter of which it is forcibly curved downward and inward, fig. 224 , o.

The clacictes are present in all the Marsupials, with the exception of the genus Peremeles and probably also the Charopus. In the daviculate Marsupials they are relatively strongest and longest in the burrowing Wombat, weakest and shortent in the Great Kangaroo. In the latter they are simply curved with the convexity forward, and measure only two inches in length. In the Wombat they are upwarls of three inches in length, and have a double curvature; they are expanded and obliquely truncate at the stcrual extremity, where the articular surface presents
a remarkably deep notch ; they become compressed as they apmoach the acromion, to which they are attached by an extended narrow articular surface.

In the Koala the clavicles are also very strong, but more compressed than in the Wombat, bent outward in their whole extent, and the convex margin formed, not by a continuous curve, but by three almost straight lines, with intervening angles; progressively diminishing in extent to the outermost line which forms the articular surface with the acromion. In the Myrmecobius the clavicles are subcompressed and more curved at the acromial than at the sternal end. In most of the other Marsupials the claricle is a simple compressed elongated bone, with one general outward curvature.

The humerus in most Dasyures resembles that of the Dog-tribe in the imperforate condition of the imer condyle, but differs in the more marked developement of the muscular ridges, especially of that which extends upward from the outer condyle for the origin of the great supinator muscle. This ridge is terminated abruptly by the smooth traet for the passage of the musculo-spiral nerve.

In all the other genera of Marsupials that I have examined the internal condyle of the humerus is perforated. But in some species of Petaurus, as Petaurus sciureus, the foramen is represented by a deep notch; and in the Phalangista Cooki, both foramen and notch are wanting. ${ }^{1}$ The ridge above the external condyle is much developed in the Petaurus macrurus and seinreus, and notched at its upper part, but this notcl does not exist in Pet. taguanoides. I find similar differences in the developement of the supinator, or outer ridge, in the genus Perameles; in the Per. lagotis it is bounded above by a groove; in Per. Gunnii it is less developed and less defined. In the Kangaroos, Potoroos, Wombat, and Koala (fig. 225), the outer condyloid ridge extends in the form of a hooked process above the groove of the radial nerve. In all these, and especially in the Wombat, the deltoid process of the humerus, fig. 212 , 53 , is strongly developed; it is continued from thee external tuberosity down the upper half of the humerns; except in the Petaurists, where, from the greater relative lengtlo of the humerus, it is limited to the upper third. The interspace of the condyles is occasionally perforated, as in the Perameles lagotis and Wombat. The articular surfaces at both extremities of the humerus lave the usinal form; but it may

[^105]be observed in some Marsupials, as the Koala, that at the distal articulation the external convexity for the radius has a greater relative extent than usual, and the ulnar concavity is less deep.

The bones of the fore-arm are always distinct and well developed, and their adaptation to pronation and supination is complete. The prehensile faculty and unguiculate structure of the anterior extremities appear to have been indispensable to animals where various manipulations were required in the economy of the marsupial pouch. When, therefore, such an animal is destined like the ruminant to range the wilderness in quest of pasturage, the requisite powers of the anterior members are retained and secured to it, as has been already observed, by an enormous developement of the hinder extremities, to which the function of locomotion is restricted.

We find, thereforc, that the bones of the forearm of the Kangaroo differ little from those of the
 burrowing Wombat, the climbing Koala, or the carnivorous Dasyure, save in relative size. They present the greatest proportional strength in the Wrombat, and the greatest proportional length and slenderness in the Petaurists or Flying Opossums, in which the radius and ulna arc in close contact through a great portion of their extent, and thus lend a firmer support to the outstretched dermal parachute. They are also long and slender in the Koala. In gencral the radins and ulna run nearly parallel, and the interosecous space is very trifling. It is widest in the Potoros. The olecranon is well developed in all the Marsupials. In the Virginian Opossum and Petaurists we find it more bent forward upon the rest of the ulna, than in the other Marsmpials. In the Wombat, where the acromion is the strongest, and rises an inch and a half above the articular carity of the ulna, it is extended in the axis of the bone. The distal end of the randius in this animal is articulated to a bone representing the os scaphoides and os lunare.

The ulna, which in the same animal converges toward a point at its distal end, has that point received in a depression formed by the cuneiform and pisiform bones: these are bound together by strong ligaments, and the pisiform then extends downward and backward for two-thirds of an inch. The second row of the carpus consists of five bones. The traperium support. the imer
digit, and has a small sesamoid bone articulated to its radial surface. The trapezoides is articulated to the index digit, and is wedged between the seapholunar bone and os magnum; this forms an oblique artieular surface for the middle digit; but the largest of the second series of earpal bones is the cunciform, which sends downward an obtuse rounded process, and receives the articular surface of the fifth, and the outer half of that of the fourth digit, the remainder of which abuts against the oblique proximal extremity of the middle metatarsal bone. The fire metaearpal bones are all thick and short, but chiefly so the outermost. The innermost digit, or pollex, has two phalanges, the remainder three; the ungual phalanx of all the digits is conieal, eurved, eonvex above, expanded at the base, and simple at the opposite extremity. In the Perameles the ungual phalanx of the three middle digits of the hand, and of the two outer digits of the foot, are split at the extremity by a longitudinal fissure commeneing at the upper part of the base. This structure, whiels elaraeterises the nogual phalanges in the placental Anteaters, has not been hitherto met with in other Marsupial genera. ${ }^{1}$ The terminal phalanges of the Koala are large, much compressed and curved; the concave articular surface is not situated, as in the Cats, on the lower part of the proximal end, but, as in the Sloths, at the upper. The claws which they support are long.

In the Great Kangaroo the first row of the carpus is composed, as in the Wombat, of three bones, but the apex of the ulna rotates in a cavity forned exclusively by the cunciforme. There are four bones in the second row; of which the uneiform is by far the largest, and supports a part of the middle, as well as the two outer digits. In the Potoroos I find but three bones in the distal series of the carpos, the trapezoides being wanting, and its place in one species being occupied by the proxinal end of the second metaearpal bone, which artienlates with the os magnum. In the Perameles there are four bones in the seeond earpal row, although the hand is less perfect in this than in any other Marsupial genus, Charopus execpted, the three middle toes only being fully developed. In the Petaurus the earpus is eliefly remarkable for the length of the pisiforme.

It would be tedious to dwell on the minor differences observable in the bony structure of the hand in other Marsupials. I shall therefore only observe that though the inner digit is not situated

[^106]like a thumb, all the fingers enjoy lateral motion, and that those at the outer ean be opposed to those at the inner side so as to grasp an object and perform, in a secondary degree, the funetion of a hand. In the Koala the two inner digits are more deeidedly opposed to the three outer ones than in any other climbing Marsupial. But some of the Phalangers, as the Ph. Cookii and Ph. gliriformis of Bell, present in a slighter degree the same disposition of the fingers, by which two out of the five have the opposable properties of a thumb. I have observed a similar disposition of the digits in the act of climbing in the Dormouse, and it probably is not uneommon in other placental Mammalia of similar habits and which have long, slender, and freely moveable fingers. As a permanent disposition of the digits, the opposition of three to two is most eonspieuous in the preliensile extremities of the Chameleon.

The pelvis, figs. 152, 226, 227, in the mature Marsupials is composed of the os saerum, the two ossa innominata, and the charaeteristic supplemental bones, attached to the pubis, ealled by Tyson the ossa marsupialia or Janitores Marsupii, m.

We seek in vain for any relationslip between the size of the pelvis and that of the new-born young, the minuteness of which is so characteristic of the present tribe of animals. The diameters both of the area and apertures of the pelvic canal are always considerable, but more especially so in those Marsupialia which have the hinder extremities disproportionately large; as also in the Wombat, where the pelvis is remarkable for its width. The pelvis is relatively smallest in the Petaurists; but even here the diameter of the outlet is at least six times that of the head of the new-born young. The auterior bony arches formed by the ossa pubis and the isclia are always complcte, and the interspace between these arches is divided, as in other Mammalia, into the two obturator foramina by an osseous bridge continued from the pubis to the ischium on each side of the symphysis.

In the Kangaroos, Potoroos, Phalangers, and Opossums, the ilia offer an elongated prismatic form. They are straight in the Opossum, but gently curved outward in the other Marsupial genera. In the Dasyures there is a longitudinal groove widening upward in place of the angle at the middle of the exterior surface of the ilium. The ilia in the Petaurists are simply compressed, with an almost trenchant anterior margin. They are broader and flatter in the Perameles, and their plane is turned outward. But the most remarkable form of the ilia is seen in the Wombat, in which they are considerably bent outward at their anterior extremity,
fig. 226, 62. In the Kangaroos and Potoroos the eye is arrested by a strong process given off from near the middle of the ilio-
 pubic ridge, and this process may be observed less developed in the other Marsupialia. The tuberosity of the ischia inclines outward in a very slight degree in the Dasyures, Olmsums, Phalangers, Petaurists, and Perameles, in a greater degree in the Kangaroos and Potoroos, and gives off a distinct and strong obtuse process in the Wombat, fig. 226 ,63, which not only extends outward but is curved forward. In the Potoroos the symphywis of the ischia, or the lower part of what is commonly called the symphysis pubis, is produced anteriorly. The length of this symphysis, and the straight line formed by the lower margin of the ischia, is a characteristic structure of the pelvis in most of the Marsupials.

The marsupial bones, fig*. 226, 227, m , are elongated, flattened, and more or less curved, expanded at the proximal extremity, which sometimes, as in the Wombat, is articulated to the pubis by two points: they are relatively straightest and most slender in the Perameles; shortest in the Myrmecobins, where they do not exceed half an inch in length; longest, flattest, hroadest, and most curved in the Koala, where they nearly equal the iliac bones in size. They are always so long that the cremaster muscle winds round them in its passage to the testicle or mammary gland, and the uses of these bones will be described in treating of that muscle. Homologically they are the last pair of lumbar hæmapophyses advanced, as in many Reptiles, from the sclerous to the osscous states: telcologically they belong to the catcgory of the trochlear ossicles, commonly called sesamoid, and are developed in the tendon of the external oblique which forms the mesial pillar of the abdominal ring, as the patella is develeped in the tendon of the rectus femoris. I cannot, however, participate in the opinion of Laurent and De Blainville, ${ }^{1}$ that the marsupial bones are superadded to the abdominal muscles to aid in an unusually energetic

[^107]compression required to expel the uterine foetus. It is not in the females of those animals which give birth to the smallest young that we should expect to find auxiliary parts for inereasing the power of the museles engaged in parturition. The bones in question are, moreover, equally developed in both sexes: and they are so situated and attached that they add to the power of the muscles which wind round them, and not of those implanted in them. They are not, however, merely subservient to add force to the action of the 'cremasteres,' but give origin to a great proportion of the so-ealled 'pyramidales. ${ }^{1}$

The osteogenesis of the marsupial pelvis derives some ex-
 trinsic interest from the not yet forgotten speculations which have been broached regarding the homologies of the marsulial bones. These have been conjectured to exist in many of the placental Mammalia, with a certain latitnde of altered place and form, disguised, e.g., as the bone of the penis in the Carnivora, or appearing as the supplemental ossicles of the acetabulum, which exist in the young of many of the Rodentia. In the os immominatum of the immature Potoroo the curved prismatic ilium contributes to form, by the outer part of its base, the upper or anterior third of the acetabulum; the rest of the circumference of this carity is completed by the ischium and pubis, excepting a suall part of the under or mesial margin, which is formed by a distinct ossicle or epiphysis of the ilium (a, fig. 152), answering to that described by Geoffroy St. Hilaire as the rudimental marsupial bone in the Rabbit. Now here there is a cocxisting marsupial bone: but besides the five scparate bones just mentioncd, there is a sixth distinct triangular ossicle, which is wedged into the posterior interspace of the ischiopubic symphysis. The circumference of the acctabulum is always interrupted by a deep motech opposite the obturator foramen, which is traversed by a ligamentons bridge,

[^108]and gives passage to the vessels of the Harderian gland lodged in the wide and deep acetabular fossa.

The femur is a straight, or nearly straight, long, cylindrical bone, having a hemispherical head supported on a very short neck, especially in the Petaurists, and situated liere almost in the axis of the shaft, above and between the two trochanters, which are nearly of equal size. In the Kangaroos and Potoroos the head of the thigh-lone is turned more inward, and the outer or greater trochanter rises above it. In other Marsupials the great trochanter is less developed. In most of the speeies a strong ridge is continued downward to within a short distance from the trochanter, and this ridge is so produced at the lower part in the Wombat as almost to merit the name of a third trochanter. In the Wombat and Koala there is no depression for a ligamentum teres. The shaft of the bone presents no linea aspera.

The canal for the nutrient artery commences at the upper third and posterior part of the bone in the Koala, and extends downward, contrariwise to that in most other marsupial and placental Mammalia.

At the distal extremity of the femur the external condyle is the largest, the internal rather the longest. The intermediate anterior groove for the patella is well marked in the Perameles, where the patella is fully developed, but is broad and very shallow in the Phalangers and Dasyures, where the tendon of the rectus musele is merely thickened or offers only a few irregular specks of ossification; and the corresponding surface in the Petaurists, Wombat, and Koala is almost plane from side to side; in these Marsupials and in the Myrmecobius the patella is wanting. I find a distinct but snall bony patella in the Macropus Bennettii. There is a sesamoid bone above and behind the external condyle of the femur in the Myrmecobius and some other Marsupials.

In the knce-joint, besides the two crucial ligaments continued from the posterior angles or cresses of the semilunar cartilages one to the outer side of the inner condyle, the other to the interspace of the condyles-there is a strong ligament which passes from the anterior part of the tibial protuberance backward to the inner side of the fibular condyle, and a second continued from the same point along the outer margin of the outer semilmar cartilage to the head of the tibia.

The tibia, fig. 228, 66, presents the usual disposition of the artieular surface for the condyles of the femur, but in some genera, as the Wombat and Koala, the outer articular surface is continuous with that of the head of the fibula. In the Kangaroos
and Potoroos the anterior part of the head is much produced, and in the young animal its ossification commences by a centre distinct from the ordinary proximal epiphysis of the bone. Λ strong ridge is continued down from this protuberance for about one-sixth the length of the tibia. In the Koala a strong tuberosity projects from the anterior part of the tibia at the junction of the upper with the middle third. In this species and in the Wombat, as also in the Opossums, Dasyures, Phalangers, and Petaurists, the shaft of the tibia is somewhat compressed and twisted; but in the Kangaroos, Potoroos, and Perameles the tibia is prismatic above and sub-eylindrical below. The internal mallcolus is very slightly produced in any Marsupial, but most so in the Wombat.

The fibula, ib. 67, is complete, and forms the extermal malleolus in all the Marsupials. In one species of Mypsiprymnus and in one species of Perameles (P. lagotis) it is firmly mited to the lower part of the tibia, though the line of separation be manifest externally. In a sccond species of each of the above genera it is in close contact with the corresponding part of the tibia, bint can be easily separated from that bone. In the Great Kangaroo the fibula is also a distinct bone throughout, but it is remarkably thinned and coneave at its lower half, so as to be adapted to the consexity of the tibia, with which it is in elose attachment. In each of these genera, therefore, in which locomotion is principally performed by the hinder extremities, we perceive that their osseons strueture is so modified as to insmre a due degree of fixity and strength; while in the other Marsupial genera, as Phascolarctos, Phascolomys, Ihalangiste, Petaurus, Didelphys, and Dasyurus, the tibia and fibula are so loosely connected together and with the tarsus, that the foot enjoys a movenent of rotation analogous to the pronation and supination of the hand. This property is especially advantageous in the Petaurists, Phalangers, Opossums, and Koala, because in these the inner toe is so placed and organised as to perform the office of an opposable thumb, whence these Marsupials have been termed Pedimana, or foothanded (fig. 228).

It is to this prehensile power that the modifications of the fibula chiefly relate. In the Wombat, fig. 212, 67, Koala, Petaurists, and Phalangers, it expands to nearly an equal size with the tibia, 66, at the distal extremity, and takes a large share in the formation of the tarsal joint; but the articular surface is slightly eonvex, while that of the tibia is slightly concave. The proximal extremity of the fibula is also much cnlarged, but eompressed and obliquely
truncated, and giving off two tuberosities from its exterior surface; to the superior of these a large sesamoid bone, fig. 228, 67^{\prime}, is articulated; a similar sesamoid 'fabella' is attached to the upper end of the fibula in a Dasyurus macrurus and Petaurus taguanoides. M. Temminck figures it in the Didelphys ursina and Didelphys Philander. This sesamoid and the ex-
 panded process to which it is attached form the homotype of the olecranon, fig. 212, 55 ; and the correspondence of the fibula with the ulna is very remarkably maintained in the Pet. taguanoides, in which the proximal articular surface of the fibula is divided into two facets, one playing upon the outer condyle of the femur, the other concave, vertical, and receiving an adapted convexity on the outer side of the head of the tibia, which rotates thereupon like the radius in the lesser sigmoid carity of the ulna.

In the scansorial and gradatorial Marsupials the bones of the hinder and fore extremities are of nearly equal length, but in the saltatory species the disproportion in the developement of the bones of the hind leg is very great, especially in the Kangaroos and Potoroos, fig. 211. However, in those singular species of Hypsiprymnus which inhabit New Guinea and take refuge in trees, the organisation of the Kangaroo is modified and adapted so as to make climbing a possible and easy action. The fore and hind legs are here more equally developed, and the elaws on the two larger toes of the hind feet are curved instead of straight. In a skeleton of one of these scansorial Potoroos, the Hypsiprymmus ursinus, in the Museum at Leyden, in which the humerus is three inches and a half long, the femur does not quite cqual five incles in lengtly: the ulna is nearly four inches, the fibula nearly five inches in length. The fibnla is also less firmly connected with the tibia than in the Great Kangaroo.

The following is the structure of the tarsus in the Wombat and Phalanger, fig. 228. The astrayalus, u, is connected as usual
with the tibia, fibula, ealcaneum, c, and naviculare, n. The upper articular surface for the tibia is as usual concavo-convex, the internal surface for the inner malleolus flattened and at right angles with the preceding, but the outer articular surface presents a triangular flattened form, and instead of being bent down parallel with the inner articular surface, slopes away at a very open angle from the upper surface, and receives the articular surface of the fibula, 67 , so as to sustain its vertical pressure. A small proportion of the onter part of the inferior surface of the astragalus rests upon the calcaneum: a greater part of the superincumbent pressure is transmitted by a transversely extended convex antcrior surface to the naviculare, n, and cunciform boncs, i, e. This form of the astragalus is also characteristic of the Koala, Petaurists, Dasyures, and the Pedimanous Marsupials generally. In the Kangaroos, Potoroos, and P'crameles which have the pedes saltatorii, the fibular artieular surface of the astragalus is bent down as usual at nearly right angles with the upper tibial surface.

The ealeaneum in the Wombat presents a ridge on the outer surface which serves to sustain the pressure of the external malleolus, whieh is not articulated to the side of the astragalus. The internal surface which joins the astragalus is continuous with the anterior slightly concave surface which articulates with the euboides. The posterior part of the bone is compressed, it projeets backward for nearly an inch, and is slightly bent downward and inward. This part is relatively shorter in the Koala, Phalangers, Opossums, and Petaurists, but it is as strongly developed in the Dasyuri as in the Wombat. The anterior part of the calcaneum of the Phalangers is shown at c, fig. 228.

In the Dasyurus macrurus a small sesamoid bone is wedged in between the astragalus, tibia, and fibula at the back part of the ankle-joint. In the Petaurus taguanoides there is a supplcmental tarsal bonc wedged in between the naviculare and cuboides on the plantar surface.

The homotypy of the carpal and tarsal bones is very elearly illustrated in the Phalanger. The lunare and scaphoid of the hand correspond with the astragalus and naviculare of the foot, transferring the pressure of the focite majus upon the three innermost boues of the second series. The long, baekwarlprojecting pisiform bone of the wrist closely resembles the pusterior process of the os calcis; the articular portion or body of the os catcis corresponds with the cuneiforme of the carpus; the large carpal unciform represents the tarsal cuboides, and performs the same function, supporting the two outer digits; the three cuneiform bones of the foot are obvious homotypes of the trape-
zium, trapezoides, and os magnum. The entoeuneiform bone is the largest of the three in the Wombat, although it supports the smallest of the toes. It is of course more developed in the Pedimanous Marsupials, where it supports a large and opposable thumb.

In the Wombat the metatarsals progressively inerease in length and breadth from the innermost to the fourth; the fiftli or outermost metatarsal is somewhat shorter but twice as thiek, and it sends off a strong obtuse process from the outside of its proximal end. A eorresponding process exists in the Phalangers, fig. 228. The innermost metatarsal of the Wombat, fig. 212, i, supports only a single phalanx; the rest are succeeded by three phalanges cach, progressively increasing in thickness to the outermost; the ungual phalanges are elongated, gently curved downward, and gradually diminish to a point.

In the Myrmecobius the tibial or imnermost toe is represented by a short rudimental metatarsal bone eoncealed under the skin. In the Dasyures the innermost toc has two phalanges, but it is the most slender and does not exceed in length the metatarsal bone of the second toc. In the Petaurists it is rather shorter than the other digits, but is the strongest, and in Petaurus taguanoides the terminal phalanx is flattened and expanded; the toes are set wide apart in this genus. In the Opossums and Phalangers the innermost metatarsal bone is directed inward apart from the rest, and together with the first phalanx is broad and flat. The seeond phalanx in the Opossums supports a claw, but in the Phalangers is short, transverse, marnucd, singularly expanded in Ph. Cookii, but almost obsolete in Ph. ursina (fig. 228, 1). In all the preeeding genera there are two small sesamoid bones on the under side of the joints of the toes, both in the fore and hind feet.

The commencement of, a degeneration of the foot which is peculiar to Marsupial animals may be discerned in the Petaurists, in the slender condition of the second and third toes, as compared with the fourth and fiftl. In the Phalangers this diminution of size of the second and third toes, comnting from the hallux, is more marked. They are, also, both of the same length and have no individual motion, being united together in the same sheatlo of integrument as far as the ungual phalanges, whence the name of Phalangiste applicd to this gemus (fig. 228, 2 and 3).

In the saltatorial genera of Marsupials the degradation of the corresponding toes is extreme; but though reduced to almost filamentary slenderness they retain the usual number of phalanges, and the terminal one of each is armed with a elaw. These elaws being the only parts of the rudimental digits which project freely
beyond the integument, they look like little appendages at the inner side of the foot for the purpose of seratching the skin and dressing the fmr, to which offices they are exelusively designed. The removal of the innermost toe, corresponding with our great toe and the hallux of the Pedimana, commences in the Perancles. In one speeies I find the metatarsal bone of this toe supports only a single rudimental phalanx which reaches to the end of the next metatarsal bone, and the internal euneiform bone is elongated. In another species the internal toe is as long as the abortive second and third toes, and has two phalanges, the last of whieh is divided by the longitudinal fissure eharacteristic of the ungual phalanges in this genus. In the Perameles lagotis the innermost toe is represented by a rudimentary metatarsal bone, about onethird the length of the adjoining metatarsal.

In the Poephagous Marsupials no rudiment of the innermost toe exists. The power of the foot is concentrated in all these genera on the fourth and fifth or two outer toes, but especially the fourth, which, in the Great Kangaron, is upwards of a foot in length, including the metatarsal bone and the elaw. This formidable weapon resembles an elongated hoof, but is three-sided and sharp-pointed like a bayonet, and with it the Kangaroo stabs and rips open the abdomen of its assailant: with the anterior extremities it will hold a powerful dog firmly during the attaek, and firmly supporting itself behind upon its powerful tail, deliver its thrusts with the whole force of the hinder extremities. The euboid bone which supports the two outer metatarsals is proportionally developed. The internal cuneiform bone is present, though the toe which is usually articulated to it is wanting. It is also the largest of the three, and assists in supporting the second metatarsal; posteriorly it is joined with the navicular and external cuneiform bones, the small middle cunciform occupying the space between the external and internal wedge-bones and the proximal extremities of the two abortive metatarsals. The great or fourth metatarsal is straight and somewhat flattened; the extermal one is compressed and slightly bent outward; the toe which this supports is armed with a elar similar to the large one, but the ungual phalanx does not reach to the end of the second phalanx of the fourth toe, and the whole digit is proportionally weaker. In the elimbing Potoroos (Hypsiprymues ursinus and Hypsiprymnus dorcocephalus), the two outer toes are proportionally shorter than in the leaping species, and are terminated by curved claws by whieh they gain a better hold on the branches and inequalities of trees.
§ 181. Skeleton of Rodentia.-A. Vertebral Column.-The Rodentia have seven cervieal, and, as a rule, nineteen dorso-lumbar vertebre. The agile Hares with flexile trunk have long loins, viz. D 12, L 7, fig. 229. The Jerboas, fig. 232, that bear the

trunk aloft, like the Kangaroos, have also twelve dorsal and seven lumbar vertebre: the burrowing Porcupines and swimming Beavers, fig. 230, have their trunk braced by a greater

skeleton of Dasyprocta Acuchy, showing D 13, L 7, has the supplemental lumbar vertebra with saeral eharaeters and eonneetion on the left side: Cuvier assigns to the Dormiee (Loirs and Lerots) D 13, L 7: the burrowing Cape Molc-Rats have twenty or twentyone dorso-lumbars: in these I have found 13-7, 14-6, and 14-7, and the latter is the number of dorsal and lumbar vertebree respectively : the Australian Water-Rat (Hydromys chrysogaster) has D 14, L 7 : the best-marked exception is that of the Capromys, which has D 16, L $7=23$. In some Rodents only one, in most but two, vertebre join the ilia: three and four are common numbers of anehylosed saerals. In the secmingly tailless Cavies and Pacas the caudal vertebre may be but seven, eight, or ten in number: in the Blaek Rat and Hapalotis ulbipes I have eounted as many as thirty. The Great Jerboa las twenty-nine caudals, which also have the proportions and perfcetions of those in the Kangaroo.

The met-and an-apophyses eommence by a eommon tuberele at the fore part of the dorsal series; the anapophysis, fig. 231, $1, a$, begins to be distinet at the baek part of the series, and the metapophysis, ib. m, to projeet from above the anterior zygapophysis, z : both proeesses arc usually well developed in the posterior dorsal and lumbar vertebre, ib. L : the diapophysis, d, subsides in the posterior dorsals and is lengthened in the lumbars, L , by a coalesced riblet (plearapoplysis.), ib. d. In
 the Great Jerboa (Helamys) the diapophysis is unusually long and strong in the first dorsal: the anapophysis first projeets from the back part of the cightl dorsal, and the metapophysis from the fore part of the ninth: both processes are long in the first five lumbars. The neural spines progressively increase in length to the last lumbar, and are strongly inelined forward toward that of the eleventh dorsal, fig. 232, D: the anteeedent spines ineline backward to the same vertebra, the spine of whieh is vertical, and indieates the centre of motion of the trunk. This arrangement of the neural spines is well narked in all the agile flexiblebodied Rodents. In the Hare, fig. 229, the neural spine of the ninth vertebra, D , indieates the eentre. The anapophyses begin on the eighth, the metapophyses on the ninth, dorsal: these increase and are eontinued throughout the lumbar region, where they are very long. The anapophysis assumes the form of a ridge in the last dorsal and lumbar vertebre. The lumbar
di-pleur-apophyses, ib. d, are long and ineline forward and downward. Long hypapophyses, ib. h, are also developed.

The thoracie ribs consist of bony pleur- and gristly hæmapophyses: of these the seven anterior pairs, as a rule, directly join the sternum, which then consists of six bones or 'sternebers.' In the Beaver, Poreupine, Coypu, and a few others, there are eight pairs of 'true ribs:' in an Acuchy with this number I found nine sternal bones, the foremost representing an 'episternal' articulated to the 'manubrium.'

In the Beaver, fig. 230, the saerum eonsists of four anehylosed vertebre: the articular surface for the ilium is almost confined to the transverse proeess of the first of these vertebræ: those of the last are the longest. The sacral nerves direetly perforate the neurapophyses of the last two vertebre, anterior to the vaeuity left between the bases of the transverse processes. The neural arches of the first six eaudal vertebræ are similarly perforated. Their transverse processes are long, horizontally flattened, and terminally expanded; and the vertebræ, after these processes subside, are remarkable for their large size, and a ecrtain degree of correspondence of shape with the broad, flat, sealy tegumentary tail
which they support. In most Rodents with long tails, hrmapophyses are developed beneath the intervertebral spaces, as in the Jerboas, fig. 232, h. In one member of the Poreupine family (Cercolabes), and in one species of Capromys (C.prehensilis), the tail has a prehensile extremity.

The seventh cervieal vertebra has an imperforate transverse proeess in some Rodents, a perforate one in others: in the Hare I have observed this difference in different individuals. The pleurapophyses early anchylose to form the vertebrarterial foramen in the sixth-second eervicals. The ncural spine is usually longest in the second and seventh; it is obsolete in the intermediate cervieals in many Rodents. In the Hare the transversc processes of the atlas are perforated longitudinally by the vertebral arteries, whieh then perforate the neural arch. The hypapophysis, or so-called body, is ossified, and a small tubercle extends backward from its under part. In the atlas of the Chinchilla the transverse proeess is pierced both lorizontally and obliquely, and the vertebral artery also perforates the neural arch.
B. Skull.-As in the Marsupialia, the confluenee of the elements of the epencephalic arch is late, and that of the tympanic is restrieted to the petrosal and mastoid. The squamosal maintains its individuality, and also much of its long slender proportions, and the malar is suspended in the middle of the zygomatic areh,

as in Birds: other characteristics of the Rodent skull will be exemplified in the following species.

In the Hare (Lepus timidus, fig. 233) the superoecipital is surnounted by a square platform of bone-originally a distinct interparietal--the posterior angles of which project backward in the form of two tubcrcles, from between which a vertical crest descends to the foramen magnum. The paroccipitals arch downward and
outward in elose connection with the descending proeess of the large subquadrate mastoid, 8 , which anehyloses with the petrosal and tympanic. The long bony 'meatus auditorius' aseends obliquely backward-the direetion in which this timid Rodent is most concerned in ascertaining the sounds that may warn it of an approaching encmy. The tympanie cavities intercommunieate by a sinus traversing the basisphenoid. The outer part of the alisphenoid is perforated by the ectocarotid artery. The entoearotid pierces the tympanic bulla. The petromastoid is articulated in a peculiar manner to the squamosal, which, after expanding beyond its zygomatic part to be applied to the parietal and alisphenoid, resumes the form of a narrow thin plate of bone, applied to a shallow depression upon the mastoid, and thus elamping it, as it were, to its place. The frontal sends outward a large aliform eurved plate alove each orbit, the extremities of which form postorbital and antorbital proeesses, the notches whieh divide the anterior from the posterior part of the frontal being unusially deep. The common outlet of the optie nerves extends forward, so as to occasion a small vacuity at the baek part of the interorbital septum. Each orbit presents a wide vaeuity at its fore part, which leads into the lateral nasal cavity, bonnded externally loy the singularly reticulate nasal plate of the maxillary, 21. The zygomatie areh, whieh is slightly curved downward but scarcely at all outward, developes a small prominence both from its front and lind extremity below the points of suspension. The articular surface for the lower jaw is broad and coneave transversely, narrow and convex longitudinally. The bases of the sockets of the superior molars form a strong prominence in the orbit below the anterior vacnity. The nasal bones, 15 , are remarkable both for their length and breadth : they extend further back than the long slender nasal processes of the premaxillaries, n2. The bony palate is extensively encroached upon by the prepatatal apertures, which blend together to form a narrow heart-shaped vacuity with the apex directed forward, largely exposing the vomer and the nasal cavities. The palatal processes of the maxillaries and palatines form a bridge, or phatform, extending across oppositc the three anterior molar teeth. The nasal processes of the palatines are of musual height. The angle of the lower jaw forms a broad compressed phate, with the lower border romnded and thiekened, so as to project a little beyond both the outer and inner surface of the asceuding plate: the outer ridge is continued forward to the horizontal ramus, bounding the large masseterie fossa. The petrotympanics form 'bulla ossea.' The pterygoids
develope both external and internal plates: the outcr plate is widely perforated at its base; the inner plate terminates in a hamular process.

The common foramen opticum, the wide palatal vacuities, the transversely extended glenoid cavity, and the inflected mandibular angle, indicate affinity to the Marsupials.

In a skull, scven inches long, of a Capybara, fig. 234, with the entire series of permanent teeth in place, the sutures between the elements of the occipital bone still romain. The compressed paroccipitals, 4, are of enormous length. The basioccipital contributes to each condyle its lower extremity. The exoccipitals almost meet above the foramen magnum, the plane of which is nearly vertical. The basisphenoid is perforated by a median vertical canal, and is notched laterally by the entocarotids. The squamosals are distinct, and cssentially like those in the Hare, sending backward the long compressed lamina which clamps the

tympanic and mastoid to the side of the cranium. I venous sinus issues from beneath this process of the squamosal. The longitudinal groove forming the articular eavity for the lower jaw is angular, and completed externally by the malar bone, 26 . The meatus auditorius is unusually contracted, is cleft below, and bounded there by two small tuberosities. The temporal and orbital fossice are blended together, as in all Rodents. The lacrymal bone is of unsual size, and extends forward upon the side of the face between the frontal, 11 , and maxillary, 2 .. The antorbital vacuity is immense. The nasal bones, 15, are long, large, and of nearly equal breadth throughout. The nawal processes; of the premaxillaries, 2, are coextensive with then. The sagittal suture is obliterated, as well as a great part of the frontal siture. There is no trace of interparietal bone. Λ single foramen incisirum is situated anterior to the two large normal prepalatine
apertures; the postpalatine foramina are in the eentre of the bony palate, between the palatines and maxillaries. The palatincs arc large. The eribriform plate and its median ridge or 'erista galli' project baekward into the large rhinencephalie fossa. Pterygoid sinuses are formed anteriorly by the proper pterygoids, and posteriorly by the eeto- and ento-pterygoid plates of the sphenoid. The eetopterygoid plate is perforated by an 'interpterygoid' eanal, above which is a smaller 'ectocarotid' canal. The lower jaw shows a strong ridge or platform outside the molar alveoli. The eoronoid and condyloid processes risc very little above the grinding surface of the molars. The chief process of the lower jaw is the angle, a, which is broad, eompressch, and produeed far baekward, where it terminates obtusely. The upper surface of the skull is flat, and its contour deviates little from a straight line, slightly deseending toward the oeciput

and the end of the masals. The zygomatio arch is compressed but deep, especially below the fore part of the orbit. The acoustic bulle are eomparatively small.

In Chinchillt lanigera, figx. 235, 236, the mastoid portion, b, of the large tympanic bulla, a, b, m, rises to the upper surface of the cranimm, as at a, but it is girt ly a process of the superoccipital, f, which extends outward to articulate with the extremity of the slender proeess of the squanosal, e. The vacuity which interrenes between the alisplenoid, parietal, and tympanie, and whieh, in other Manmals, is closed by the more expanded
squamosal, is here, through the retention by that bone of its primitive form as a diverging slender ray, left uncovered. The meatus is long, wide, infundibuliform, with the outlet obliquely truncate and directed upward and a little backward: the petrosal bulla, n, continued from its lower extremity, seems to describe a semicireular curve downward and backward, circumscribing the large foramen, which directly pierees the bulla beneath the meatus. The paroccipital is slender; its point does not extend below the level of the tympanic bulla. The articular groove for the lower jaw is deep, and is completed externally by the malar, k. In almost circular piece seems to be cut out of the zygoma, above the junction of the malar with the squamosal. The facial part of the lacrymal extends half-way across the antorbital root of the zygoma, where the zygomatic part of the maxillary articulates by suture with the nasal process of the same bone, circumscribing a large antorbital vacuity. The nasal processes of the premaxillaries slightly expand at their extremities, which extend beyond the corresponding ends of the nasals, l. Λ strong and long oblique ridge traverses the imer side of the rauus of the lower jaw. The outer side is irregularly swollen by the bases of the sockets of the eurved molars, but has not the distinet ridge whiel characterises that part in the Cavies.
ln the skull of an adult Paca (Cologenys, fig. 237), with the mature dentition, the sutures between the elements of the occipital, as likewise the sagittal suture, are obliterated. There is no trace of interparietal bone. The basioccipital, basisphenoid, and presphenoid have coaleseed to form a continu-
 ous bony floor for the cranial cavity. The third division of the fiftl noteles the alisphenoid posteriorly, the foramen ovale being an irregular fissure between the ali- and basi-sphenoils and the petrosal. The petrotympanic is free from the squamosal, and rather lonsely suspended beneath the overarching pusterior lamella of the syuamosal, which bends down external to the mastoid and parec(cipital, 4. The malar, 26, is a slightly curved plate, twice ax deep) as it is long, and forms the posterior third part of the zygomatic expansion, the rest being formed be the maxillary, 21 , which is musually and enormously developed. The squanosal form: menly
the base of the zygoma; it is grooved below for the mandibular joint, to which the malar contributes the outer part. The nasal processes of the premaxillary do not extend so far back as the nasals: the large antorbital vacuity, v, is reduced by the maxillary zygomatic plate to a crescentic form. The zygomatie expansion of the maxillary, 21, is deeply excavated on the inner side; it forms, in the recent animal, a large bony capsule on cach side of the mouth, communicating therewith and lined by the bueeal membrane. A vertieal sinus terminating below in two small foramina, communicating with the orbit, divides thic rhineneeplalic from the prosencephalic fossa. A branch of the lateral sinus leads from above the petrosal to between the squamosal and tympanic externally. The olfactory cavity extends mackward beneath the rhinencephalie one, but not above it. The ectopterygoid process joins the proper pterygoid, and, with the entopterygoid plate, completes a wide interptcrygoid canal. The base of the ectopterygoid is perforated by an ectocarotid foramen.

The squamosal is excluded from the cranial cavity by a fissure which widens as it descends between the squamosal and petrotympanic: a venous sims occupies this fissure. A horizontal septum divides an upper from a lower compartment of the anterior half of the tympanie bulla. The sclla turcica is shallow, and not defined by clinoid processes; the chiasmal platform is subquadrate, and leads to a fossa, perforated by the two large and approximated elliptical optic formina; a deep and narrow groove extends from the optic fossa to the rhineneephalic compartment, where it divides to terminate at the orbito-ethmoidal foramina.
 The foramen rotundum and foramen lacerum anterius combine to form a large sul) ${ }^{\text {quadrate vacuity. The }}$ cerebellar fossa on the upper part of the petrosal is very deep. The ineatus intcrnus is extremely shallow, and almost immediately divides into the eochlear and vestibular canals.
In the Porcupine (Hystrix cristata), fig. 238, the occipital region is nearly flat ; the paroccipitals descend only to the level of the occipital condyles. The mastoid forms but a rough ridge. The auditory bulle are moderately developed; the external meatus
is short, directed outward and a little forward, and is notched behind. A fissure, which widens at both cads, divides the tym panic from the clamping process of the squamosal: this articulates behind by a suture with the inastoid. The parietals, fig. 239, 7, are broad, but short, and pinched in, as it were, by the temporal fossa, which almost meet at the line of the sagittal suture, which is obliterated. The frontals, ib. 11, are more than double the size of the parietals, and are greatly swollen by the enormous sinuses. The most remarkable feature of the Porcupine's cranium is the magnitude of the nasal bones, 15, especially their great posterior expanse, which terminates behind on the same vertical parallel as the middle of the zygomatic arch. This character is contrasted in fig. 239 with the small size of the nasals, 15, in the Manatee and Capuchin Monkey. The thick anterior pier by which the zygomatic arch is suspended is formed by the maxillary and lacrymal. The slender

horizontal process of the maxillary, which bounds the lower part of the antorbital vacuity, fig. 238, v, appears like a second zygoma. The premaxillaries progressively contract as they pass backward and join the frontals, nearly an inch in advance of the hinder border of the nasals. The bony palate terminates by a tlick rounded border between the last molar teeth. The pterygoids send backward and upward a hamular process, which joins the tympanic bulla. The cerebellar depression upon the petrosal is very shallow: the fore part of the petrosal presents a large protuberance. The rhinencephalic fossa is relatively of large sizc, and is defined by a well-marked ridge from the rest of the cranial cavity. Two vascular canals are continued into its. lower part from above the optic foramina, instead of an open groove, as in the lgouti. The coalcsced prefrontals are compressed. The vomer is dceply cleft posteriorly, and has coalesced with the etlmoturbinals, and its anterior part articulates with the median ascending process of the premaxillary arching over the wide vacuities which lead from the nasal lassages to the prepalatine apertures, as in most Rodent.

The cranial air-cells continued from the nasal and tympanic cavities reach the occiput. The tympanum is divided by a horizontal partition into an upper and lower chamber, intercommunicating posteriorly above the membrana tympani, which is situated in the lower division, where the meatus auditorius externus terminates in a narrow oblique slit. The extraordinary extent of the air-sinuses surrounding the fore part of the eranial cavity and developed in the orbitophenoids, alisphenoids, squamosals, and frontals, with the radiating bony septa of those sinuses, are peculiarities of the Porcupine.

In an almost full-grown Beaver, fig. 240, the elements of the occipital bone are still unanchylosed; the lower third of each condyle is formed by the basioceipital, the under surface of which presents a large and deep excavation. The upper part of the
 foramen magnum is completed by the broad superoccipital. The mastoid is larger than in the Porcupines, and articulates anteriorly with both the parietal and squamosal: it is anchylosed to the petrosal. There is a perforation in the suture between the superocipital and mastoid. The interparictal is large, and wholly upon the upper surface of the eranium. The squanosal is perforated behind and below the root of the zygoma. The frontals are small and alnost flat above. The nasal bones extend further back than the premaxillaries, in the European Beaver, beyond the transverse line which extends between the antorbital tuberositics. The anterior root of the zygoma formed by the maxillary is a simple plate which appears to be imperforate, the orffice of the slender antorbital canal being coneealed by a vertical ridge of the maxillary, which inclines forward over the maxillo-premaxillary suture.

The epencephalic compartment is lower and broader than in the Porcupine. The cerebellar fossa of the petrosal is larger and deeper. The upper compartment of the tympanum is much less. The length and direction of the auditin'y meatus is shown, fig. 240, o : it changes its form into a transerse fiswire, as it appreaches the membrana tympani, the plane of which is almost parallel with that of the meatus itself. There are no nasal air-
sinuses in the cranial bones of this aquatic Rodent, and their texture is denser than in most of the order. The solla tureica is extremely shallow, and without clinoid processes: the middle of the basioccipital is reduced by the excaration on its under surface to extreme thinness. Λ small racuity in the basisplenoid communicates with the cranial cavity close to the 'fissura lacera anterior.' The presphenoid is perforated transsersely. The rhinenceptalic fossa is well marked. The anterior end of the vomer articulates with both the maxillary and premaxillary bones, as in the Rat.

In the skull of the Ondatra or Musk Vole (Fiber zibeticus, fig. 241), the basioccipital is not excavated, as in the Beaver, but there is the same perforation between the mastoid and superoccipital, and a large vacuity in the posterior process of the squamosal communicating directly with the cranial cavity. The squamosal is unusu-
 ally expanded above the zygomatic process, and articulates largely with both frontal and parietal. The zygomatic process of the maxillary reaches almost to that of the squamosal, and supports a great part of the malar bone. The antorbital foramen, r, is larger than in the Beaver, but is bounded externally, as in it, by a nearly vertical ridge of the maxillary. The interorbital septum is perforated behind, beneath the orbitosphenoid. There is no distinct lacrymal bone; but the turbinal bones appear at the fore part of the orbit between the two processes of the maxillary which join the frontal, and above the aperture communicating with the nasal cavity. The anterior part of the maxillary, in front of the antorbital foramen, is swollen, and forms a curved canal commencing by an oblique aperture sul periorly, and descending outward and backward round the socket of the superior incisor to terminate in the nasal meatus: this part may probably protect the lacrymal sac and duct. The interparietal is a transversely quadrate bone. The sagittal suture is retained, and the upper surface of the parietal is smooth, and nearly flat: the temporal ridges meet and develope a erest upon the narow frontals, obliterating the frontal suturc. The bark part of each ramus of the lower jaw is trident-shaped from the
almost equal developement of the coronoid and angular processes, on each side the base of the narrow process supporting the condyle.

In the Great Mole-Rat (Orycteropus capensis), the occipital region of the skull is very broad and low. The compressed paroccipitals project downward and backward. The auditory bulla is pyriform, its apex articulating with the pterygoids. The
 temporal fosse meet along a well-developed crista extending from the interorbital region to the strong transverse superoccipital erest. The squamosal forms a horizontal plate, with a curved border extending from the root of the zygoma to above the 'mcatus externus, ${ }^{\text {, }}$ which is directed upward and forward. The zygomatic arches are strongly curved outward. The premaxillaries extend further backward than the nasals: these are very long and narrow. In the Blind Molc-Rat (Spalax typhlus), the orbit, fig. 242, o, is not defined : the great antorbital vacuity, v, might be mistaken for it.

In the skull of the Cape Jerboa (Helamys capensis), the occipital region, owing to the enormous developement of the acoustic
 bullæ, appears as a broad shallow depression between them at the back part of the skull. The paroccipitals are small, slender, subelongate, and project downward, distinct from the bullæ. The broader mastoid processes are applied to the outer side of the petrosal portion of the bulle: the swollen baves of the mastnids form a traet upon the upper surface of the eranium larger than the interparietal bone, on cach side of which they are situated. The slender posterior clamping processes of the squamosals impress the outer sides of the bulla which they support, above the 'meatus externus:' this canal is directed upward and a little outward. The parietals are pushed by the squamosals entirely to the upper region of the eranium: the sagittal suture remains, as well as the frontal one. The temporal
muscles seem to have been unusually small in this Rodent: their fosse impress only the small squamosals. The eoronoid proeess of the lower jaw is obsolete. The movements of the jaws appear to have been chicfly committed to the masseterie and pterygoid museles. The zygomatie areh, which extends from the squanosal to the premaxillary, is very broad below the orbit, and is traversed externally by a ridge indicating the powerful origin of the masseter. The antorbital vaeuity and the maxillary depression, bounded externally by the two roots of the zygoma, are larger than the orbits: the front root of the zygoma is formed by a combination of the frontal, lacrymal, maxillary, and malar boues. The slender extremities of the premaxillaries terminate on nearly the same transversc line with the back part of the broad nasals. These are bent down anteriorly, so as to form the sides of the external nostrils. The deep sockets of the rootless teeth form protuberances at their bases, where the osscous case becomes absorbed, converting the socket into a canal open at both ends, the persistent matrix of the tooth being attached to the periosteum, and protected by the eontiguous soft parts. In all the Rodents with the wide antorbital vacuities, the fore part of the masseter takes its origin from the facial bones anterior thereto, and traverses the vacuity in its oblique eourse bencath the fore part of the zygoma, to expand and blend with the normal part of the masseter.

The lower jaw is modified for the lodgement of the pair of long, curved, scalpriform incisors, the sockets of which may extend to the middle (Hare) or eren to the hind part (Beaver, Porcupine) of the ramus: in the latter case the prominent inner wall curves beneath the molar alveoli and forms, as in figs. 238 , $241,242, c$, the lower part of the horizontal ranns. The eondyle, erowning this, rises usually high above the grinders; it is lowest in the Capybara and some Caries: in all Rodeuts the condyle is convex transversely and extended longitudinally. The chicf work of the teeth being ly horizontal movements to and fro, all that part of the ascending ramus serving for the implantation of the masseter is expanded, while that for the temporal muscle is reduced, so that the 'coronoid' process is very small, and may be a mere tubercle (Lagomys), whilc the angle of the jaw nsually forms the whole base of the ascending ramus, projecting below its fore part, angularly in the Hare, fis. 233, a; and behind it. back part, extensively in Cavies, fig. 234, ", and Voles, fig. $2+1, a$. In most of these it is long and pointer; but is obthese and compressed in Dolichotis: it is subquadrate in Aquirrels.

Rats, Marmots. In many Rodents the angle is extended outward and subsides, advaneing, as a vidge upon the outer side of the horizontal ramus, as in fig. 242 : in Ctenomys the breadth of the mandible exceeds the length. Most Cavies show, also, the external tidge moted in the Capybara's jaw, below the molar series. The upper jaw is similarly modified in relation to the masseter, e.g., in those Rodents which have the fore part of the muscle passing through the wide antorbital vacuity, v, to its peripheral ridges.
C. Bones of the Limbs.-In this extensive and ubiquitous order, which includes three-fourths of the known species of Mammals, some have limbs giving power in running, some in swimming, some in burrowing, some in leaping, some in climbing, and a few show modifications in relation to parachutc-like expansions of integment for a kind of flight.

In the Hare, fig. 229, the scapula is long and narrow, traversed externally by a spine extending into an acromion at an unusual distance beyond the glenoid cavity, and there developing a retroverted process; the coracoid is compressed and introverted. The clavicular ossieles are freely suspended, allowing full swing to the fore-limb. The humerus, long, slender, and sigmoid, has a large intercondyloid vacuity. The radius and ulna are in close contact; the latter is grooved for the reception of the radius. Their ginglymoid joint with the humerus restricts the movements to one plane. The carpus has the 'os intermedium,' fig. 191, s^{\prime} There are five digits, the innermost very short, though with the normal number of ${ }_{p}$ halanges. The fore limbs are relatively shorter and stronger in the burrowing Rabbits; the ungual phatuges are less compressed, and afford a closer attachment of the broader claws by being cleft on the upper surface. In all Leporida the ilia are long and subprismatic where they articulate with the sacrum, the joint being limited to the first vertebra, fig. 245, a, b. They extend in advance of this on each side the last lumbar, ib. d, expanding into a crista, c, which is rough and slightly everted: the ilia form with the lumbar series an angle of 165°, fig. 229. The ischia lave a process, fig. 244 , e, above the terminal tuberosities: the pubic bones are long and slender, meeting at a long symplysis produced into a ridge, f : there is a ' pectineal' process, d, near the acetabular end of the pubis. The iliopmbic angle is about 120°.

The femur has a third trochanter near the base of the great one. The medullary artery pierces the inner side of the proximal third of the bone, and the canal extends downward. The fibula is anchylosed along its distal half to the tibia: its proximal end
projeets beyond the tibia, and a 'fabella' is wedged between it and the outer condyle of the femur; there is a similar scamoid behind this condyle, and a third behind the inner condyle. The patella is ossified.

The tarsus shows the navieulare, astragalns, calcaneum with a long lever: the meso- and eeto-cuneiform bones, and the cuboid. There is a supplemental ossicle beneath the astragalus. The naviculare has a large process. The inner digit is wanting, and the base of the metatarsal of the second is extended backward, like an entocuneiform, to join the naviculare.

In the Hare-like Cavies of South America (Dasyprocta) the claricles are represented, as in the Hares, by slender ossicles: the supra- and infra-spinal fosse of the scapula are of equal depth: the hunerus is perforatel between the condyles: the radius and ulna have become auchylosed, reducing the interosseons space to a narrow chink near their proximal ends in the Aconchy: in an Agonti I found this confluence not complete. The fore foot is pentalactyle. The first row of carpals is formed by the
 scapholnnar, the cunciform, and a large pixiform. There is an ' intermedium between the os magnum and trapezoides. The pollex is shorter in the Agonti than in the Aconchy. The fifth finger is mueh reduced in size, but has the normal number of phalanges. The ungual phalanges are noteched at their apex. The fennur gives a feeble indication of the third trochanter at the middle of its outer side. The tibia and fibula are distiuct; a fabella is attached to cach femoral condyle. The foot has but three digit*. The long entocuneiform bone has coalesced with the inner side of the metacarpal of the second toe-here the innermost. The supplementary ossicle crosing the articulation between the astragalus and seaphoides is present. There is a distinet secamoid beneath the joint of the cuboid with the external metatarsal (ic): both the naviculare and enboid send strong processes to the plantar side of the tarsis. There are trochlear semmoils heneath the metatarso-phalangial joints: the ungnal phalanges are motched.

In the prolifie Guinea-Pig, the pelvis, fig. 245, is long and laterally eompressed, the passage being much narrower than the diameter of the head of the mature foetus. Prior to parturition the symphysial ligaments beeome soft and extensile, and the innominata, gliding on the saero-iliac joints, diverge at the symphysis to the extent shown in fig. 246 during parturition. After this process the symphysis quickly returns to its former or normal

state, and in a few days presents only a little thickness and mobility. The young of the Guinca-Pig are far adranced at birth, some of the deciduous tecth are shed in utero, and they run about and begin to eat soom after they see the light.

In the Water-Hog, or Capyara, there is no complete claviele. The acromion is long and slender, and bifid at its extremitr, with the longer division directed downward. The humerus is widely perforated between the condyles, but not above the inner eondyle: both this bone and the ulna are solid. The seaphoides and lunare are comnatc. The poller is wanting in the fore feet, and both the hallux and the fifth toe are wanting on the hind feet. The ungual phalanges are short, obtuse, and broad.

The Beaver, fig. 230, is a member of that great division of the Rodentia in which the elavieles are complete: the acromion scapulw bends toward and joins that bone. In the humerus the deltoid ridge has a tuberosity: both the intercondyloid space and the internal condyle are imperforate: a coarse cancellous structure occupics the middle of the shaft. The radius and ulna are distinct. The fcmur shows the slender neek and lofty trochanter common to most Rodents; it has a third trochanter, and has no medullary cavity. The rotular surface is distinet from that of the condyles. A section of the tibia and fibula also shows the absence of that cavity, and the complete confluence of the compact walls of the two bones at the lower third of the fibula. The projecting part of the calcaneum is depressed. The tocs are longer and stronger than the fingers, they support a broad foot which is webbed, and the second toc has a double oblique nail or broad claw.

In our Water-Vole (Arvicola amphitia) the acromion of the scapula is long and bent dowwward; its inferior process is fecbly developed. The deltoid process of the humerus is prominent and well-defined, compressed, and bent downward. There is a minute perforation between the condyles, but none above the inner one. The bones of the fore-arm are in contact and closely united, except at the narrow space near their proximal ends. The pollex is represented by its metacarpal bone. The femur has a third trochanter, with two patelle in front of, and two fabellie behind, the condyles. I have found, also, a small ossification at the anterior end of each semilunar cartilage. The fibula is anchylosed to the tibia at both its extremitics. The entocuneiform is long, and applied to the inner side of the base of the second metatarsal, but it supports a short metatarsal with the first and ungual phalanx of its proper digit, the hallux.

Rodents burrow chiefly for concealment, rarcly for food: the Rabbit needs but a slight morlification of the limbs, as compared witl the surfacc-dwelling Hare, to excavate, in loose soil, its retreat. Perhaps the 'Mole-Rats' of the Cape are the best burrowers of the order. In Buthyergus the mper border of the scapula describes an open angle; its outer surface is nearly equally bisected by the spine, which rises to an unusial height, and sends off a remarkably long subtriliedral acromion, the extremity of which appears as a thick epiplysis bent toward the long and strong clavicle with which it articulates. A wellmarked deltoid process stands out from the middle of the shaft of the humerus, which is imperforate at its distal end. The olecranon is unusually thick and expanded. The femur shows a
rudiment of a third trochanter. The fibula is anchylosed to the tibia. A remarkable accessory ossicle, articulated to the tarsal os naviculare, projects inward like an accessory or sixth digit of the hind foot. As in other burrowing animals, the lumbar and pelvic regions are narrow.

In the Marmot (Arctomys) the clavicles arc complete and strong. The acromion is long and bifurcate, the anterior division curves to the clavicle. The humerus shows a thick, but not prominent, deltoid ridge: it is perforate between the condyles and above the inner condyle. The antibrachial bones admit of rotation. In the femur there is a rudiment of the third trochanter: the tibia is not confluent with the fibula. In all the Rat-tribe the clavicles are entire: the distal part of the fibula coalesces with the tibia. In the Black Rat (Mus rattus) the deltoid ridge is angular, and commences near the upper end of the humerns, which is imperforate at the lower extremity. A strong ridge represents the third trochanter of the femur. There is a fabella behind each condyle. In an Australian Rat (HIapalotis albipes) the humerus is perforated between the condyles. The radius and ulna are moveably united. There is a third trochanter in the femur. In the Hydromys the deltoid ridge projects from the fore part of the proximal half of the humerus, and is prominent below. The humerus is imperforate. The ulna sends a process to abut against the radins across the middle of the interosseous space. The fore foot is pentadactyle, but the pollex does not exceed the length of the metacarpus of the index. The femmr has a third trochanter and a fabella behind each condyle. The hallux extends to the second phalanx of the next toe. The strength of the hinder half of the skcleton, with the size of the hind extremities, contrasts with the slenderness of the fore part in most Rats, and especially in this large Australian aquatic kind.

Among the leaping Rodents the following noteworthy characters of the limb-bones are seen in the Great Jerboa of the Cape (Helamys). The lower costa of the scapula forms an acute angle with the base, and the infraspinal fossa is much broader than the supraspinal one, the spine of the scapula curving toward the upper angle. The acromion is modcrately long aud slender, the tuberosity answering to the lower division of that in the Caviada. The clavicles are strong, and curved backward at their outcr half. The humerus is perforated at the inner condyle, but not between the condyles. The bones of the fore-arm have a long and wide interosseous space, and allow of frec pronation and supination. The
land is pentadaetyle, and the whole anterior extremity mueh shorter than the posterior one. The iliae bones extend upward eonsiderably above their junetion with the anterior saeral vertebres, and eurve outward. The tuberosities of the isehia are unusually developed. The obturator vaeuities are very extensive, the size of the pelvis aceording with that of the hinder extremities. The great troehanter is of unusual length, is expanded and slightly bent at its extromity. The fossa upon the neek of the femur is unusually deep; there is no third troelanter. The medullary artery enters on the inner side of the base of the small troehanter. The slender fibula eoalesees with the lower third of the tibia, but both its extremities are free, and the lower one is detaehed, as in the Chevrotain, from the rest of the bone. The ealeaneum, astragalus, and euboid are all remarkable for their length : the seaphoid sends a long and thiek proeess downward and forward to beneath the middle euneiform and the base of the inner metatarsal. There are four distinet metatarsals and four toes. An oblong ossiele, attaehed to the inner side of the base of the inner metatarsal, may be a rudiment of the metatarsal of the hallux.

In the Smaller Jumping Mouse (Dipus Sagitta), fig. 232, may be notieed the large size of the ischium, as eompared with the ilium, and the eoalescence of the metatarsals of the three middle toes into one bone, m, as in Birds. Both hallux and little toe are wanting. The lower half of the slender fibula is anehylosed to the tibia.

The chimbing Squirrels (Sciurida) have four digits on the fore foot, and five digits on the hind foot, eonversely to the Helamys. All possess complete collar-bones. In Sciurus maximus the acromion is bent almost at right angles with the spine of the seapula, and it terminates in three prominenees: the eoraeoid is unusually long. The humerus is perforate above the inner condyle, but not between the condyles. In the femur the small troehanter is unusually prominent: there is also a troehanterian ridge below the base of the great trohanter. In the Grey Squirrel (Sc.cinereus) the seapula is remarkable for the number and strength of the intermuseular erista: of these, that which is eommonly ealled the 'spine' is the largest, its breadth being equal to that of the infraspinal fossa: this fossa is bounded by a sceond ridge, formed anteriorly by the outwardly bent lower costa, but being distinct from the costa at its posterior third. The two principal masses of the 'subscapularis' muscle are divided by a longitudinal crest, like the spine, rising from
the inner surface of the scapula. Both the acromion and coraeoid are well developed.

The humerus is perforated above the inner condyle: this is a tuberosity which appears to be supported by four converging columnar ridges or processes. The deltoid and supinator ridges are well marked. The shaft of the ulna is much eompressed: its distal portion coalesees with that of the radius. In the carpus an accessory 'intermedium' is wedged between the scaphoid and trapezium. The bones of the pollex support the tuberele that outwardly represents that digit; the Squirrel's favourite nut is mainly held between the 'thumb tubercles' when operated on by the chisel-teetl. In the pelvis the epieotyloid tubercle is strongly developed : the ilia articulate with the first sacral vertebree exclusively, but the ischia abut against the long transverse processes of the first caudal: beyond this vertebra the ischia devclope on each side two tuberosities, one at the usual place, the other and stronger one near the lower end of the symphysis. The femur shows an almost equal developement of the three trochanters. The medullary artery enters on the inner side of the shaft, just below the small trochanter.

The tibia and fibula coalesce distally. There is au interarticular ossicle in the knee-joint; a patclla; and two fabella,
 247, is chiefly remarkable for the long and strong amenemy cartilage, a, projecting from the ulnar side of the (:urpus, which aids in supporting the lateral fold of integument serving as a para-
chute to support this light and delicate species of Rodent, fig. 154, in its long flight-like leaps from bough to bough. Increased stiffness and resistance are imparted to the bones of the arm by the anehylosis of the radius, 54, and ulna, 55, at their distal halves. The tibia, 66, and fibula, 67, are similarly united.

There are few generalisations deducible from the limb-bones of Rodentia. The absence of clavicles accords, in the main, with natural groups; but Lagomys is an exception among Leporidce and Chinchilla among Hystricide, Wth.: most non-claviculate Rodents have the tibia and fibula distinct.

Among the bones of the splanchnoskeleton may be noted the 'os penis,' which is present in most members of the Rodent order.
§ 182. Skeleton of Insectivora.-The present like the preceding Lissencephalous order has species organised, not only, as in Hedgehogs, for ordinary terrestrial progression, but also for leaping and swimming, and in a more especial degrec for burrowing and flying.
A. Vertebral Column.-In the Hedgehog the vertebral formula is : -7 cervical, 15 dorsal, 6 lumbar, 3 sacral (or L 5, 84), and 14 caudal. The transverse processes of the last cervical are not perforated. All the processes are small throughout the vertebral column, and offer no impediment to the frce inflection of the spine required in the defensive array of the prickly integument. The sacrum is narrow and articulates by three vertebre with the ilia: thesc form an angle of 130° with the spinal column: the ilio-pubic angle is about 150° : the symphysis is short and the pelvic outlet large. The ncural canal is widest in the cervical region, contracts towards the middle of the back, and expands a little in the loins. Seven pairs of ribs directly join, by hremapophyses ofteu ossified, the sternum, which consists of four bones. The cancellous structure of the vertebrex is light and open.

The Tcnrecs (Centetes) have 19 dorsals with 5 lumbar vertebree, and the neural spincs are longer on the anterior ones and the contiguous cervical vertebre, in relation to the larger skull and more powerful jaws of these tropical Hedgehogs.

In the leaping Ihecroscelides, with $d 13,17$, the neural spines of the hinder dorsal and lumbar vertebre are longer, and, with those anterior to them, indicate 'a eentre of motion' of the trunk. The caudal vertcbre are more numerous and have hromapophyses in part of the series. This part of the skeleton is also well dereloped in the climbing Tupaias.

In the burrowing Mole, fig. 248, the first sternal bone, or manubrium, is of unusual length, being much produced forward, and its under surface downward in the shape of a deep keel for extending the origin of the pectoral muscles. Seven pairs of ribs directly join the sternum, which consists of four bones, in

addition to the manubrium and an ossified ensiform appendage. The neural spines, which are almost obsolete in the first eight dorsals, rapidly gain length in the rest, and are antroverted in the last two dorsal vertebre. The diapophyses, being developed in the posterior dorsals, determinc the nature of the longer homologous processes in the lumbar vertebre. In these the neural spines are low, but of considerable antero-posterior
 extent: the diapophyses are bent forward in the last four vertebre: a small, detached, wedge-shaped hypapophysis, fig. 249, c, a, is fixed into the lower interspace of the bodies of these vertebre.

The ossa innominata have coaleseed with the sacrum, fig. 248 , s, but not with each other, the pubic arch, 64, remaining open. The bodies of the sacral vertebre are blended together and are carinate below: their neural spines have coalesced to form a ligh ridge. The acetabula look alinost directly outward. In the cervical scries the odontoid process shows a sharp hypapophysis: the neural spine of the dentata, fig. 249, 1, 2, is large and extended back over the third vertebra: the neural arches of this and the succecding vertchra form, above the zygapophyses, thin simple arches, without spines; the transverse processes of the fourth, fifth, and sixth cervicals are produced forward and backward, and overlap each other, ib. 4-6: in the seventh those
processes are reduced to tubercular diapophyses which are not perforated: the bodies of the vertebrex are dcpresscd and quadrate, ib. в.

Among the volant Insectivora the vertcbral formula, in Vespertilio murinus, gives- 7 cervical, 12 dorsal, 7 lumbar, 3 sacral, and 12 caudal. The ehief characteristics of the trunk-skelcton in Bats are:-the gradual diminution of size of the spinal column from the ccrvical to the sacral regions; the absence of neural spines, a keelcd sternum, and a feeble slender pelvis. In a frugivorous Bat (Pteropus fuscus, fig. 156) I find the following vertebral formula :- 7 cervical, 14 dorsal, 4 lumbar, and 6 sacral. The kecl of the large manubrium sterni is produced into a process at cach angle: the three succeeding sternal bones are carinate: seven pairs of ribs directly join the sternum. The narrow sulbcylindrical ilia, fig. 250, a, coalesce with the sacral vertebre, and are parallel with the
 spinal column: the pubis, ib. b, is continued in a line with the ilium to the symphysis, ib. ϵ, which is but slightly closed in the malc, and remains open in most female Bats. There is a 'pectineal' process, ib. h, in Pteropus. The ischium, ib. d, joins the last sacral vertebra and defines a
 sacrosciatic foramen. The acetabula look backward (dorsad) as well as outward.
B. The Skull.-This, in I'terophs and Galeopithecus, fig. 2.53, manifests the lissencephalous affinity by the squamosal being perforated by a venous canal behind the root of the zygoma, by the suspension of the malar, 26 , in the zygoma, by the distinct petrotympanic, 28 , by the vertical occiput, small cranial cavity, and blended orbital and temporal fosse. The orbit is partly defined behind by long and slender processes of the frontal, ib. 11, which is perforated by a superciliary foramen. The parietals, ib. i, usually coalesce at the sagittal suture, but rarely develope a crest. The occipital coudyles, ib. 2, are terminal, and the plane of the foramen is rertical. The basioccipital, 1 , is a subquadrate plate. The lacrymal, ib. 73 , is in great part facial. The palatinex, 20 ,
are entire. In Pteropus the palatal processes of the maxillary, 21, show a long fissure : those of the premaxillaries, ib. 22 , are divided

by a triangular ' foramen incisivum.' The mandible has a broad and high coronoid process: the angle is rounded. In Galeopithecus the coronoid is small.

In the cranial eavity the rhincnecphalie fossa is large and well defined. The petrosal shows a deep cerebellar fossa, overarched by the vertical semicireular eanal. The 'sella' has no elinoid processes.
In most insectivorous Bats the occipital condyles are subterminal, the superoceipital, fig. 254, 3, sloping backward, and
 contributing to the crista continued forward by the interparietal and parictal bones. The occipital foramen is very large. The mastoid, 8, is large and distinet, giving attachment to the tympanic, 28. The basisphenoid is broad and flat as in Pteropus, fig. 252,5 . The frontal has no postorbital process. The zygomatic parts of the squamosal, 27 , and malar, 26 , are slender. The premaxillaries are very small: in some Bats they are wanting (Rhinolophus), or are represented by separate moieties attached to the fore-part of the maxillaries. The mandible
has the angle usually produced, fig. 254, A. The malleus and ineus are united; the crura of the stapes are long and slender.

The skull of the Mole (Talpa, fig. 255) is subdepressed, pyriform, large behind, tapering to the fore-part, whieh is prolonged by the prenasal ossicle, n. The outer surfaee of the cranium is smooth and deroid of erests: it is remarkable for the extension of the superoccipital upon its upper part, and for the expanded
 mastoids. The very slender zygomata show no distinet malar bones. The petrosal is largely and deeply exeavated by the cerebellar fossa. The rhineneephalie fossa is large and well defined. The basioceipital and baxixphenoid are thiek and of a fine spongy texture. The orbit is no way defined from the temporal fossa: the antorbital foramen is large. In the Cape Mole (Chrysochloris) the eranium resembles that of the bird in it thin smootl convex walls, its great transverse and vertieal diameters, its allocation at the back of the skull, and by the transverse erest extending, as in some seabirds, from one mastoid, over the vertex, to the other. The base of the zygomatic process of the squamosal is
 deeply excavated anteriorly, and the zygomata converge, straight, to the maxilla. Some Shrews (Ampiisarex) have no zygomata.

In the Hedgehog the squamosal is traversed by a vertical venons canal. The malar is applied, like a splint, along the outer and under side of the junction of the zygomatic witle the maxillary. The cranial cavity shows the rhinencephalic compartment to be nearly equal in size with the epencephalic one: the petrosal is impressed by a cerebellar fossa. The nasal passage terminates behind in a hemispheric excavation of the basisphenoid; and this bone expands outwardly to form the floor of the tympanic cavity. There are two oblong vacuities in the palatal bones.

In the Gymnura the bony palate is entire. The premaxillaries join the anterior half of the nasals. The lacrymal perforation is in a small fossa at the fore-part of the orbit, which is not defined from the temporal fossa. The zygomatic process of the squamosal is long and slender, joining that of the maxillary. The basisphenoid expands to form the floor of the tympanic cavity. The superoccipital and parietal crests are well devcloped. The pterygoid is pierced lengthwise by an ectocarotid canal.
C. Bones of the Timbs.-All the Insectivora have perfect clavicles. The scapula of the Hedgehog is almost as long as the lumerns; the acromion is bilobed: the coracoid produced and thick. The humerus is perforated between the condyles. The antibrachials are distinct, but closely connected together: the ulna being the larger and more compressed. The carpus consists of a scapholunar bone, a cunciforme and large pisiforme, a trapezium, trapezoides, magnum and unciforme. A sesamoid is attached to the outside of the base of the metacarpal of the digitus mininus. The fibula coalesces at its distal end with the tibia. The ectocuneiform and cuboides are elongated. The foot is pentadactyle and plantigrade.

In Amphisorex the radius and ulna are closely united, and the fibula appears as a slender process ascending from the middle of the tibia. In the proboscidian Shrew (Rhynchocyon) the pollex is wanting, and the fiftli digit has but two phalanges; but the index, medius, and annularis present the normal number of phalanges supported on long inetacarpals. Besides the usual eight carpals, there is an 'intermedinm' between the scaphoid, trapezium, trapezoides, and magnum. In the hind-foot there is a rudiment of the metatarsal of the first toe, and the fifth has the nsual number of phalanges. ${ }^{1}$

The Moles exhibit the extremes of modification of the fore-limb in relation to the pwer of making progress in carth. In Talpa
curopaa the seapula, fig. 256, 52, combines ornithie proportions with unusual strength ; its length execeds its extreme breadth by six times : it is trihedral, save at the middle, whieh is eylindrieal: the spine is eo-elongate, and developes an aeromion ligamentously eonneeted, for freedom of movement, with the elavicle. This bone, ib. 58 , is eubical-an unique form in Vertebrata. The humerus, fig. 256, 53 , fig. 257, is a subquadrate, lamelliform bone, with a proximal articulation for the elavicle, 58 , as well as for the seapula, b, c. The inner tuberosity swells out with the deltoid, d, and peetoral, p, ridges into an enormous convex erest, divided by a short and deep emargination from the inner epicondylar pro-
 cess, i, the base of which is perforated by the median nerve. The outer tuberosity, t, is produeed and uneiform ; and a long and deep emargination divides it from the retroverted produetion of the radial condyle, o. This eondyle offers a convexity to the head of the radius, fig. 257, 54. The olecranon, fig. $2.77,55$, expands transversely at its extremity, and the baek part of the ulna is produced into a strong ridge of bone. The

carpus, fig. 258, consists of the usual eight bones in two row, viz. 'scaphoid' s, lunare 7 , enneiforme c, pisiforme p; trapezium t, trapezoides, magnum m, unciforme u : with an 'intermedium,' a, and a secomd sabre-shaped aceessory os,icle at the radial side of the carpus. The ungual phalanges are bifid.

In the Cape Mole (Chrysochloris) the clavicle is long: the humcrus is short and arcuate, with a single proximal articulation. The radius and ulna coalesce. The carpus consists of a scaphoid, usually confluent with a trapezoid, fig. 259, s, t; a lunarc, of small size, articulated to both radius, 54, and ulna, and presenting the opposite and larger surface to the magnum, m; a still

smaller cuneiforme; and a pisiforme, p, in the form of a long subcylindrical bone extending from the carpus to the humerus, and simulating a third antibrachial bone. On the outer side of the magnum, m, is a small unciforme supporting a rudiment of a fourth metacarpal. The functional digits are but two: the pollex is represented by a metacarpal and two short phalanges, the second being styliform, I: the index, II, consists of a short metacarpal, a phalanx representing the first and second confluent, 1,2 , and a larger ungual phalanx, 3 , cleft at the end. The medius, iII, is of monstrous proportions: its metacarpal is broader than long, to which articulates an cnormous ungual phalaux, int, bifureate through the depth of the terminal eleft. A metacarpal representative of the fourth digit, iv, is firmly articulated with, and strengthens the lase of, the third digit.

The volant Insectivora are as remarkable for the length and slenderness of the arm- and finger-bones, as the fossorial species for the opposite propurtions. The Common Bat (Vespertilio murinus) has long and strong bent clavicles: broad scapulx: elongated humeri: still more elongated and slender radius and metacarpals and phalanges of the four fingers, which are without
elaws, the thumb being short and provided with a elaw: the pelvis is small, slender, and open at the pubis: the fibula is absent, like the ulna in the fore-arm: and a long and slender styliform appendage to the heel helps to sustain the caudo-femoral membrane.

In the fugivorous Bat (Pteropus, fig. 156) the elavieles, 58, are long, arched, and very powerful. The humerus, 53 , is long, slender, gently sigmoid. The ulna, 55 , is slender, and terminates in a point at the lower third of the radius, 54 : the olecranon is a detached sesamoid ossiele. The index, ir, has a elaw as well as the pollex, $\mathrm{r}:$ the ungual phalanx is wanting in the other three digits, in whieh the second phalanx is long, slender, and terminates in a point. The femur, 65, is straight, half the length of the humerus: the tibia, 66 , is more slender, rather longer than the femur: the fibula is in the form of a slender style aseending from the outer malleolus and terminating above in a point. The inner digit of the foot, i, is a little separated from the other four, v, whieh are of equal length, and unguiculate for suspending the body.

In the Colugo (Galeopithecus) the ulna terminates in a point at the lower fourth of the radius: all the five digits of the hand, like those of the foot, have elaws supported on deep compressed ungual phalanges.

Amongst the most remarkable bones of the seleroskeleton is the ossifieation of the raplé between the lateral masses of the museles of the nape, forming a styliform bone cocxtensive with the ecrvieal vertebre, in the Nole. The patella in the triceps extensor eruris, and the fabellæ in the tendinous origins of the gastroenemii, are present in most Insectivora. The os penis is also found in this order.
§ 183. Skeleton of Bruta.- A. Vertebral Column.-In the loricate or Armadillo family this is remarkable for the prevalcnee of anchylosis in unusual parts, e.g. the cervical region, and throughout the dorso-humbar regions in the great extinet Glyptodonts, whiel have their euirass in one pieee.

In the Nine-banded Armadillo (Dasypus Pebu, fig. 260), the vertebral formula is :-7 eervieal, 10 dorsal, 5 lumbar, 8 saeral, and 16 eaudal. The spine of the dentata is eompressed, lofty, and developed baekward beyond those of the third and fourth eervicals, with which it has partially eoalesced : a corresponding coalescenee has taken plaee between the bodies of these vertebrac, which are musually broad and flat below. The diapophysial part of the transverse proecsses of the last cevical abuts agaiust the tubercle
of the first broad dorsal rib: the pleurapophysial part of the same transverse process is broad and short, and extends down-

ward in front of the same rib. The last three cervicals, ib. c, have no spinous processes; that of the first dorsal rises to a considerable height, and those of the remainiug dorsals, D , and lumbar vertebre, L , attain the same horizontal line. The metapophysis is first fully developed upon the seventh dorsal, and progressively elongates to the last lumbar, fig. 261, m : it presents

Vertebral architecture for support of caranace, Armadillo. an articular surface at the under and fore part of its base to be articulated with the anapophysis of the anteeedent vertebra. The anapophyses increase in thiekness rather than in length in the succeeding vertebre, and upon the last dorsal present an articular surface at their under part for connection with a parapophysis, ib. p. These accessory joints coexist with the ordinary articulations between the anterior and posterior zygapoplyses, and there are consequently twelve joints between each pair of vertebree, in addition to the ligamentons one between the bodies of the vertebre, ib. c. This mechanism is designed to give great strength and fixedness to the vertebre of the trumk in relation to the support of the bony earapace, ib. b, b, and to
the affording a firm fulcrum or centre to the powerful muscular forces exercised by the limbs in the act of burrowing. The elongated metapophyses have a more direct relation to the support of the carapace, the spinous processes represcnting the ' king-posts,' ib. n, and the metapophyses the 'tie-beams,' ib. m, in the architecture of a roof. The sacral vertebre progressively increase in breadtl after the second, to form an extensive juncture with the ischial bones. The tubcrosities of the ischia, fig. 260,63 , and similar tuberosities at the fore-part of the ilia, fig. 277, 62, bend outward and upward, to afford four strong additional supports to the bony carapace: the long diapophyses of the first caudal vertebra abut against those of the last sacral vertebra and the tuberosities of the ischia. The metapophyses reappear upon the second candal vertebra, and continue to the antepenultimate one, where they are reduced to ridges upou the anterior zygapophyses. Hrmal arches, with short terminally expanded and flattened spines, are present beneath the intervals of many tail-vertebre. In Glyptodon the caudals coalesce.

The posterior dorsal ribs are deeply excavated upon thcir external surface; five pairs directly join the sternum, which consists of six bones, a very small one being interposed between the fourth and the long one supporting the ensiform cartilage.

In the Cape Anteater (Orycteropus), the vertebral formula is:-7 cervical, 13 dorsal, 8 lumbar, 6 sacral, and 25 caudal: anchylosis is limited to the sacral region : the cervical transverse processes overlap each other; the costal part of the sixth is a broad plate. The dorsal and lumbar neural spines are much longer than those of the cervical, and are snbequal : they slightly converge to that of the twelfth dorsal, which is vertical, indicating a greater extent of inflection of the trunk than in the South Anerican Anteater; increased freedom of motion is likewise favoured by the less complex character and mode of mion of the vertebre. An accessory tubercle is developed upon the diapophysis of the seven anterior dorsal vertebre, which divides near the eighth into metapophysis and anapophysis. These progressively increase and diverge from one another in the succeeding dorsals, and in the first lumbar vertebra the metapophysis projects mpward, ontward, and forward upon the outside of the anterior zygapophysis; whilst the anapophysis extends backward from the back part of the diapophysis, which it equals in length. The anapoplysis decreases in size in the following lumbar rertebrat and disappears in the last; the metapophysis also decreases
in size, but is continued throughout the lumbar series and along part of the saeral. The sacral spines eoalesce, leaving intervening foramina, fig. 262, ": the transverse processes of the three
 anterior sacrals join the ilia, c, g; those of the three posterior ones coalesee to form a broad depressed plate, with the posterior angles produced, ib. b, but not joining the ischia. These have a long and broad tuber ischii, ib. k, l. The pubis, d, is long and slender: the peetineal spine, ib. h, is long; the symphysis pubis is short; the lumbo-iliac angle is 140°. Metapophyses are developed from the outside of the anterior zygapophyses, as far as these extend along the eaudal series, viz. to the eighth vertebra; beyond these the metapophyses are developed, independently of the zygapophyses, to near the termination of the tail. The hrmal arches eommence below the interspace between the second and third eaudals, and are continued as far as that between the sixteenth and seventeenth. The neural arch disappears upon the sixteenth eaudal vertebra.

In the Scaly Anteater (Manis pentadactyla, fig. 158), the transverse process of the seventh eervical is perforated: its spine is longer than that of the others. There are 13 dorsal vertebre. The nine anterior pairs of ribs dircetly articulate with the sternum, which consists of ten bones. The tentl is of unusual length, and supports a still longer and much-expanded xiphoid cartilage. The metapophyses commence as tubereles on the first dorsal vertebra, and rapidly increase in size in the succeeding vertebre. The anapophyses are not developed in this genus. There are 4 lumbar, 4 sacral, and 26 caudal vertebre. The metapophyses continue to be developed from the sacral series. The transverse processes of the last sacral suddenly expand both in length and breadth, and articulate with the tuberosities of the iselia. Well-developed hremal arches are articulated to the inferior interspaces of the caudal vertebras as far as the penultimate one. The anterior zygapophyses cease upon the fourteenth vertebra, but the metapophyses are continued as far as the penultimate caudal. The neural arch gradually subsides and disappears upon the twentieth caudal vertehra, which cousists of centrum, diapophyses, metapophyser, and the hemal arch.

In the skeleton of the Great Anteater (Myrmecophaga jubata, fig. 263), the vertebral formula is:-7 cervical, 15 dorsal, 3 lumbar, 5 saeral, and 35 caudal. The atlas is piereed in two places obliquely at the fore-part of the neural areh on eaeh side. The axis has a transverse perforation on each side the neural areh anterior to the transverse process, which is imperforate. The transverse processes of the three suceceding cervicals are imperforate, the vertebral artery entering the neural canal behind, and perforating obliquely the basc of the neurapophysis, anteriorly. In the sixth cervical, the eanal for the vertebral artery runs through the base of the transverse process. These proccsses are mueh extended antero-posteriorly in all the cervicals and overlap

cach other: thicir di- and pleur-apophysial portions are very distinct in the fifth and sixth cervicals. The spinc of the seventh is longer than the rest and truncate above; it is mueh exceeded in antero-postcrior diameter by the spine of the first dorsal. 1 metapophysial tuberele is developed from the outer side of the prozygapophysis in all the five posterior ecrvicals. It is placed more outwardly in the first and second dorsals, and gets upon the top of the diapophyses in the suececding dorsals. In the eleventh dorsal the metapophysis begins to resume its former position, and developes an articular surface from its under part, which joins the upper articulating surface of the anapophysis of the preceding vertebra. In the thirteenth dorsal, the metapophysis is half-way
between the diapophysis and anterior zygapophysis, and repeats the same articulation with the anapophysis. In the last two dorsal vertebro, the base of the metapophysis developes a seeond artieular surface from its inner side, which joins a new or aecessory articular surface on the outside of the posterior zygapophysis of the anteeedent vertebra. This tenon-and-mortiee articulation of the metapophysis with the zygapophysis on the inner side and with the anapophysis on the outer side, is repeated throughout the whole lumbar series. The anapophysis begins to be developed from the anterior dorsal vertebra, and even there presents an artieular surface at its under part to join a corresponding surfaee on a parapophysis developed from the fore and outer part of the nemral areh of the succeeding vertebra. In the tenth dorsal a seeond artieular surfaee is established in the upper part of the anapophyses for the inferior metapophysial one of the suceceding vertebra; here, therefore, the anapophysis begins to be mortieed between the parapophysial and metapophysial articular surfaces, whieh surfaees continue to the antepenultimate lumbar vertebra, from which, forward, to the eleventh dorsal, there are sixteen joints between each pair of vertebre. But this complieation goes further ; for, in the penultimate lumbar vertebra, a third artieular surface is developed from the under and outer part of the anapophysis, whieh joins an artieular surfaee on the upper and fore part of the diapophysis of the last lumbar: and this vertebra is united in a similarly eomplex manner with the first sacral vertebra, which would make eighteen synovial joints, in addition to those at the ends of the eentrum, but that those between the normal artieular processes, or zygapophyses, are now suppressed. The true serial homology of the processes as 'parapophyses,' developed from the fore part of the base of the neural areh to articulate with the under part of the anapophyses, is well illustrated by the vertcbre of the Great Anteater, as in the Megatherium, in which the true diapophyses are better developed than in the Armadillos.

The spines of the sacrals, ib. s, blead into a bony ridge; the transverse processes of the last three join the ischia. Hremal arches articulate with the intervals of most of the eaudal vertebre.

In the little Two-toed Λ nteater the dorsal pleurapophyses show a chelonian expansion; but overlap, or join by squamous instead of dentate sutures.

In the Ai (Bradypus tridactylus, fig. 263), the vertebral formula is :-c $9, \mathrm{~d} 16, \mathrm{~L} 3, \mathrm{~s} 6, \mathrm{c} d 11$. The neural arch of the atlas is
perforated by the vertebral artery anteriorly, and by the cervieal nerve posteriorly. The spines of the cervical vertebree are moderately and equably developed. The pleurapophysial part of the transverse process of the eighth cervical, fig. $265, a, p l$, is more extended antero-posteriorly than in the preceding cervicals, and long remains free. The pleurapophysis of the ninth cervical, ib. $b, p l$, retains its freedom, and is more extended in the direction of its length, but is very short as compared with the homologous part, pl, of the following vertebra. The slender neck and head of this little rib, joining the fore part of its centrum, occasions the perforated character, as in the antecedent cervical vertebra. A short metapophysis is developed from the fore part of the diapophysis of the penultimate dorsal vertebra, increases in size in the

last dorsal, and aseends upon the base of the prozygapophysis of the third lumbar vertebra. The anapophysis is also developed from the last dorsal and from the three lumbar vertebre ; it is short, with an articular surface applied to the outer side of the prozygapophysis of the succeeding vertebra. The spinous processes gradually subside in the posterior dorsals, fig. $264, \mathrm{D}$, and become obsolete in the lumbar vertebre, L . The first pair of dorsal ribs, p^{\prime}, h, is anchylosed to the manubrium, s : nine pairs direetly artieulate with the sternum, which consists of eight bones; these are compressed, and progressively increase in depth; the hinder ones are divided into a larger posterior and a smaller anterior part, between which are four articular facets on each side for the bifurcated extremities of two of the ossified eartilages. There
is a pair of lyypapophyses on the fifth, sixth, and seventh caudal
 vertebre. The pelvis consists of five or six sacral vertebrec coalesced with each other, also (1-4) with the ilia, and (5-6) with the isehia, leaving wide ischiadic foramina, fig. 266, d. The saeral spines are obsolete, and the centrums much depressed. The ilia are short and broad, forming an anterior coneavity. The isehial tuberosities are small, and the part joining the pubis to eireumscribe the large obturator foramina is slender. The pubis is also slender, and forms a very short symphysis, c. The pelvie outlet is wide.

In the Two-toed Sloths (Cholopus) the vertebral formula is c 7, d 23, ц 3, s 8 , cd 4, or D $24, \mathrm{~L} 2$; or D 23 , L 4, s 7 , the number being essentially the
 same. The second and third cervicals sometimes coalesce. Choloepus Hoffmamui has only six eervicals. ${ }^{1}$ Twelve pairs of ribs join the sternum, which consists of eleven bones. Not any of the great extinet Ground Sloths have more than seven cervical vertebrae; but in the number of dorsal vertebra, as in every other bradypodal character, they manifest their true affinities. The Mylodon, fig. 267 , offers a singular contrast with the Mole, fig. 248, in the proportions of the sacrum: this, by anchylosis with the three lumbar and last dorsal, dls,

[^109]includes eleven vertebræ, and forms one strong and continuous bony mass along the whole lumbar region. Its total length is two feet four inches, and it gradually inereases in breadth to the sacro-iliae union, whieh is formed by the first, sceond, and third true sacral vertebræ, and there presents its greatest breadth. It then contracts slightly, and, at the sixth and last, cxpands again to join the ischia, fig. 268, c, with which and

the ilia it coalesces. Its antcrior surfaee is eurved both laterally and vertically. The spinal eanal is very wide, and the foramina passing from it mark the primary segments. Thirir neural spincs form a eurved erest, ib. g. There are twenty-one caudal vertebre, fig. 267, cd. The iliae crest is arehed, thiekened, and rough; the ala notably expanded. The isehia, after effeeting the saeral confluence, at c, areh outward, of slender form, and expand, at h, fig. 268 , to join the still more slender pubis, b,
vol. it.
D D
and complete the wide obturator hole, o. The tuberosity, k, is not well marked.

The vertebral column shows neither in Mylodon nor Mega-
 therium any apophysial developements related, as in the Armadillos, to the support of a bony carapace.

The Megatherium has C 7, d $16, \mathrm{~L} 3, \mathrm{~s} 5$, cd 18 ; fig. 279. The neural spines elongate in the last two cervical, and increase in both length and breadth in the anterior dorsal vertebre. The dorsal hremapophyses are bony as in the Mylodon, Sloths, Anteaters, aud Armadillos. Nine pairs of ribs directly articulate with the sternum, which consists of eight bones. Most of the dorsal vertebre are peculiar in having a third, medial, zygapophysis between the ordinary anterior and postcrior pairs: they likewise present three surfaces to the pleurapophysis, one on the centrum for the 'head of the rib,' one on the neurapophysis for the ' neek,' and one on the diapophysis for the 'tubercle.' The hæmapophyses present analogons complex joints with the sternebers, having a pair of condyles, synovially articulated with two pairs of cavities on contiguous sternebers, each sueh sterncber presenting ten articulations, one for the antecedent, another for the suceeeding sterneber, and two pairs of hæmapophysial cavities on each side. The posterior dorsal and lumbar vertebre present, besides the articular surfaces for the centrums, and those of the zygapophyses, also a pair of metapophysial and a pair of mapophysial articulations. ${ }^{1}$ In the confluence of the anterior dorsal pleur- and ham-apophyses the Megathere ${ }^{2}$ resembles the Sloth. The caudal vertebre supporting, as in Mylodon, a powerful column, serving as a prop to the massive hind part of the trunk when the fore part is raised, as in fig. 267, have long and strong di- and hæmapophyses: the latter separate in the first caudal, but coalesced at their distal ends in the succeeding caudals to near the end of the tail. ${ }^{3}$

[^110]The large pelvis, the union of the ischia with the sacrum, and the speedy osseous eonfluence of the several pelvic elements, are common charaeteristics of the spinal column of the Bruta: in no other Mammalian order are found such complex vertebral articulations; and here alone are manifested the exceptional instances of affinity to certain Ovipura in the lower cervicals with free ribs of the Three-tocd, and in the twenty-three custigerous dorsals of the Two-toed, Sloths.
B. Skull.-The skull in the insectivorous Bruta is long and slender; these proportions reaching their extreme in true Anteaters (Myrmecophaga, fig. 269). The occipital condyles, 2 , are large and terminal: the superocecipital, 3 , inclines forward as it rises to join the parietals, 7 , which retain their 'sagittal' snture. The frontals are elongate, and continue the smooth transversely convex cranial roof forward to the nasals, 15 ;
 these are still longer, being coextensive with the maxillaries, 21 , which, with the mandible, 32 , form the walls of the bony tubular sheath of the very long tongue: the premaxillaries are minute. The orbits are feebly defined: the lacrymal, 73 , is large and chiefly antorbital. A begiming of the malar is appended to the maxillary: the small squamosal forms the flat surfice for the mandibular condyle, but developes no zygoma. The tympanic, 28 , retains its separate condition. The petrosal is excavated by a hemispheric cavity for the condyle of the stylohyal, the framework of the tongue in the Anteaters almost equalling the mandible in its amount of bone.

In the Pangolins (Munis, fig. 270) the cranium also shows the inclination of the occipital surface from below upward and forward, the plane of the foramen magnum being slightly inclined in the same direction. The exoccipitals, 2 , meet above the formen. The superocci-
 pital, 3 , is rhomboidal, and its aspect is almost wholly upward. The mastnids, \&, form two hemispheric protuberances at the sides of the occipital region, and the petrosials two smaller protuberances at the silles of the base of
the skull: the pterygoids, 24 , extend backward beyond them, and form the sides of a deep and wide postnasal groove. The tympanic bone forms the lower boundary of a hemispheric bulla, which communicates with an equal-sized carity in the squamosal; a narrow strip of the petrocal intervenes between the tympanic and the broad basioccipital. The zygomatic process of the squamosal, 27 , extends but little heyoud the joint for the lower jaw : there is no separate malar. The promaxillaries, 22 , join the masals, 15 . The sinall lacrymal, in Manis longicaudata, is wedged in between the frontal, 11, and maxillary, 21, at the anterior angle of the orbit. Two tooth-like processes project from the fore-part of the alveolar border of the slender under-jaw.

In the hairy Inteater of the Cape (Orycteropus) the petromastoid and tympanic are distinet from each other, and retain their primitive scparation from the squamosals. The occipital condyles are bilobed, the inferior and snaller lobe being developed from the basioccipital. The zygomatic arch is slender, but entire. A well-marked venous fossa depresses the inner border of the foramen magnum; the sella is large and moderately decp, with anterior and postcrior clinoid processes, bounded on eaclo side by the carotid channels, external to which are the deeper Gasserian forse. There are few mammalian skulls in which the cranial cavity is more equally divided, than the present, into the epencephalic, mesencephalic, prosencephalic, and rhinencephalic chambers; but the mesencephalic eliamber contains not only the proper mescucephalon, but also, as in other Mammals, part of the backwardly developed prosenceplialon, and expecially those inferior protuberances called 'natiform.' The petrosals show very narrow cercbellar fosse. The maxillary has seven alveoli, the mandibular ramus has six: but the small anterior ones are obliterated with the less of their teetlo in old animals. The hyoid arch is large and
 consists of the stylohyal, ceratohyal, epiliyal, and basihyal clements, with the appended thyrohyals, or ' cornua majora.'

In the Armadillos (Dasypus, fig. 271) the occipital plane is vertical. There is no paroccipital: the superoccipital, 3 , is bent at a right angle to join the parictals, 7 , which obliterate, as in Orycteropus, the sagittal suture by their union. The mastoid is perforated by a vein from the lateral sinus, and terminates below in all obthse process. The tympanic is a separate semicircular
plate of bone. The alisphenoids join the parietals. The laerymal is large and chiefly antorbital. The petrosal presents a wide and shallow cerebellar fossa: the canal between the petrosal and the angle of the superoceipital gives exit to a vein and entry to an artery. The rhinencephalic almost equals the epencephalic divi-

sion of the cranial eavity. The frontals are large, but chicfly oceupied by the nasal ehamber: in the Chlamyphorus the outer table rises into a pair of domes, fig. $27 \because$, a, augmenting the olfactory eavity. In most Armadillos there are two sinall prenasal ossieles. The premaxillaries are snall and lodge the first tooth in one or two species. The zygomatic arch is complete and strong: the malar part, fig. 271, 27, curves down outside the mandible, and there, in Glyptodon, developes a long process for the service of the masseter.

The zygomatic areh eulminates in regard to eomplexity in the Sloths, albeit in the small existing species, fig. 273, the squamosal element, 27, fails, as in the Anteaters, to reach the malar one, $26, b$. In the Megatherioids this union is effected, fig. 274, and an unusually massise areh is the result. The malar, 26 , still sends upward its temporal process, b, and downward its masseterie one, ". This cranial developement relates, as in the reeent and extinet K゙an-
 garoos, to the share of the masseter in the business of mastieation ; and the molars are transversely ridged in Meyotherium as in Diprotodon.

The facial part of the skull in the Sloth is as remarkable for its shortness as in the Anteater for its length. In the Ai, fig. 273, the interparictal coalesees with the superoceipital, 3 , before the exoceipitals unite with the super- and basi-occipitals. The malar bone, 26 , is freely suspended by its anterior attachment to the maxillary and frontal, and bifureates belind ; one division, \because, extending downward, outside the lower jaw, the other, b, aseending alove the free termination of the zygomatie process of the squamosal, 27. The premaxillary is single and edentulons, being represented only by its palatal portion completing the maxillary areh, but not sending any proecsses upward to the nasals. Within the eranium there is no bony tentorium: the two divisions of the meatus internus commence separately upon the exterior of the petrosal, which is not impressed by a cercbellar fossa. The depression receiving the natiform protuberance of the cercbellum is formed chiefly by the squamosal. The walls of the rhineneephalic fossa are entirely surrounded by the olfactory chamber, which extends above into the frontal and beneath into the sphenoidal sinuses. Λ well-marked vascular foramen leads downward from the partition between the rhinenecphalic and prosenecphalie ehambers. The rough exterior part of the petrosal forms, as it were, the border of a eapsule to the tympanie : the fossa for the stylohyal is well marked at the baek part of the border. The pterygoid forms a large quadrate vertical plate. The bony septum narium terminates half-way from the large vertical external nostril. There is a small imperforate lacrymal : the antorbital hole is wanting. In the Unau (Brudypus diductylus) the lacrymal is piereed external to the orbit. In the Mlegathere the foramen is at the orbital margin, and there is a large antorbital foramen: the premaxillarics, though edentulous, are more producel than in existing Sloths, and there is a corresponding production of the symphysial part of the lower jaw, which is grooved above, as in the Anteaters, for the support during its pro- and re-tractile movements of a long tongue, preliensile in the Megathere as in the Giraffe, in reference to the smaller branches of the trees yielding food to the extinet giant. Behind the symphysis the
mandible is deepened for the long roots and matrices of the evergrowing molars. The extension of the air-sinuses, great in the elimbing Sloths, was still more so in the colossal species, whose strength enabled them to uproot and prostrate the trees they browsed on. The skull of the Mylodon robustus in the Hunterian Museum shows two extensive fractures of the outer table, one wholly, the other partially, healed: the latter extending to near the oceiput, but laving broken only into the air-chamber, not into the cranial cavity, the inner, proper or ' vitreous' table of which is everywhere divided by sinuses and sinuous lony plates from the outer table.

Notwithstanding the extreme diversity--singular contrast indeed in several particulars-which the skull presents in the order Bruta, the marks of inferiority of position in the Mammalian scries, according to the eerebral charaeter, are constant throughout. The terminal position of the oceipital condyles and the aspect of the oecipital surface, the degree in which the parts of the complex 'temporal bone' of higher Manmals retain their primitive separation, the position of veins conducting from the cercbral sinuses, the low facial angle and small proportional size of the eranial eavity, the small share in which the squamosal contributes to its walls-all exemplify the inferiority of the present unguiculate group of animals to the Gyrencephalous Ungulates.
C. Bones of the Limbs.-In all Armadillos the clavieles, fig. $275,52^{\prime}$, are complete. The seapula, 51, is broad, convex externally, and presents two spincs, the normal one of which is produced into an acromion, long in all the species and unusually so in the Chlamyphore, ib. n; in most it sends down a process from its base. The eoracoid eurves downward: there is a well-marked tuberele belind the neek of the seapula. The supraseapular element is represented by a coarsely ossificd eartilage attaehed to
 the base of the scapula, fig. 260, 51. The humerus is remarkable for its strength and for the great developement of the deltoid ridges. It is perforated above the imer condyle, but not between the condyles. The ulna, fig. 276 , 55 , is considerably longer and stronger than the radius: the olecranon, fig. 275 , 54, is remarkably developed. In Dasypus the radius, fig. 276 ,

54, is but half the length of the ulna: in all Bruta it is free, and rotates on the ulna. The four carpal boncs of the proximal row are distinct from one another.

The scaphoid, il. s, is the smallest of the four bones of the proximal row. The pisiform, p, articulates to the cuneiform, c, and ulna, and extends, palmad, to the lunare, with which it forms a large articular cavity, upon which the palmar patella plays. In some the trapezium, t, is distinct; in others it is connate with the trapezoides. The magnum, m, in most coalesces with the base of the cubical metacarpal of the digitus medins, inI. The outer part of the base of that metacarpal rests upon the unciforme, u, which also supports the small but thick cubical metacarpus of the annularis, iv, and rudiment of the metacarpal of the minimus, v. The medins and annularis have each but two phalanges; the long and slender index retains the normal number of three phalanges; the base of its metacarpal is wedged between that of the third, the trapezoides, and the trapezium. The chief peculiarity is the very large sesamoid bone developed in the flexor tendons, and filling the palmar aspect of the fore-foot: a second sesamoid is attached by ligament to the apex of the large palmar one. An accessory ossicle, x, is wedged into the outer side of the carpus in Dus. gigas. In Das. Peba, fig. 260, there are four digits on the fore-foot, the two middle much exceeding in length and strength the outer and inner ones: the pollex, i, is obsolete. The fenur, figs. 260, 277, 65 , presents a third trochanter. The proximal and distal extremities of the tibia, 66 , and fibula, 67 , are connate: their shafts subsequently coalesce thercwith, so that a single epiphysis answers to the shafts of both bones at each of their extremities, in the immature Armadillos. The navieulare is remarkable for its two inferior tuberosities, the interspace between which receives the under part of the entocıneiform bone. In Das. sex-cinctus it sends downward a process, like that in some Rodents. The calcancum is less pro-
duced in the Chlamyphore, fig. 277, cl, than in the Ninebanded Armadillo, fig. 260. The hind-foot is pentadactyle in all. The chief modification of the limb-bones in the extinct gigantic Armadillos (Glyptodon) relates to the modification of unguiculate feet to the support and terrestrial progression of species too huge for burrowing, and as heavy as the bulky Pachyderms. The ungual phalanges are accordingly obtuse, short, broad, and thick, for being incased in hoof-like nails, and their phalanges are flat bones, presenting the maximum of breadth in proportion to length. In the third trochanter and the anchylosed tibia and fibula the Dasypodoid characteristics are preserved.

The limb-bones of the Orycteropus more resemble those of the Armadillos than of the toothless Anteaters. The acromion

Bones of the hind-limb, Chlamyphore. LXXXVIIr. scapule is less elongate: the entocondyloid process of the humerus is recurved, and widely perforated. The wrist-lones are as in Dasypus, but the pisiform is long and slender. The pollex is reduced to a stunted metacarpal and phalanx, and the hand hats but four claws, of which that of the medius is largest, but less disproportionately so than in Das. gigas. In the hind-limb the femur shows the third trochanter. There is a fabella bchind the outer condyle. The tibia and fibula coalesce at their upper ends, but not below: the hind-foot is pentadactyle.

In the Momis, fig. 153, the spine of the scapula is single, is not prolonged into an acromion, and there are no clavicles: the coracoid is represented by a small distinct tuberele, forming the autcrior extremity of the elliptical glenoid cavity for the humerns. The humerus is perforated at the internal coudyle. There is an articular sesamoid developed on the outer side of the capsule uniting the radius with the humerus. The scaphoid and lunare coalesse. The digitus medius is disproportionately large, and its ungual phalanx is deeply cleft: that of the index and annularis show slightly the same character. These phalanges are so articulated as to admit of flexion, but not of extension, or retraction, heyond the line of the supporting digit. The femur has no third trochanter. There is a fabella belind the outer condylc of the fomur. The bones of the leg retain their distinctuess: the extremity of the fibula beyond the outer malleolus bends inward, and terminates in a tuberosity playing in a cavity upon the outer side of the astragalus. There is an accessory tarsal ussicle on the
inner side of the entocunciform and scaphoid. The ungual phalanx of the hallux is simple; those of the three middle toes are eleft at the apex.

In the Myrmecophaga, fig. 263, the scapula, 51, is very broad, with a sub-circular contomr, and is traversed by two spines, the npper one prolonged as an 'acromion' toward the coracoid, and supporting a small clavicular bone (Myrm. jubata) or joined to a complete clavicle (Myrm. didactyla). The humerus, 53 , is greatly expanded at its distal end, especially by the entocondyloid crest, which is recurved and perforated. The radius, 54 , and ulna are of nearly equal length, the acromion, 55 , has the lower angle produced. The carpus consists of the usual eight boncs, fig. 278, viz. scaphoides s, lunare l, cunciforme c, pisiforme p, which is

produced like a carpal calcaneum. The trapezimı, t, supports a sleuder pollex, i ; the trapezoides, z, a longer and larger index, is; the strong, four-sided, outwardly-ridged metacarpal of the medius, III, rests its base upon the magnum, m, and unciforme, $"$; and is wedged between that of the index, II, and annularis, iv. The minimus, v , which is articulated more to the amnularis than to the unciforme, u, hat but two phalanges, and is clawless. The ungual phalanges are dorsally grooved, not notehed. In the Myrmecophaya didactyla the metacarpal rudiments of the pollex and minimus are hidden beneath the shin: the annularis metacarpal supports a clawless phalanx: the two conspicuous digits are the index and medius, the latter the largest. The femmr, fig. 263,65 , has a crest along its outcr margin: the tibia and fibula, 67, are distinct: the foot is plantigrade and pentadactyle, with a calcanenm long and compressed in the great terrestrial species, but short in the
seansorial didactyle Anteater, in which a supplementary bone on the inner (tibial) side of the tarsus is produced backward to increase the power of the heel in grasping.

In the Ai, fig. 264, the scapula, 51, is broad, and its outer surface is equally divided by the spine, which is short, but continued into an acromion arching to join the coracoid. The supraspinal notch is converted into a formen by the extension of assification from the superior costa to the base of the coracoid. The same characteristics are reproduced in the scapula of the Megathere, fig. 279, 52 , under more massive proportions of these growths for muscular attachments, and with the superaddition of

an inferior pine, as in the Anteater. The elavicle is complete in the Megathere, ib. 58, as in the Two-toed Sloth (Cholop eus): in the $\Lambda \mathrm{i}$ it exists as a short appendage to the acromion. In the small climbing Sloths the length of the prehensile fore-limbs is attained by that proportion of the humerus, fig. 264, 53, and antibrachial bones, 54, 55: both the latter are bent, leaving a wide interosscous space, and are so articulated as to allow of pronation and supination. In the Megathere the humerus is relatively shorter, but thicker, and is enormously expanded at its distal end, fig. 279, 53: the inner condyle is imperforate, as in Bradypus tridactylus: in the Megrifomy, x it is perforated as in the Brad. (Chotrepus) didartylus. The ulna of the Megathere, fig. 279 , 55 , is equally remarkable for the vast expanse of its
proximal end, including the olecranon which is twiee as broad as long, and projects baekward rather than upward. The proximal end of the radius, 54 , is cireular, and its articular modifications are as well adapted for rotatory and flexile movements of the antilraelial bones as in the human arm. The interosseous space is shorter and much narrower relatively than in the Sloths. Of these the Λ i, fig. 280, has the carpus reduced to six bones, the seaphoid being connate with the trapezium, s. t, and the magnum with the trapezoides, m. A rudiment of the metacarpal
 of the pollex, \mathbf{I}, has eoaleseed with that of the index, II, and a rudiment of the metacarpus of the minimus with that of the annularis, x, IV. In the three functional digits the proximal and middle phalanges are confluent, l...2: the ungual ones are of great length, and restricted in their movements, by the production of the back part of their base, to degrees of flexion. The joints of all the digits are deeply trochlear. The bones of the hand of the Unau (Cholopus) are described at 1. 306, fig. 191, 'Sloth.' In the Megathere the wrist has a seapho-trapezium, fig. 191, st, but the trapezoid and magnum are distinet. The pollex is represented by a stunted metaearpal, I : that of the minimus, figs. 191, 279, v , is long and supports one or two short thick phalanges: the second, ir, third, 1II, and fourth, iv, digits are powerfully unguiculate, but the first and second phalanges coalesee only in the medius, 1, 2, iII. The massive metacarpal is squared, firmly attached to the contiguous ones, with the outer angle of the base produced and wedged between that of the annularis, the magnum, and uneiforme. ${ }^{1}$

In the Sloths the femmr, fig. 264, 65, is straight, like the humerus, hut is thicker and shorter; the head shows no impression for a ligamentum teres. The tibia, 66, and fibula, 67, are oppositely bent, leaving a wide interosseous sace, as in the forearm, but are still shorter than their homotypes. The inner malleolus projects backward and supports a grooved process: the lower end of the fibula fits, like a pivot, into a soeket in the

[^111]astragalns. In Brad. tridactylus the calcaneum is remarkably long and compressed. The seaphoid, cuboid, and cuneiform bones have become confluent with each other and the metatarsals, of which the first, \mathbf{r}, and fifth, u, exist only in rudiment. The other three have likewise coaleseed with the proximal phalanges of the toes which they support. In the Brad. didactylus the ento- and meso-cunciform bones, the rudimental metatarsal of the hallux, and the metatarsal of the sceond toe are confluent into one bone: the rudimental motatarsal of the filth toe has not beeome united with that of the fourth toe. The functional toes have long prehensile elaws like those of the fingers; by the peeuliar anklejoint the foot is turned inward, and the advantage in grasping is obtained at the cost of the power of stepping on flat ground.

The Megathere has a pivoted articnlation of the foot with the leg, but the process and the eavity are on reverse parts of the ankle-joint, and the astragalus sends a process to fit a cavity in the tibia. The result, in the inflection of the hind foot, is nearly the same: but an enormous caleancum, fig. 279, $c 7$, and metatarsal of the fifth toe, ib. v, rest broadly on the ground. The lower surface of the astragalus transmits the superineumbent weight in two directions; backward upon the heel-bone and forward upon the metatarse. By the naviculare it is transmitted throngh the cetocuneiforme and the produced angle of the base of the midmetatarsal to the fourth and thenee to the fifth metatarsal. The cuboides receiving the weight from botl astragalus and naviculare transmits it by its procheed forc-part to the base of the fourth metatursal, and partly by that medium, but chiefly by direet articulation, to the side of the fifth metatarsal. The tendency of the cuboides to yield under this pressure and slip back is resisted by the abutment of the calcanenm against its back part. The digitus medins, ib. $\ddot{u ̈}$, was alone developed to sustain and wield a claw; but this was of cnormous size, and must have had the power of a pick when worked by the lever of the long heel-bone. The first and sceond toes were not present, nor was the entocunciform bonc. The two outer toes, iv and v, terminated in tuberous phalanges, evidently imbedded, in the living animal, in a hoof-like thickening of the outer border of the foot. The outer side of the fore-foot presents a similar modification for quasiungulate progression on the ground. Thus the Megathere, My_{y} lodon, and allied great terrestrial Sloths seem to have combined ungulate and unguicnlate characteristics in the same extremity.

The principle of viewing structures and instruments, in reference to the work that they may do, is shown to be goon in gaining in-
sight into the mode of life of extinct animals, in a striking degree through its application to the skeletoins of the Megatherioids. ${ }^{1}$ The teeth of these conform so closely in all elaracters with those of the Sloths as to suggest leaves rather than roots to have been their food. In the light sleuder Sloths the modifications of structure for climbing, clinging, and living altogether in trees, are carried out to an extreme. In the colossal extinct kinds the foliage was obtained in a different way. The huge single claw on the hind foot would be applicable as a pickaxe to clear away the soil from between the ramifieations of the roots: a seeond claw would lave interfered with such work. The foot is organised to give great strength to that claw ; dislocation of its toe is specially guarded against: the rest of the tarso-metatarsal structure relates to the power of the foot to sustain superincumbent pressure, with a position of the elaw bringing its side instead of its point in coutact with the ground. The bones of the thigh and leg are remarkable for their massive proportions, for their thickness, and especially their breadth in proportion to their length : the femur in both Mylodon and Megatherium would rank rather with the 'flat' than the 'long' bones. These osseous columns were uceded to support the huge, heavy, expanded pelvis, fig. 267. The iliae expansions are the ehief conditions of the other characteristics of this part: and they are nuintelligible save in relation to adequate extent of origin of powerful museles, especially those arising from the crista ilii, 62 , the chief of which mnseles concentrate their force upon the fore-limbs. This indicates that these limbs were put to some unusual work; and the inferences from the teeth and the lind elaw lead to its recognition as the pulling down trees and wrenching off their branches: but, for thesc operations, the pelvis must have adequate fixity; and to the weight and strength of itself and its supporting limbs there is added a tail so developed as to serve as a third support and give the pelvis the basis of a tripod. Withont this view of the finction of the hind-parts of the skeleton we can only see that the pelvis is so great and, with its caudal appendage, so weighty as to require the massive proportions and structure of the hindlimbs; and, reciprocally, that these bespeak a proportionate size and weight of the parts to be sustained: but why such developement of sustaining limbs and parts to be supported in reference to any other action and way of life is ineonceivable. The excess of bone in the hind-part of the skeleton once reeognised as relating to the fixed point of attachment of muscular forces working the fore-limbs,--to the exertion of power adequate to prostrate a

[^112]tree,-and the rest of the bony organisation beeomes intelligible. That of the lind-foot has been explained : the coneomitant extent of muscular origin afforded by the broad scapular plate with its many ridges, crests, and processes, is thereby aceounted for. The necessity of the firmness imparted to the shoulder joints ly the perfect elavieles abutting at one end against a large ' manubrium,' at the other end against the conjoined acromion and coracoid, becomes obvious. The fore-foot retained three hinge elaws to effeet an adequate grasp of the trunk or bough : for their due and varied applieation the fore-arm enjoys all the variety and freedom of movements which an arm terminated by a hand possesses. A tree being prostrated and its foliage thus brought within reach, every indication in the skull of the size, strength, flexibility, and prehensile power of the tongne harmonises with the foreguing teleological conclusions. The Megatherioids, like the Giraffe, thus plucked off the foliage on which they fed. In the ridged erowns of the grinders of the Giant Ground-Sloth we discern the power of erushing coarser parts-a greater proportion of twigs and stems, e.g.-of the foliage than the diminutive TreeSloths take. It needed only evidence of the oecasional vecurrence of what might happen to a beast in the fall of a tree which it had uprooted, to seal the foregoing physiological inferences with the stamp of truth: and the skeleton of the Mylodon in the Hunterian Museum ${ }^{1}$ shows that evidence above the right orbit, and at the baek part of the cranium, marked f, fig. 267.
§ 184. Skeleton of Cetacea. - This is characterised by the coarseness and greasiness of the osseous texture, by the shortness of the cervical and the length of the caudal regions, by the loose and diminutive pelvic bones, by the absence of pelvic limbs, and by the large size of the skull, due in most to that of the jaws, which in some Whales (Balcmide, fig. 159, Physeter macrocephalus) is exeessive.
A. Vertebral Column.- Although there is as little outward sign of a neck in a whale as in a fish, the same number of cervical vertebre are present as in the giraffe. The atlas, fig. 283, 1 , is the largest, is characterised by its huge and approximate articular cups, c, for the occipital condyles, and by the substitution of a bypapophysis for the trate ecntrum, which coalesces as an odontoid process with that of the axis: both these vertebre are antero-posteriorly compressed and transversely extended, and the five succeeding cervicals are still shorter in proportion to their height and breadth: they are, in fact, lamelliform, without reciprocal movement, and usnally exhibit a greater or less extent of confluence, the whole
forming one mass like a ' eervical sacrum' in the true Whales (Balana, fig. 159, c), small Cachalots (Euphysetes), the Grampus, ${ }^{2}$ the Porpoise: the neural arches of the axis and following cervicals are confluent in most. The cervicals thus give a firm support to the large head which has to overcome the resistance of the water
 when the swift swimmer is cleaving its course through that element. The characters defining the suececding vertcbre, applicable to comparisons of species and recognition of range of variation, appear to be:-the support of free ribs; the presence of transverse processes formed ehiefly by coalesced pleurapophyses, fig. 141,d; the articulation of hæmapophyses, fig. 282, h, to the centrum, ib. c. Thus, in a large British Dolphin (Delphinus tursio), the skeleton of which I prepared (and to take the bones from the carcase is almost essential to certainty as to
 number of ribs and hæmal arches), there are sixty vertebre. Of the seven cervical the first two only are anchylosed: thirteen vertebre support free ribs suspended to terminally expanded diapophyses, fig. $281, d$; then follow twenty-nine with transverse processes only, as in fig. 141, d : the thirty-third vertebra from the skull first supports a hæmal arch, but in that and the two following vertchre the piers or ' haemapophyses' are small and ununited: the complete arch, as in fig. 282, h, is continued, diminishing, to the last six vertebre, which consist of the centrum only, much depressed. Thus, between the thirteenth dorsal vertebra and the first with homapophyses, there are thirteen which might be termed ' lumbar,' fig. 159, D, c.l, but hold the place of lumbar and sacral in other Mammals (Megatherium, e.g., fig. 279, L, s). A sacrum is never indicated by vertehral confluence in Cetarea, and only obscurely by the position of the pelvic rudiments, fig. 159, 63, 64, loosely suspended below. In the Delph. tursio a metapo-
physis begins to project from the fore part of the diapophysis of the third dorsal, increases in length to the fourth, and is gradually transferred in the sixth and seventh dorsals to the outer side of the prozygapophyses: in the following vertebree it seems to take their place, and to oceasion a reversing of the usual relative position of the zygapophyses; for whereas in the cervical and anterior dorsal vertebre the anterior ones are overlapped, as in other Mammals, by the posterior zygapophyses of antecedent vertebre,--in the succecding dorsals, beginning with the seventh, the posterior zygapophyses seem to be overlapped and concealed by the anterior ones; but the appearance is due to the plaee of the zygapophyses being taken by the metapopliyses. ${ }^{1}$ These latter processes, in fact, continue after the articular surface has ecased to be developed, and after the entire disappearance of the posterior zygapophyses, to project forward from the thirteenth dorsal to the sixth lumbar vertebre inclusive; beyond which the neural areh is devoid of all exogenous processes, save the spine, s, until the middle caudal vertebre, where rudiments of the metapophyses again reappear. There are no anapophyses in the Cetacea.

The four anterior ribs have a head and neck : the rest are suspended by the homologue of the tubercle to the end of the transverse process. The costal cartilages are partially ossified: the first four pairs articulate with the sternum: the original separations of the parts of that bone have disappeared. The first piece or manubrium has an anterior median noteh and two broad lateral processes.

In Delplinus delphis, of the seven eervieal vertebre the first two have become anchylosed together: there are sixty-three other vertebrex, of which the first fifteen bear moveable ribs; thirtythree vertebre have transverse processes without ribs: the fortysecond vertebra from the sknll begins to support hamapophyses: the cight terminal vertebre consist of the centrum ouly, and are much flattencd. The metapophysis begins abruptly, as a long well-marked process, from the fore part of the diapophysis of the fourth dorsal, progressively approximates and attains the outside of the prozygapophysis in the eighth dorsal, performs the function of an articular process as far as the sixth lumbar, clamping, as it were, the sides of the back part of the base of the spine of the antecedent vertebra, disappears in the next dozen lumbar vertebre, and reappears in the candal vertebre at the fore part of the base of the spine. The six anterior pairs of ribs support hamapophyses which unite directly with the sternum.

[^113]YOL. II.
E \mathbf{E}

In the common Porpoise (Phoccena communis) all the cervicals are anchylosed, and the head of the first free rib rests upon their conleseed bodies: there are fifty-six other vertebre, thirteen of which are 'dorsal,' or have moveable ribs. The diapophyses and spines of the lumbo-eaudal vertebre ineline forward. In the Narwhal all the seven ecrvicals are free: the wielding of the horn-like tusk of the male is the condition of their greater freedom of movement in the neek. Beyond the cervieals are fifty-six vertebrex, twelve of which have moveable ribs, and of these six pairs join the sternum. In the Bident Dolphin, or Bottle-nosed Whale (Ilyperoudon bidens), the eervical vertebre have eoalesced with one another: beyond these there are thirty-eight free vertebre, of which only the nine anterior bear moveable ribs: the twenty-second vertebra first bears hremapophyses attached to the under part of the eentrum. The five anterior pairs of ribs articulate with the sternum, which consists of three bones.

In the Balana mysticetus, fig. 159, there are thirteen dorsals; as many vertebre without ribs intervene between these and the first vertebra with hrmapophyses; the rest of the column, this inelusive, eonsists of twenty-two vertebre, the last dozen being reduced to the centrum, which is much depressed, the last two or three eoalesec. The seven eervical, ib. c , are blended into one bone.

In a young or foctal Whale (Balcena austratis) ${ }^{1}$ the cervical neurapophyses of one side are disunited above from those of the other side, as they are from the centrum below: a compressed diapophysis is sent off from the outer side of each; it is shortest and thiekest in the atlas. The third and fourth neurapophyses have coalesced at their upper part on the left side, and those of the last five vertebre have coaleseed on the right side. The eortical portion of the eentrum of the atlas is ossified, and forms a wedge-shaped picee of bone, like the corresponding part in the Ielthyosaurus. The centrums of all the cervicals are connate. In the adult true Whales (Balena), the ecrvieals, fig. 283, 1-7, are distinguishable mainly by the intervals for the passage of the nerves between the neural arehes. In Balcnoptera rostrata, anehylosis does not proceed farther than to unite the atlas with the dentata, and the sixtl with the seventh vertebra. In Bal. boops, Bal. patachonicha, and some other Fin-whales, the atlas retains its individuality. The interval between the lower (pleurapophysial), fig. 283, p, and upper (diapophysial), ib. d, part of the transverse process is wide, often open, and when eireumseribed usually leaves a large foramen. In the seventh eervical the diapophysis, d, alone

[^114]is developed, as a rule, and the head of the first dorsal pleurapophysis abuts against its centrum. The diapophyses progressively elongate in the dorsals, and support the corrcspondingly lengthening ribs. The discoid terminal epiphyses long retain their individuality in Cetacean vertebre, longest in Balana. ${ }^{1}$

The 'breast-bone' in Physeterida consists usually of three sternebers, each ossified from a pair of centres which tardily coalesce, save in the first and largest. Four pairs of ribs directly unite with this sternum, as in Delphinus
 Tursio, in which the sternebers ultimately coalesce into a single bone. In Hyperoodon and Ziphius there are four sterncbers, with a vacuity at the middle of each articulation, and five pairs of ribs articulate with the sternum. The sternum in Whales consists of but one bone, to which is usually connected a single pair of ribs. The articular surfaces for these mark its sides: in the more active Balcenoptera the bone is decply notched in front, produced behind, fig. 284, where it is ridged below. The sternum is short and broad, slield-shaped, in Balena: rhomboid, sometimes with a central perforation, in Kyphobalena, Esch. One or two of the posterior pleurapoplyses are loosely suspended by ligament to the diapophyses of their vertebra in many Delphinida. ${ }^{2}$
B. Skull.-The eranial neural arches con-

Sternum of Balconoptera. tinue to manifest the peculiar proportions which are shown in an exaggcrated degree in the cervical serics. In an advanced foctal Cachalot (Physeter macrocephalus) I find the elements of the epencephalic arch unanchylosed. The lateral margins of the auterior half of the basioccipital are produced and bent obliquely downward. The exoccipitals are much produced and expanded laterally, like the neurapophyses of the atlas in fig. 283, 1 : they are deeply notched below. The superoccipital contributes the upper ends of both condyles; it is in the form of a vertical plate, eonvex from side to side, and developes internally a falciform crest. The superoccipital is overlapped at its lower and lateral

[^115]angles by the exoccipitals, anterior to whieh it attains to the alisphenoids, and is notched externally for the reception of the upper angle of the squamosals. The basisphenoid, a thick hexagonal bone, concave from side to side below, nearly flat above, is anchylosed to the alisphenoids: it is perforated or grooved by the entocarotids, but has no clinoid processes nor sclla turcica. The alisphenoids, perforated near the middle of their base by the foramina ovalia and rotunda, have a thiek quadrate plate on their inner side, forming their cranial surface: they extend into a point anteriorly, and articulate with both the frontal and with the parietal angle of the superoccipital. The neural spine of the parietal vertebra is a thin plate partly detached and partly anchylosed to that of the occipital vertebra: the lower angles are conflnent with the diapophyses, called 'mastoids,' which here, as in other Cetacea, are distinct from the petrosals, and chiefly support the squamosals: these enter a groove of the superoccipital posteriorly, and receive the alisphenoid in a groove anteriorly. The presphenoid and the anchylosed orbitosphenoids form the anterior wall of the cranial cavity, and are perforated by the optic foramina: they articulate with the frontals, sending up a small process into the interspace at the beginning of the frontal suture, which process is impressed by a blind fossa like a small foramen olfactorium on each of its sides: the presphenoid unites with the basisphenoid: the posterior and lateral parts of the orbitosphenoids unite with the alisphenoids: the fore part of the presphenoid is underlapped by the vomer. There is no cribriform plate. The frontal bones are large triangular plates, concave externally, with the outer and fore angle produced into a superorbital process, the channel on the under part of which contraets as it approaches the cranium into a long, deep and narrow groove, which lodged the muscles of the eyeball. The straight median margins of the frontals are thinned off and joined by a squamous frontal suture, the right overlapping the left. The whole posterior and lateral border of the frontal, as far as the junction with the squamosal, presents a broad, oblique, sutural surface, which joins, by overlapping, the contiguous border of the superoccipital. The smooth cerebral surface of the frontals is flat at the middle, arched at the sides, and not impressed by any convolutions. The vomer expands into two aliform processes at its base, which is applied against the presphenoid and orbitosphenoids ; it then becomes subcompressed and smootlly excavated, but much more deeply at the left side, where it forms the inner and posterior boundary of the single
nasal meatus: it again slightly expands, and afterwards is continued, gradually decreasing, to near the anterior end of the premaxillaries: it is canaliculate above, and occupicd by cartilage continued from the coalesced prefrontals. There is no trace of nasal bones. The bone, formed by the coalesced prefrontals, penctrates the posterior part of the groove of the vomer, above which it expands, unequally, into an obtuse prominence rising and inclining to the left side: it is grooved on both sides, and forms the septum of the vertical nasal passage: it is not complicated with turbinal or rhinal capsules, as in the so-called 'ethmoid' of other Mammals. The palatine and pterygoid bones articulate with the sides of the expanded base of the romer: the margins of the canal excavated in the upper surface of the rostral production of the vomer are overlapped by the premaxillaries.

The palatal is a small, triangular bone, thickest anteriorly, thin, produced and bent posteriorly and above: it eommences here by its attachment to the anterior and outer angle of the vomer, bends forward, downward, and inward to circumscribe the nasal meatus, and receives in a groove on its upper and anterior border the palatine prominence of the upper maxillary bone. The whole posterior border of the palatine fits into a groove of the eontiguous border of the pterygoid. The pterygoid, which is double the size of the palatine, extends backward to the basioccipital, articulating in its progress by its expanded npper border with the pre-, basi- and ali-sphenoids: from this border the bone deseends, arching inward toward its fellow, which it joins along the anterior lialf of its extent: the remaining free border is divided from this by a deep notch, and circumscribes the large posterior bony aperture of the nostril.

The maxillary expands from its palatine prominence - the essential point of its suspension-backward, outward, but chiefly forward, where it gradually diminishes to an obtuse point. It contracts a mion posteriorly with the orbitosphenoid and alisphenoid, and very extensively with the frontal. The nasal process of the maxillary is traversed by a large vertical canal. The premaxillaries are applied against the whole inner surface of the maxillaries between them and the vomer. The right extends much farther back than the left. The capacious basin on the npper surface of the skull, whieh lodges the valuable product called 'spermaceti,' is formed by the expanded and concave nasal processes of the premaxillaries and maxillaries, which overlap the frontals : a stout ridge divides the inner concave from the outer sloping surface of this part of the maxillary. The malar bone is
a moderately long and slender piece, bent upon itself at an acute angle. The upper portion, wedged between the maxillary and frontal, is the thickest: the lower and more slender branch is bent downward and backward, cireumseribing the orbit anteriorly and below, and eontinued by ligament or fibro-eartilage to the short obtuse zygomatie process of the temporal. There are no laerymal bones. The anterior two-thirds of the middle and under surface of the maxillary is traversed by a vascular and dental groove: rudiments of teeth hidden and buried in the gum are usually found in this groove. The squamosal is a eomparatively small, but strong and thick triangular bone: the upper angle represents the expanded squamous part in land Mammals, and is artieulated by broad dentated sutural margins to the frontal and exoccipital : its anterior border is grooved for the reception of the alisphenoid: the lower angle is, as it were, truneated, and presents a rough surface for the attachment of the petrotympanic: a short obtuse anterior angle bends forward as the zygomatic process: the under surface presents a smooth shallow eavity for the condyle of the lower jaw ; the inner border of the glenoid surface being produced downward into a slender styliform process. The tympanie, here, as in other Cetacea, presents a peculiar conchoidal shape, and is extremely dense in texture. An outer plate bends over the thicker, seemingly involuted part, like the outer lip of the univalve Pyruta. The ' Eustachian' outlet is at the fore part; and, besides this, may be noted, in Physeter, the ' involute convexity,' with its 'outer' and 'inner' lobe, the 'overarching plate,' and the 'rough tympanic process,' by which it joins and coalesces with the 'petrosal:' this is characterised by a deep fossa. ${ }^{1}$ The condyle of the mandible projects from the posterior part of the base or aseending ramus, which is compressed and produced into a low obtuse coronoid process above, and into a similar angle below: a wide excavation, beginning on the inner side of the ascending ramus, deepens and eontracts into the dental eanal, which enters the substance of the horizontal ramus: a fissure is continued along the inner side of the ramus from this canal, and is the sole indication of a compound structure of the jaw. The vessels and nerves emerge from several formina at the outer side of the ramus, where it is attached by its long symphysis to its fellow: the upper border of the symphysial part of the ramus is excavated by a continnous dental canal or groove, now somewhat resembling that in the upper jaw. The length of the symphysis in the foetal Cachalot is three-fourths that of the rest of the

[^116]ramus. In the adult male the disproportionate growth of this part of the jaw leads to an excess of length of the symphysial part beyond the rest of the ramus. It is coextensive with the dental series, which consists, in each ramus, of twenty-seven teeth, conical or ovoid, according to their state of developement and usage: the smallest teeth are at the two extremes of the series. In the young Cachalot they are eonieal and pointed, but become obtuse by use, whilst progressive growth expands and elongates the base into a fang, whieh then contracts, and is finally solidified and terminated obtusely. The teeth are separated by intervals as broad as themselves. In respect to their mode of implantation they offer a condition intermediate between that of the teeth of the Iehthyosaurus and Grampus, being lodged in a wide and moderately deep groove, imperfeetly divided into soekets, the

septa of which reach only about half-way from the bottom of the groove.

In a foctal Southern Whale (Balena australis), each frontal is a transversely elongated slender triangle, with its base at the frontal suture, which is a thick vertical symphysis, and its apex at the superorbital ridge : the inferior angle of the base rests upon the prefrontals and upon the sides of the expanded base of the vomer. The frontals take a very small share in the formation of the cerebral eavity. Their cranial surface forms a small coneavity at the back part of the base: a lalf-eanal is continued forward from the lower angle of this surface into the nasal eavity. Almost the whole of the upper and outer surface of the frontals is overlapped by the parietals and occipitals, leaving a very narrow exposed transverse strip across the upper part of the skull. The anterior border of each frontal is joined mesially with the nasal,
next with the upper end of the premaxillary, and for the rest of its extent with the maxillary bone, which is continued onward to form the antorbital process.

In the mature Mysticete Whale, of which a side view of the skull (now in the British Museum) is given in fig. 285, the maxillaries, 21 , are disposed each like an expanded arch along the outside of the coextcnded premaxillarics, 22 ; their inferior surface has two facets separated by a longitudinal ridge, to the sides of which the plates of balcen are attached. The premaxillaries are compressed and diverge from each other posteriorly to form the long oval outlet of the nostrils, completed behind by the nasals, which are elongatc, as in the Zeuglodon cetoides: the frontals, e, extend outward to form the roof, 11 , of the small orbit, o; and therewith is coextended the back part of the maxillary, 21^{\prime} : a small ma-
 lar, fig. 159, 26, is articulated to the lacrymal, 73 , the maxillary, 21, and the squamosal, 27 ; the most expanded part of which, fig. 285, 27, forms the articulation for the mandible, ${ }^{29-32}$. The superoccipital, 3 , inclines forward, as it rises, and forms almost the whole upper part of the cranium. The coalesced prefrontals are perforated by the olfactory nerves. The presphenoid is sheathed in the hind part of the canaliculate vomer, 13 ,which extends far forward along the middle of the roof of the mouth. Each mandibular ramus arches outward and forward from the slightly-raised condyle, 29 , to the short, ligamentous symphysis, 32: it is compressed and subtrenchant at both upper and lower margins : a coronoid ridge is feebly marked; there is no ascending ramus. The skill of the whale is more symmetrical than that of toothed Cetarea.

In the section of Delphinida to which the Grampuses and Porpoises belong (Phocana, Cuv.), the facial bears a less proportion to the cranial part of the skull: the latter is broad, elevated, and convex posteriorly. The superoccipital, fig. 286, 3, forms the transverse crest dividing the hinder from the upper
surfaee, where it is met by the frontals, 11 , the overlapped parietals coming into view only at the sides, where they expand into the mastoids, 8. The maxillaries, as they extend backwarl, rise and expand, 21 , covering so much of the frontals, n , as to allow but a narrow strip of these bones to be seen, except where they dilate to form the roof of the orbit. The nasals, 15 , are oblong tubercles set deeply in depressions of the frontal, at the back part of the nostrils, e, e. The premaxillaries, 22 , form the front and sides of these apertures, save at the small portion contributed by the maxillaries at g. The nasal passages descend almost vertically. The malar is flattencd where it helps to form the orbit, and is covered by the maxillary : it sends backward a long. and slender process, which articulates with the zygomatic process of the squamosal, and forms the only lower boundary of the orbit. The bony palate has a deep longitudinal channel on each side in some Dolphins.

In the vertical section of the cranium of the Porpoise, fig. 287, is shown the plane of the occipital foramen, 2 , inclined from below

forward: the proportions of the inner wall of the cranial cavity contributed by the ex- 2 , and super- 3 , occipitals, by the alisphenoid, 6 , the parietal, 7 , the orbitosphenoil, 10 , and the frontal, 11: the small vacuity between the alisphenoid and exoccipital is blocked up by the loosely attached petrosal. The right nasal passage is exposed, showing the proportion of the septum formed liy the vomer, 13, and the coalesced prefrontals, 14 : the vomer extends forward to the middle of the upper jaw, which is chiefly composed of maxillary, 21 , and premaxillary, 22 . The small palatines, 20 , articulate with the vomer and maxillary, and send backward the larger pterygoids, 24 , which form with the vomer the internal or lower nostril, whilst the canal for the long conical larynx is contributed by the pterygoids, 24, and a corresponding descending plate of the basisphenoil, 6 , and basioccipital, 1 . The squamosal is excluded, as in Birds and lower Vertebrates, from the cranial eavity. The prefrontals in the Beluga (Delphin-
apterus) are large, and ascend into view at the back part of the nostrils, where they coalesce with the frontals. The small nasal bones are wedged into an interspace between them and the frontals at the summit of the nasal apertures.

In Hyperoodon the skull is remarkable for the developement of the outer border of each maxillary bone into a broad and lofty vertical crest, and for the backward prolongation of the posterior border of the same bones to the occipital region, where it is developed into what seems to be an occipital crest. In Platanista, the corresponding borders of the maxillary, after rising to the vertex, are reflected forward, converging, so as to overarch like a domed roof the circumnarial part of the skull. In Euphysetes this concave space is divided behind the nostrils by a vertical ridge. Euplysetes simus ${ }^{1}$ shows the opposite extreme to Baløna and Physeter, in the disproportionate shortness of the rostral or 'prenarial' to the cranial or 'postnarial' part of the skull. In Parazipluius the vomer is singularly tumid and dense.

The hyoid arch consists, in Balcnide, of a pair of stylohyals, fig. 288, 38, ligamentously connected with the mastoids, and
 similarly attached by fibrous representatives of ceratohyals, 39 , to the pair of processes at the fore part of the basihyal, 41. This large, broad bone is produced outwardly into a pair of compressed bars, thicker than the stylohyals, and representing the thyrohyals.
C. Bones of Limbs.- The clavicle is absent. The scapula is a flat triangular plate, with one angle truncate to form the glenoid cavity for the humerus, and without the 'spine' along the outer surfacc. In Balena, figs. 159, 289, 51, the triangle is almost equilateral, with the side forming the base rather convex, and the part supporting the truncate angle, l, somewhat produced, forming a 'neck.' The acromion, a, projects forward from the outer part of the neck near the anterior border. In Balenoptera the base is proportionally longer than the other two sides, and forms a more convex border: in Bat. longimana, Rud., the acromion is obsolete, and the coracoid is merely an obtuse production of the fore part of the glenoid cavity. In the Cachalot (Plyseter), the convex base is the shorter side of the triangle, the vertical exceeding the antero-postcrior diameter of the scapula: the acromion is longer and larger than in Balcuide, and there is
a long and slender coracoid. In Euphysetes the triangle is more equilateral, as it is in Ziphius and Hyperoodon. In Delphinida the convex base of the scapula is usually the longest of the three sides : the extension of the bone in the axis of the trunk is remarkable in the Gangetic Dolphin (Platanista), in which the acromion projects mid-way between the anterior basal angle and the glenoid cavity.

The humerus, figs. 159, 289, 53, 290 , a, is remarkably short in proportion to its thickness: the head is large, hemispherical ; bent very slightly out of the axis of the bone; with the outer or radial tuberosity feebly marked in most, rather more strongly in the Cachalots, and forming a deltoid tuberosity: the shaft becomes compressed and expandel toward the distal end, which has two ill-defined, flattened surfaces for syndesmotic junction with the radius and ulna. The latter, ib. 55 , usually sends backward an olecranon; but this is not developed in Platanista, where the ulna is broader and longer than the radius: usually the radius is the larger bone, as in fig. 289, 54: both bones are flattened, shorter than the humerus in Cachalots and Platanists, longer in Whale-bone Whales, Bottle-nose Whales (IIyperoodon Ziphius), Grampuses, Porpoises, Dolphins. The contiguous epiplysses of the humerus and antibrachials first unite with their respective shafts: in an
 old Cachalot and Delphinus Tursio, ${ }^{1}$ the radius and ulna are anchylosed with the humerus, fig. 290, A. In a southern Whale the carpus, fig. 289, 56 , consists of seven ossicles: the first on the radial side answers to the scaphoid and trapezium: the sceond, in D. Tursio, is wedged into a distal eleft between the radius and ulna, and corresponds with the lunare in the Chelonian earpurs and

[^117]that of the Orang: the third is very small, and represents the cunciforme: the pisiforme is separated from it by the junction of the unciforme with the ulna: the unciforme supports the rudiment of the fifth digit and part of that of the fourth: the magnum supports part of the fourth finger and a great part of the third: the trapezoides is moved to the interspace between the third and second digits, but principally supports the latter. The metacarpal of the first digit, in D. Tursio, fig. 290, I, supports one small phalanx : the larger metacarpal of the second digit, in, supports seven phalanges: that of the third, III, supports five phalanges; the metacarpal of the fourth, Iv, two phalanges: the fifth, v , is represented only by a rudimental metacarpal bone.

In the Grampuses, Porpoises, and other Delphinida, the second and third digits are also the longest, with the excessive number of phalanges. The fifth metacarpal articulates nearer to the antibrachium than the others do. In both the Porpoise and Grampus, c. g., it is attached to the ulnar border of the carpus, is broader than long, and supports one or two stumpy phalanges: the first metacarpal is short and slender, but its base is on the distal border of the carpus. In the IHyperoodon there are three carpals in the proximal row, and a second row of four small ossicles in the fibro-cartilaginous matrix. The metacarpal of the pollex supports one phalanx: those of the second and third digits
 have each five phalanges: the fourth metacarpal has three; the fifth, which is the shortest of all, has two phalanges. In the Cachalots and Ziphius, the fourth digit more nearly cquals the third in length: in Balcena mysticetus, fig. 159, iv, it rather exceeds the second, ib. iI, and, like it, the metacarpal supports three phalanges; the third metacarpal, ib. int, having four phalanges, and the fifth, v , two: the first digit is the shortest, and consists of metacarpal ouly. In Plutenista the first metacarpal has two phalanges, the other four each support four $p^{\text {halalanges, }}$ the fingers being of nearly equal length, and more divergent than usual, supporting a fin correspondingly expauded to its free trinncate end.
In some Piked Whales (Bulanoptera) the first digit is obsolete, the third and fourth much longer than the second and fifth. In Bal. longimanu (Kyphobalena, Esch.), the third and fourth each
support a metacarpal and six phalanges. All the digits in the entire Cetacean are enveloped in a common fold of intcgument. The increase of the phalanges of ecrtain digits beyond the number three is a remarkable instance of dcparture from the mammalian type and of affinity with the extinct enaliosaurs and fishes.

In the Delphinidae there are a pair of pelvic bones larger in mates than females, chiefly subserving the origins of the ' ereetores penis' and 'clitoridis'; and which, therefore, I regard as isehial boncs. In a female Hyperoodon 28 fcet long, each ischium was $4 \frac{1}{2}$ inches long, straiglit, subtriedal, 8 lines in diameter. In Balcena mysticetus there is, besides the ischium, fig. 192, 63, a smaller, nore slender and curved ossicle, which, being anterior to it, seems to represent a pubis, ib. 64: the junction of the two bones expands into a surface, representing the acetabulum, to which is ligamentously suspended a bone of similar length to the pubis, but thicker, and expanding, with some flattening, to a transversely cxtended convex surface, like that at the distal end of a chelonian femur ; ib. 65 : to which is suspended a smaller rudiment of a tibia, 66 . This is the simplest condition of the limb, or appendage, of the pelvie areh known in the Mammalian elass. ${ }^{1}$ There is no outward indieation of it in the Whale. The little bones, of the relative size to the rest of the skeleton as shown in fig. 159, p. 280, are suspended beneath the last two lumbar vertebre, whieh may thus be regarded as answering to the sacral in quadrupeds.
§ 185. Skeleton of Sirenia.-In this class of marine Mammals the hind limbs are absent, as in Cetacea, and the pelvie bones, where best developed, as in fig. 292, s, h, retain the size and shape of the small eontiguous eostal arches. The texture of the bones is denser, the neck, though short, is longer than in the Cetacea, and the vertebre are distinct: but the chief differences are found in the relative size and structure of the skull, and in the better developement of the bones of the pectoral limb, the digits of which are not composed of more than the normal mammalian number of phalanges (compare fig. 292 with fig. 159, p. 280). The known existing representatives of the Sirenian order are the Dugongs (Halicore) and the Manatecs (Manatus): the latest extinet form is the edentulous Sirenian, called 'Steller's

[^118]Sea-cow' (Rhytina borealis, Ill.), last obscrved in the arctic seas off the shorcs of Bering's Island: the miocene extinct genus (Halitherium) has left its remains in southern Europe.
A. Vertebral Column.-In the Dugong, fig. 292, there are 7 cervical, c, 19 dorsal, d, and about 26 lumbo-caudal vertcbre, L, S, CD. To the 29th vertebra, counting from the skull, the pelvic arch is suspended, charactcrising it as a sacral one, s , and leaving two lumbars in advance, the transverse processes of which long retain the suture indicative of their pleurapophysial part. The second vertcbra, beyond the sacral, first supports a hæmal arch, and this is continued to the fourteenth and fiftecnth of the caudal scries, which, if counted from the sacrum, would include about twenty-four vcrtebre. Fig. 291 gives the characters of the transitional vertebre bctween the trunk and tail, especially as afforded by modifications of the hæmal arch. In the posterior dorsal vertebre, the pleurapophysis, $p l$, is the sole ossified clement of the hamal arch; it progressively shortcns in the

16 th, 1,17 th, 2 , and 18 th, 3 , vertebre, retaining its mobility; and, in the 19 th, A, it shortens suddenly, bit usually with more extended ossification in the selerous basis of the rib than is shown in the figure. In the vertebræ, в and \mathbf{c}, the pleurapophysis, besides being short, becomes confluent with the centrum, as a 'transverse process,' and characterises them as 'lumbar.' The sclerons or tendinous continuations of the pleurapophyses into the abdominal muscles are indicated by dotted lines. In the vertebra D , the ossification which extends the pleurapophysis, pl, 7, beyond the part, d, representing the transverse process, retains a ligamentous union therewith, and represents the 'ilium:' a
lower ossifieation in the hæmal arch establishes a bony 'hæmapophysis,' h, and represents the ' isehium.' It is ligamentously conneeted at its lower end to its fellow, eompleting by such 'symphysis isehii' the pelvic hæmal areh. In the vertebra, E , the proximal part only of the pleurapophysis is ossified, as in the lumbar series; and this is the ease with the sueeeeding vertebre : but the eentrums exhibit, at their under surfaee, articulations for parts answering to the lower portion, h, of the hamal arch of the vertebra D. The parts in question, $9,10,11, h$, are severally united together by their lower or distal ends, at first ligamentously, but afterwards by coossification, eonstituting inverted bony arehes of the chevron shape, and which are serially homologous with the bony hæmapophyscs, h, of the pelvis, and the sclerous or eartilaginous hæmapophyses of the trunk : they are disloeated from their pleurapophyses and approximated to their eentrums, with a slight horizontal displaeement leading to their partial articulation with that of the vertcbra sueceeding their own (sce fig. 188, p. 299). These læmapophyses, fig. 292, h, (d d, are not developed in the terminal vertebre, the last six of which are represented by horizontally flattened centrums, o, sustaining, as in Cetacea, a horizontal tail-fin.

The ribs of the dorsal vertebre, fig. 292, $p l$, are massive,

pecnliarly so in the Manatees: the first in the Dugong has a long oblique process from the under part of the neck, and a shorter process, terminated by a rough surfaee, from the inner border, two inches from the lower end of the rib. The first three or four pairs of ribs join, by eartilaginous hæmapophyses, the sternum, which consists of two bones and a xiphoid cartilage: the two sterncbers coalesce into a single bone, of the borders of which the eostal articulation oecrpy the middle third. From the third to the sixteenth dorsal, the ribs are of nearly equal length. Many of the succecding ribs have a process from the posterior margin, simulating the costal appendages in Birds. The metapophyses are not developed so as to supersede the prozygapophyses, as in Cetacea. The neural spines are of equal length and similar inclination slightly backward. In the Dugong, fig. 292 c , the atlas has short par- and di- apophyses, and the neural arch is perforated on cach side near its anterior border: in the axis the transverse proeesses are chiefly by diapophyscs. In the fourth cervical, the right process was pierced by the vertebral artery; in the scventh, the left process: the other diapophyses were notched. The centrum of the seventh eervical has a faeet on each side for the first pair of dorsal ribs. The side of the centrum of the first dorsal vertehra bcars two articular facets; one of which is smaller than the other, looks forward, and reeeives a part of the head of that rib which articulates with the preceding vertebra; the other looks backward, and receives a large share of the head of the sceond dorsal rib. The transverse processes are long and strong, and present on their extremity an articular facet which receives the tubercle of the first free or dorsal rib.

In Manatus Americanus the eervieals are also very short, but only four of these eompressed vertebre intcrvene between the axis and the first dorsal: scventeen vertcbre support the moveable ribs, and are followed by about twenty-two lumbo-caudal vertebre: the hromal arch eommencing at the lower interspace between the fourth and fifth of their scries. The pelvic bones are reduced, as in most Cetaceu, to an ischium giving origin to an 'ischio-cavernosal,' and insertion to an 'ischio-eoceygeal' muscle. In a half-grown Manatee I have secn the neurapophyses of the first twenty-nine vertebre still suturally joined to their centrum. But two pairs of ribs join the sternum, which soon becomes a single bonc, with a eostal process on each side of the middle part.

The vertebral eharacters of Rhytiza agrec in the main with those
of existing Sirenia. ${ }^{1}$ Steller assigns to it six eervicals, as in Manatus. Nine pairs of ribs are said to have joined the sternum.
B. Skull.-The faeial or rostral part of the skull, anterior to the orbits, is short, especially so in Manatus, fig. 239, in whieh it slightly descends : in IIalichore, figs. 292, 294, 22 , it is bent down more abruptly: in Rlytint the angle of the upper contour of the rostrum is greater than in Munatus, that of the lower eontour less than in Halichore, exemplifying, as in other parts of the skeleton, an intermediate eharacter. All the skull-bones are massive in Sirenia, and, save in the instances of anchylosis, are somewhat loosely conneeted together. In the Dugong the basioceipital, fig. 294, 1 , is a triradiate bone, the two short rays diverging posteriorly to join the exocripitals, and forming the lower end of each condyle. The exoccipitals, 2 , almost meet above the foramen magnum: they have a short rough paroccipital process. The superoccipital, 3, is early anchylosed to the parietals, which have equally coalesced into a single subquadrate massive bone, fig. 293, 7, with the sides bent down at nearly a riglit angle with the almost flat upper
 part, which is perforated by a 'foramen parietale.' A falciform ridge descends from the inner surface. The hasisphenoid, fig. 294,5 , has eoaleseed with the alisphenoids, which are grooved botli behind and before, not perforated, by the trigeminal nerve. The massive pterygoids are anchyloned to the base of the alisphenoids: the posterior ends of the palatines, which are wedged into the interspace between the ento- and ceto-pterygoid processes, send upward a part which appears in the temporal fossa behind the maxillary. The presphenoid, as a compressed 'rostrum,' is wedged between the lamine of the vomer, and has, coalexced with the confluent orbitosphenoids which it supports. There is no 'sella turcica.' The orbitosphenoids are perforated
by widely separated optic foramina: they are anchylosed with the eoalesced prefroutals, fig. 294, 14. The eribriform plates are lodged in decp, fossix, between which is a crista galli. The frontals, 11 , are not confluent ; their orbital processes extend far forward and outward from the anterior angles: they are excavated below almost to the posterior margin by the rhinal cavity: the median angles of the nasal border are slightly produced, but there is no trace of a suture there marking out the proper nasals. The eranial plate of the frontal forms a small concare surface, not exceeding the depth and thickness of the posterior part of the bone to which it is eonfined. A small part marked off by a fissure from the fore end of the orbital process represents an imperforate lacrymal, fig. 292, f.
The maxillary, fig. 294, 21, is deflected anteriorly; its nasal and malar processes do not meet and circumscribe the great antorbital foramen, but this is closed by the upper end of the malar bone, 26 . The premaxillary, 22, is remarkable for its very large and long deflected alveolar portion, and for its slender nasal portion, fig. 293, c : it is excavated by the deep alveolns of the incisive tusk, i. The squamo-mastoid forms no part of the inner surface of the cerebral carity, but is deeply and smoothly excavated for the lodgement of the dense petro-tympanic. The mastoid part forms a thick rugged process, 8 , wedged between the tympanic, 28 , and paroccipital, 4. The zygomatic parts of both squamosal, 2^{2}, and malar, 26 , form a strong arch. The petrotympanic fits closely the cavity in the squamo-mastoid, and partially closes the vacuity between it, the occipital and sphenoid bones; the tympanic, 28 , describes two-thirds of a circle for the support of the ear-drum, and is less than the dense otic capsule with which it is confluent at both ends. The stapes is an elongate, subcompressed pyramid, with a minute perforation near the base, and an cpiphysis at the apex: the ineus is also long and narrow; the malleus broad and bilobate.

The mandible, figs. 292, 294, 32, is deep in proportion to its length: the coronoid rises with a slight hackward curve: the condyle is small and convex: the aseending ramus has a convex hind border, curving to an advanced feebly-marked angle: be-
tween this and the defleeted symphysial part the lower border is deeply coneave: the soekets for the molar tecth, originally five or six in number, like those in the maxillary, are reduced to two or to one in the old animal: the defleeted symphysis forms a flat oval surface anteriorly, with four or five pairs of small alveoli, in one or more of which may be an abortive ineisor, fig. 160, a, $d i 3$, eovered by the thick horny plate attaehed to the flat rough surface; the dental eanal, beginning in adrance of the ascending ramus, ends by a wide oblique opening from which ehannels diverge on the outside of the defleeted symphysis.

In the Manatee, a large otocrane is also smoothly exeavated in the mastoid, squamosal, and exoceipital bones, to whieh the petrosal elosely fits without coalescence, its posterior surface appearing in the spaee left between the mastoid, super- and exoecipitals. The basi-sphenoid eoalesees with the alisphenoids, prior to eonfluence with the basioeeipital and presphenoid: the latter similarly coalesees with the orbitosphenoids, and is continued, like a rostrum, into the vomerine fissure. I find no distinct nasals anterior to the frontal suture in the new-born Manatee; nor other representatives of them than the small amygdaloid bones, fig. $239,13,13$, articulated to the frontals at the posterior angles of the uasal aperture: this is large, subrhomboid, horizontal. The wide antorbital foramen is entirely surrounded by the maxillary, ib. 26. The suborbital plate of the malar rests upon the platform extending horizontally outward from above the anterior molars, and extends the floor of the orbit an inch beyond the roof, the eyeball resting upon the coneavity of the malar, as on a shelf. The zygoma, ib. 27, is unusually massive. The premaxillaries, ib. 20, in the young Manatee, show a pair of alveoli for abortive incisors: a similar pair impresses the fore part of the mandibular symphysis, and a slight groove extends downward from each. The symphysis is deeply hollowed out behind. The eoronoid is produeed obliquely upward and forward: the angle of the jaw is not marked.

The ossified parts of the hyoid arch are the basihyal, fig. 294, 41, stylohyals, 38 , and the thyrohyals, 43 : the ceratohyal, 40 , is eartilaginous: the arch is smepended to the angles between the mastoid and paroceipital.
C. Bones of the Limbs.-These are limited to the pectoral pair, and their supporting arch is reduced to the seapula, with a short coracoid as a tuberous process. The seapula, fig. 292, 51, is sublongate, recurved, with the eonvex anterior costa continued into the base, with an angle feebly marked in the Manatec. The
posterior costa is concave, deepest in the Dugong. The outer surface has a spine about half the lengtly of the bone, marking off a broad pre-spinal, from a narrow post-spinal fossa: the spine is produced into a slender acromion in the Manatee, not in the Dugong.

The humerus, ib. 53, has the normal mammalian character, thongh of small size, with the head, tuberosities, and deltoid crest, the twisted shaft, the epicondyloid processes and intermediate trochlear articular surface, for synovial articnlation with the coalesced proximal ends of radins, 54, and ulna, i5. The latter developes an obtuse olecranon: the distal ends of the antibrachial bones are extensively united and ultimately by bone. In the Manatee there are six carpals, three in each row: the outermost and largest represents a cunco-pisiform, and articulates with both the ulna and the fifth metacarpal. The trapezium and trapezoides are represented by one bone articulating with the first and second metacarpal: the magnum supports the third, and the nneiforme the fourth and part of the fifth metacarpals. In the Dugong there are but three carpals: the scapho-lunar and eunco-pisiform in the first row, 56 , and a single transversely oblong lone representing the second row, but leaving the major part of the base of the fifth metacarpal to articulate with the cuneiform. The pollex, i, is represcuted by a styliform metacarpal: the other digits have each three phalanges; and most of the ungual ones, in Manatus, support nails. All the limb-bones, like those of the rest of the skeleton in Sirenia, are solid.

The herbivorous Sirenia have not to move far from their favourite localities for food; they eontrast, in that respect, with the Cetacea that pursue a living prey: henee the difference in the specific gravity of the bones, whieh in Sirenia is such as to require an effort on the part of the animal to reach the surface of the water for breathing, but enables them to browse, at ease, the vegetation elothing the bottoms of their seas, estuaries, or rivers. The massiveness of the zygomatic arches in the skull contrasts singularly with the slenderness of those parts in Whales: the pterygoid productions offer a similar difference: the external bony nostril is as remarkable for expanse in Sirenia as for contraction in Cetreea. The movements of the head and jaws, in browsing, call for a flexilility of the short neek in Sirenia, incompratible with the fixation of that part whieh prevails in most Cetrece: the dorso-lumbar vertebre are artieulated by true zygapophyses, not metapophyses. The pleurapophyses are as remarkable for thickness and density in Sircnia, as in similar-sized Cetacea
for slenderness and oily porosity of texture. Although the bones of the pectoral limbs are swathed in skin, the fins project more freely from the trunk, the clbow is better marked; the limb-joints are synovial, not syndesmotic merely, as in Cetacea; and although there are clearer indieations of the digits in the fin of Sireniu, none of the digits have more than three phalanges.
§ 186. Skeleton of Proboscidia.-With the exception of a very small carity in the femur and tibia, a light cancello-reticulate structure occupies the centre of the long bones, which have thick and compact osseous walls. The skull-bones are extensively pneumatic.
-A. Vertebral Column.- In the giant mammal of the land, as in that of the sea, the neck is short, and through loss of length, not of number, of the cervical vertebrex. In the Indian Elephant, fig. 162, the vertebral formula is:-7 cervical, c, 20 dorsal, D , 3 lumbar, 3 sacral, and 31 caudal. Anapophyses are developed from the sixtccuth dorsal, and artieulate with metapophyses from the seventecnth. The same joints are superadded to the ordinary articular proeesses, as far as the last lumbar. Five pairs of ribs directly join the sternum, which consists of four bones. The epiphyses continue detached from the bodies of the vertcbre to nearly full growth.

In a half-grown Elephant, the neurapophyses of the atlas are distinet from the hypapophysis, and united to each other above by suture : the centrum is also distinct, but attached to that of the axis, of whieh it forms the ' odontoid' process. The neurapophyses develope both upper and lower transverse processes, which circumseribe the vertebrarterial foramen. The same is the ease with the neurapophyses of the axis, which blend together above and develope a thick bifurcate spine before coalescing with the centrum. The removal of the terminal epiphyses of the short flat bodies of the other cervicals shows that the mper fourth of the body is contributed by the neurapophyses, the rest by the centrum. In the fifth cervieal vertebra, a short and slender spine is developed from the summit of the neural areh. The antroverted costal part of the transverse process is connate with the parapophysis, and afterwards coalesces with the diapophysis. In the seventh eervical vertebra, the transverse processes consist of diapophyses only. The articular surface for the head of the first free or dorsal rib is formed, half by the neurapophysis, and half by the eentrum. The neural spine has much increased in length, but is slender.

The first dorsal vertebra is remarkable for the strength ar well as the height of the neural spine. The diapophyses are stwrter and thicker than in the neck. The surfaces for the first and
seeond ribs meet at an acute margin below; they are formed as in the preeeding vertebra. In the fourth dorsal vertebra, the spinc is still more remarkable for its height and strength: the vertebral body has a greater antero-posterior thickness, but the anterior and posterior costal surfaees still meet below. A larger proportion of these surfaces is contributed by the neurapophyses. In the ninth dorsal vertebra, the posterior costal surfaces, which are almost exclusively formed by the neurapophyses, are separated by a non-articular tract from the anterior ones.

The sixteenth dorsal vertebra shows only a single pair of eostal surfaees, which are wholly formed by the neurapophyses: the metapoplyses are well developed. In the remaining dorsals the eostal surfaces decrease in size. The first and second ribs are almost straight, and expand to join their short sternal parts: as the ribs lengthen, they preserve their slenderness, and are straighter at their lower halves than usual; the vertebral third is bent, subcylindrieal, and grooved anteriorly. The lumbar diapophyses are short and depressed. The neural spines of the dorso-lumbar series incline backward, gradually decreasing in height, and indicate $n o$ centre of inflexion in the capacious well-ribbed trunk. The thick sides of the three sacrals whieh join the ilia consist of pleurapophyses which eoalesee with both eentrum and neural areh. The neural spine subsides after the seventh or eighth caudal: diapophyses continue to the twelfth, and zygapophyses to the fifteenth: the rest are reduced to the centrum.
B. Skull.-The eranial much exceeds the facial part in size: its upper part forms an expanded dome: but a section, as in fig. 296, shows that the cavity for the brain occupies hut a small proportion of the baek part of the dome's base: the rest being formed by air-sinuses, bounded by plates of bone, extending between the remote outer and inmer ' tables' in the form of sinuous plates so disposed as to give greatest strength with least material. The occipital condyles are small, approximate below, and project baekward from the upper half of the posterior surface of the skull. The occipital slopes as it rises to curve forward to the vertex, and more so in the African than in the Indian speeies. The position of the epencephalic compartment of the eranium, fig. 296, e, the suspension of the malar boue, fig. 295, 26 , in the middle of the zygomatic arch, the size and connections of the premaxillaries, 22 , and their deep and large alveoli for the single pair of incisors, recall characters of Rodentia. The cranial sutures beeome obliterated ; but examination of the skull of a very young Elephant (Indian) lias enabled me to give the following
details:-The basioceipital is notehed behind, and eontributes there the lower ends of the oeeipital condyles: it inereases in thiekness as it advances to form the flat rough surface for junction with the centrum in advance (basisphenoid). There is a rough depression on each side of the under surface for the insertion of the 'recti eapitis antici.' The exoeeipitals form small, inferiorly approximate condyles, fig. 295, 2 , have no preeondyloid foramina, and do not develope paroceipital processes: they meet above to complete the foramen magnum. The superoceipital is mueh expanded, and supports two supplementary bones (interparietals): it is deeply impressed by the insertion of the liga-

mentum nuchre. The basisphenoid las coratesced with the alisphenoids, whieh are separated from their neural spine (parietals, i) by the interealated squamosalk, g. The pterygoid processes are long, meh expanded and exeavated anteriorly, and are perforated at their base. The alixphenoids are perforated by a wide 'foramen ovale.' The barixhenoid when united with the preaphenoid receives air into the cells with whieh the bone, as it acquires vertical extent, is exearated. The vomer retains its charaeter as a vertical plate, fig. 296, 13. The orbitosphenoids have coalesced with each other at their base, and also with the prefrontals (laminæ medix æetlmoidei): they are perforated ly the optie foramina, and notehed posteriorly for the foramen rotundum.

The portions of the olfaetory capsule closing the anterior orifiee of the eranial cavity form extensive 'cribriform' plates. The frontal, fig. 295, 11, is excessively expanded by the air-cells, fig. 296 ; its hind border is convex, its front one concave, and extended outward to form the superorbital ridge. The nasals, 15, are short, triangular, and pmemmatie: they ultimately coalesee with the frontals. The mastoid is confluent with the squamosal, and, bending forward to near the back part of the zygomatic process, cireumseribes the meatus auditorius externus. The tympanic eompletes the inner part of the meatus, eontributes to the back part of the glenoid cavity, and expands into a broad horizontal plate supporting the large ear-drum : it early coalesces with the petrosal. The apex of this bone is grooved by the ento-earotid.

The epencephalie compartment of the cerebral cavity, fig. 296,e, as in Lissencephulu, is wholly belind the pros- and mesencephalie ones: the rhinencephalic compartment is well defined. The 'sella' has slightly-marked clinoid processes. The orbits are continnous with the large temporal fosse. The palatines form the posterior half of the intermolar part of the roof of the mouth, and bound the hinder nostril ; they soon coalesce with the $p^{\text {terygoids and maxillaries, } 21 \text { : these are remarkable for the large }}$ proportional size of their alveolar part, in advance of whieh the bone extends upward to be wedged between the frontal and premaxillary, downward and forward to strengthen the socket of the tusk, and backward to form the anterior pier of the zygomatic arch and the lower part of the orbit. The maxillary is perforated by a large antorbital foramen. The premaxillary, figs. 152, 295,22 , mainly consists of the part which lodges the base of the great tusk: but its ascending portion reaches the frontal, 11, and excludes, as in Rodents, the maxillary from the nasal : the alveolar part is grooved mesially by the long incisive canal. Both maxillary and premaxillary are pnenmatic, fig. 296. The mandible, fig. 295, i, is short, the ascending being as extensive as the horizontal ramus, and being also excavated for the formative alveolus of the succeeding molar. The condyle is small, convex, rising above the coronoid process, which is low and projects obliquely forward. The dental canal is wide in referenee to the unceasing supply of material for the growth of the great molars. The symphysis is short, small, pointed: in some extinct Proboscidians it was excavated for the alveoli of a pair of tusks; and in one aberrant form (Deinotherium) the symphysial tusk-bearing part of the mandible was enlarged, lengthened, and deflected.

The bony nostril, formed by the nasals and premaxillaries, is
small, transversely sub-bilobed, and clevated in position. The rhinal eavity expands as it extends backward to be divided by the vomerine septum, fig. 296, 13. The inferior turbinals are slightly-curved laminx, one on eaeh side the lower border of the ' lamina perpendicularis,' where is the aperture admitting air to the singularly extensive pneumatie strueture of the skull. The lacrymal is a small protuberant imperforate bone, serving chiefly to give attaehment to the tendon of the 'orbicularis palpebrarum.'

From the middle of the stylohyal a slender pointed proeess is sent off at an acute angle. There is no bony ceratohyal. The basiliyal is transversely extended; and articulates at cacli end to a gristly epihyal, and a long bony thyrohyal. The base of the stapes is an oval convex plate, with a marginal groove: one erus is thinner than the other, and it is very slender.

§ C. Bones of the Limbs.-The sectmila of the elephant, figs. $162,297,51$, is second only to that of the Mcgatherioids, fig. 279 , 51 , in the proportion of breadth to length (dorso-liumeral diamcter) : but the margin answering to the 'inferior costa' of antliroputomy, instead of being the longest, as in the Megathere, is the shortest: it is very concave: the 'base' is convex or bent at ahmost a right angle: a thick epiplysis is attached to its border: the spine extends into a short pointed acromion, and, as
in some Rodents, sends down a process: the coracoid is a mere tuberosity : the glenoid cavity is shallow, twice as long as broad : it looks downward, the seapula rising vertically above the humerus.

The humerus, ib. 53, has the great tuberosity extended anteroposteriorly, and rising above the sessile hemispheric head of the bone: the deltoid ridge descends below the middle of the bone: the oceipital groove is deep: the ectocondylar ridge rises straight for ouc-third the length of the humerus, and forms a low angle before subsiding upon the shaft. The distal articular surface is a simple shallow trochlea. The proximal epiphysis is in two parts, one capping the head, the other the great tuberosity: the distal epiphysis is single. The centre of the shaft is almost wholly oceupied by a delieate cancello-reticulate structure.

The antibrachial bones are distinct and cross obliquely, the radius passing in front of the ulna to the imner side of the carpus, as in the Megathere: but the prone position of the fore foot cannot here be changed; for the head of the radius, fig. 297, 55, is wedged between two processes of the ulna, ib. 54, and the expanded distal half has a rough ligamentary union with that bone. The proximal articulation with the humerus is transversely elongate, partly convex and partly concave. The ulna is the larger bone; its olecranon is thick and convex : the proximal epiphysis eovers only this process: the distal one forms the articulation for both radins and carpus. This segment incheles a small seaphoid, fig. 297, s, a larger lunare, 7 , enneiforme, c, and pisiforme, with the usual four bones of the distal row. In the seaphoid, the small surface for the radius is remote from that which joins the trapezium, t, and trapezoides, d. The single surface of the pisiforme las two facets, the smaller of which joins the ulna. The trapezium extends along half the metaearpal of the index. The phalanges, two in the first and three in each of the other four digits, are broad and short, especially the last, which is firmly eneased in the corresponding division of the hoof.

The hind limbs and pelvic arch present opposite proportions to those in the Megatherioids: the skeleton of the extinet Proboscidian leaf-cater, fig. 297, contrasts singularly in this respect with that of the extinet Megatherioid one, fig. 267. To both these giants among land quadrupeds the forests of the primeval world afforded sustenance; but their ways of obtaining it were different, and ealled for preponderance of developement in the lind part of the skeleton in the one, and of the fore part in the other. The pelvis descends vertically at almost a right angle
with the trunk, fig. 162, 62 , the ilia forming with the lumbar series an angle of 120° : the ischium and pubis are short, and form a symphysis, fig. 298, g, the axis of which runs at an angle of 100° with that of the ilium. This bone arches out from its sacral joint almost transversely, the thick rough crista descending with its angle, a, produced to a level with the acetabulum : the anterior or abdominal surface is concave. The ischium, f, has the tuberosity, e, directed dorsad: the pubis shows a pectineal ridge, h. The sciatic notches are midely open: the obturator foramina are smaller than the acetabula, the planes of which incline from the perpendicular about 70°,-a farourable position for transmitting the weight upon the heads of the femora: these, as in the Megathere, have no round ligament, and

Pelvis of the Elephant, front view. the acetabulum is simplified accordingly. In a young Elephant I have observed an accessory pelvic ossicle wedged between the ischium and pubis behind the acetabulum.

The great trochanter does not rise so high as the head of the femur: the small one is alnost obsolete: the post-trochanterian foss is shallow: the shaft, figs. 162, 297, 65 , is straight, simple, and compresed from before backward. The rotular trochlea is subsymmetrical, occnpying one-third of the breadtlo of the distal end: the condyles are divided by a deep popliteal cavity. The proximal epiphysis consists of the part forming the articnlar ball and that forming the trochanter. The medullary artery enters the back part of the lower third of the shaft, and ascends to a very small medullary cavity.

The two proximal articular surfaces of the tilia, ib. 66, are transerscly oval, separated by a conical promincnce: there is a large rough, depression in front of the head of the bone: the middle of the shaft is triedral, the hinder surface is sery concave superiorly. The distal articular surface is semicirenlar, convex behind, and rising cxternally on the shaft to give articulation to the fibula. The medullary artery pases transversely from the back of the shaft forward to a small medullary cavity. The
fibula, 67, retains its distinetness from end to end in the Proboscidian Ungulates. The patella, 66^{\prime}, is slightly convex lengthwise, and eoncave transversely at its articular surface. The bones of the foot are described at p. 309 , fig. 193.
§187. Skeleton of Perissodactyla.-A. Vertebral Column. All the existing, and so far as is known the extinet, speeies of this order have more than nineteen dorso-lumbar vertebre. The Tapir (Tapirus americam, fig. 299) has 7 cervical, 18 dorsal, 5 lumbar, 6 sacral, and 13 eaudal vertebræ. The pleurapophysial part of the transverse process extends forward in the third cervical, and underlaps that of the sccond: the corresponding part of the transverse process progressively expands in the suceeeding

vertebra to the sixth, where it forms a broad hatchet-shaped plate of bone directed downward and a little outward. In the seventh cervical the transverse proeess consists of a diapophysis only, and is therefore imperforate. In the anterior dorsal vertebre the base of the neural arch is perforated on each side by the spinal nerve. In both these and the cervical vertebre the fore part of the centrum is convex, the hind part concave.

The neural spines gain rapidly in height to the third dorsal, and gradually shorten to the eleventh; after which, they increase in fore-and-alt extent, and, from slightly inclining backward, become vertical. Eight pairs of ribs directly join the sternum, which consists of seven bones, with the xiphoid cartilage. The transverse processes of the last two lumbar and first saeral vertebre
are articulated to one another. Only the first two of the anchy. losed sacrals afford articular surfaces to the ilia. Sometimes a coalesced caudal adds a seventh vertebra to the sacrum. The atlas lias a reeurved hypapophysis: its artieular eups are deep: the base of the transverse proeess is twiee perforated by the vertebral artery, the anterior hole opening upon the groove which leads to the foramen in the neural areh common to the vertebral artery and the first spinal nerve.

In the Rhinoceros, fig. 165, the vertebral formula is- 7 cervical c, 19 dorsal D, 3 lumbar, 4 sacral, and 22 eaudal. In the atlas, the hypapophysis developes a process from the lower part of the anterior surface. The neural arch is perforated transversely by the vertebral artery. In the axis the eentrum supports a simple diapophysis, inclining downward and backward. The neural spine is thick, short, tubereulated, and divided by a deep and broad groove into two: the upper part of the spine is prolonged obliquely upward, giving the whole a trifid charaeter. The pleurapophyses, from the fourth to the sixth cervical vertebra inclusive, have the form of broad subquadrate plates: in the seventh the diapophysis only is developed, and the transverse process is eonsequently imperforate. The spine of this vertebra suddenly aequires great increase of length, which continues more gradually to the sccond and third dorsals, beyond which the spines shorten, but gain in antero-posterior extent to the eleventh dorsal, beyond which they continue of the same size, shape, and inclination to the lumbar region. A metapophysis rises in the fourth dorsal from the back of the diapophysis, from which it becomes distinct in the sixteenth dorsal. The diapophysis, which gradually subsides in the dorsal, reappears suddenly in the first lumbar: it becomes shorter in the second; and still more so in the third, in which it is very broad. The lower edge of the diapophysis of the second lumbar articulates with the upper edge of the diapophysis of the third, and the third articulates in the same manner with the first vertebra of the sacrum. The metapophyses are distinct, and are situated on the anterior zygapophyses in the first two lumbars: in the last they have bceome rudimental, and almost obsolete. The centrum is strongly convex anteriorly, and concave behind, in the cervieal vertebra; the dorsals are opisthocorlian in a less degree.

The ribs are slender in proportion to their length, and more curved than in the Elephant. In the first rib the tuberele is large, with a corresponding articular surface: both this and the second are almost straight, beeome expanded distally, and have no
groove on the posterior margin. The twelfth rib is the longest, measuring three feet. In the nincteenth rib the articular surfaces of the head and tubercle are almost confluent, and the shaft decreases in thickness distally : its length is one foot four inches.

In the sacrum the articular surface for the ilium is formed by the first three of the four coalesecd vertebre. The metapophyses are distinct in the first two. The neural spines are long, strong, and tubcrcular at the end; the last curves very much backward. The three intcraticular cartilages between these four vertebre long remain unossified. In the caudal series the neural canal does not extend beyond the seventh vertebra.

The little Hyrax has not fower than twenty-nine, or even thirty, dorso-lumbar vertcbre. In the twenty-two dorsal vertebre of the skelcton of 11 . capensis, ${ }^{1}$ the spines incline toward the thirtcenth, which is vertical, and indicates the centre of motion of that part of the trunk. In their forms and proportions they resemble those of the Rhinoceros. Seven or eight pairs of ribs directly join the sternum, which consists of six bones. The metapophysis commences on the third dorsal, and attains the outside of the zygapophysis on the fifteenth: it exceeds the diapopliysis in length in all the posterior dorsals. In the eighth lumbar vertebrex the diapophyses suddenly acquirc grcat brcadth, and gradually increase in length to the last lumbar; the metapophyses are continued throughout the series. No anapophyses are developed.

The transverse process of the atlas is perforated vertically at its fore part by the vertebral artery, which afterwards perforates the neural arch. The hypapophysis developes a short process. The simple transverse process of the dentata is perforated at its base for the vertebral artery, and the ncural arch is perforated on each side by the second cervical nerve. The plemrapophysial part of the transverse process is much expanded in the third to the sixth cervical vertebre inclusive: I have found it wanting on the left side of the seventh vertebre, but present as a distinct element, or rindimental cervical rib, on the right side, where it completes the foramen for the vertebral artery. The sacro-caudal vertebre are fourteen in number, of which the first three articulate with the ilia, and the four succeeding have transverse processes.

In an extinct S. American Perissodactyle (Mrerauchenia), ${ }^{2}$ the cervical vertehra are remarkable for their length, as the name implies; also for the flattening of the terminal articular surfaces, and the imperforate character of the transverse processes,

[^119]the vertebral artery entering the neural canal and perforating the neurapophysis, lengtliwise. The transverse processes of the last lumbar present each a concave articular surface to corresponding convexities of those of the sacrum. ${ }^{1}$

In the Horse, fig. 300, the vertebral formula is- 7 cervical, 19 dorsal D, 5 lumbar, $a, b, c, d, e, 5$ sacral, $f-l$, and 17 caudal, $p-r$. Eight pairs of ribs directly join the sternum, which consists of seven bones and an censiform cartilage. The neural

arches of the last five cervical vertebra expand above into flattened, subquadrate, horizontal plates of bone, with a rough tubercle in place of a spine: the zygapophyses are unusually large. The perforated transversc process sends a pleurapophysis, z, downward and forward, and a diapophysis, r, backward and outward, in the third to the sixth cervicals inclusive: in the seventl the diapophysial part alone is developed, and is imperforate. The neural spines suddenly and considerably iucrease in length in the first three dorsals, and attain their greatest length

[^120]in the fifth and sixtle, after which they gradually shorten to the thirteenth, and continue of the same length to the last lumbar. The metapophysis, commencing as a tuberosity above the diapophysis, passes gradually from that part to the outer side of the prozygapophysis, which it fimally attains in the seventeenth dorsal vertebra, and continues in the same place throughout the lumbar series. There are 110 anapophyses. The limbar diapophyses are long, broad, and in close juxtaposition; the last presents an articular concavity adapted to a corresponding convexity on the fore part of the diapophysis of the first sacral.

The cervical vertebre, though shorter than in Macrauchenia, are longer than in other Perissodactyles, and rise with an arch to support the head: the joints of the centrums are opisthococlian. In the thind cervical the pleurapophysis is developed below the arterial canal, and extends forward, outward, and downward. The neural spine, u, has subsided to a low rough ridge. The hypapopliysial ridge and tubercle, o, are well marked, as are also the anterior convexity and posterior concavity of the centrum. The inner surface of each neurapophysis is pierecd by a small canal in the same place and direction as that which transmits the vertebral artery in Macrauchenia; but the artery traverses the base of the transverse process in the Horse, as in most other mammals. In the axis the neural spine, k, is a strong but low rugged ridge, which bifureates posteriorly, and subsides upon the zygapophyses. The diapophyses are short and triangular, with their bases perforated by the vertebral artery. A strong ridge on the under part of the centrum leads to the hypapophysis, h. The posterior articular surface of the centrum is deeply cxeavated. In the atlas, c, the anterior articular cavities do not meet below : the diapophysial ridges, a, bent down, forming large concavities: the vertebral artery twice pierces their base, which is also traversed by a canal leading to the neural canal, anterior to which the neural areh is perforated on each side. The hypapophysis developes a strong tubercle.

In the skeleton of a Quagga (Equus Quagga) I have observed 19 dorsal, 6 lumbar, 5 sacral, and 18 caudal vertebre; in that of a Zebra (Eques Zebra), 18 dorsal, 6 lmmbar, 5 sacral, and 17 caudals; whilst in the skeleton of an Ass (Equats Asimus), there were 18 dorsal, 5 lumbar, 5 sacral, and 17 caudal vertebra. The sixth lumbar, fig. $299, f$, becomes the first sacral by coalescence.
B. Skull.-Some common characters of this part of the skeleton in Perissodactyles are given at pp. 283, 284. In the Malayan Tapir (Tapirus indicus), the paroccipitals are compressed and
slightly incurved: they are strengthened by a long post-tympanie proeess, developed from the squamosal and articulated to the fore part of the base of the paroceipital, so as to circumscribe a space occupied by the true mastoid whieh is confluent with the petrosal. One or two vaeuities are left in this space for the exit of veins. The post-glenoid process is much devcloped. The base of the pterygoid process is perforated lengthwise by the ectocarotid; the apex is slightly reeurved, and unites with the palatine by a squamous suture. The entopterygoids are thin, small, curved lamelle applied to the inner side of the base of the pterygoid processes, and uniting with each other below, and elcar of, the presphenoid. The major part of the palatine enters into the formation of the large
 oblique hinder aperture of the nasal passages : the smaller anterior division completes the bony palate whieh terminates behind between the first and seeond true molar. The laerymal eanal commenees by two distinet orifiees. The bases of the nasal bones are deeply grooved, and artieulate with the frontals parallel with the baek part of the orbit. There is no superorbital foramen or canal. The premaxillaries terminate behind at a eonsiderable distanee from the elevated nasals. In the Ameriean Tapir (Tapirus Americenus), fig. 301, the superoceipital is narrower and more deeply exeavated than in the Malayan Tapir: a smaller proportion of the petromastoid is visible between the cxoceipital and squamosal, g : the frontals, 11 , are less expanded and less elevated above the nasals, 15 . The petromastoids fit, but not elosely, the vaeuities on each side the basioeeipital. In the cranial cavity the rhinencephalie fossa is well defined.

In the (Sumatran) Rhinoceros, a smaller proportion of the palatine bones enters into the formation of the bony palate than in the Tapir; they ehiefly form the sides of the hinder nasal aperture, the anterior boundary of whieh is opposite the first true molars. The pterygoid proeesses are perforated at their base, lengthwisc, by the eetoearotid arteries. The nasofiontal suture is in advanee of the orbits. The postglenoid process is long, subtrihedal, and obtuse: the post-tympanic proeess takes the place of the mastoid and is here a strong quadrate process rol. II.
applied to the base of the paroccipital. The orbits are very obscurely marked off from the temporal fosser: there is no postorbital process. The lacrymal canal commences by two apcrtures defended by a rough protuberance of the laerymal bone. There is a well-developed pit for the origin of the inferior oblique. The premaxillaries are small and do not join the nasals. The air-sinuses extend from the frontals to the superoccipital ridge.

In the Indian Rhinoceros (Rhinoceros Indicus, fig. 302), the bones, $3,7,11,15$, forming the expanded neural spines of the
 cranial vcrtebre, are so curved, that the summit of the superoccipital, 3 , and the eentre of the nasals, 15 , form the two pillars from whieh are suspended the parietals, 7 , and frontals, 11 , forming an inverted areh. The highest part of the nasals shows the rough flattened surfaee for the attaelment of the horn: from whieh part they eurve downward, ending pointedly. The premaxillaries, 29 , are small, support a pair of ineisors, artieulate with each other and the maxillaries, and terminate remotely from the nasals. In the African two-horned Rhinoceroses, the premaxillarics are almost obsolete, and usually edentulous in the adult.

In eertain extinet Rhinocernces the septum narium was partially (Rh. leptorhinus) ${ }^{1}$ or wholly (Rh.tichorrhinus) ossified. The articulation between the basi- and pre-sphenoids long remains. There is no interparietal. The entopterygoid swells into a tuberosity, and overlaps the palato-pterygoid suture.

In the IIyrax the elements of the occipital bone are late in coaleseing. I have seen an interparietal wedged into the baek part of the sagittal suture, and also the upper half of the superoceipital detached from the rest. The ascending process of the malar artieulates witlo the postorbital process whieh is formed by both the parietal and frontal boncs. The tympanic, which forms the bulla ossea at the hasis eranii, has not eoaleseed with the petrosal. The hinder halves of the palatines enter into
the formation of the palato-nares. The laerymal canal commences by one or two foramina, defended by a proeess. The maxillary forms the floor of the orbit, as in the Rhinoceros and Tapir; but the premaxillaries join the nasals. The lower jaw, 7, is remarkable for the baekward expanse of the aseending ramus. The coronoid proeess is perforated lengthwise at its base.

If the equine skull, fig. 303, be compared with that of the Rhinoeeros, the basioceipital will be seen to be narrower and more convex. The mastoid, 8 , intervenes, as a tuberous process, between the post-tympanie and paroccipital proeesses, clearly indicating the true nature of the post-tympanic in the Rhinoceros; the Tapir shows an intermediate eondition of the mastoid

between the Rhinoeeros and IIorse. The latter differs from both the Tapir and Rhinoceros in the outward production of the roof of the orbit and the completion of the bony frame of that carity bchind by the junetion of the postorlital process, $1,2, c$, with the zygoma, r : Equus resembles Macrauchemia in this partieular. The temporal fossa, 7 , is small in proportion to the length of the skull: the base of the postorbital process is perforated by a superorbital foramen, b : the lacrymal canal begins by a single foramon. The premaxillaries, 22 , extend to the nasal., 15 , and shut out the maxillaries, 21 , from the anterior aperture of the nostrils. The chief marks of affinity to other Perissodactyles are seen in the shape, size, and formation of the posterior aperture of the nostrils, the major part of which is bounded by the palatine bones,
of which only a small portion enters into the formation of the bony palate, which terminates behind opposite the interspace between the penultimate and last molars. A narrow groove divides the palato-pterygoid process from the socket of the last molar, as in the Tapir and Rhinoceros. The pterygoid process has but little antero-posterior extent: its base is perforated by the ectocarotid. The entopterygoids are thin plates applied like splints over the inner side of the squamous suture between the pterygoid processes of the palatines and alisphenoids. The postglenoid process is less developed than in the Tapir. The Eustachian process of the petro-tympanic is long and styliform. There is an anterior condyloid foramen, and a wide ' fissura lacera.' The broad and convex bases of the nasals, fig. $304,8,8$, articulate with the frontals, f, a little belind the anterior boundary of the orbits. The space between the incisors and molars is of greater extent than in the Tapir, fig. 301: a long diastema is not, however, peculiar to the Horse, and, although it allows the application of the bit, that application depends rather upon the general nature of the Horse, and its consequent susceptibility to be broken in, than upon a particular structure which it possesses in common with many other Herbivora. The air-cells do not extend farther back than the fore part of the frontals above the cranial cavity, and of the basisphenoid beneath. Ossification extends into the base of the tentorium and its continuation into the falx. The upper boundary of the rhinencephalic fossa is much developed.

There is a foramen, fig. 303, 9 , in the premaxillary suture.
The zygoma, fig. 303, r, is chicfly formed by the squamosal, s.

The malar extends upon the face, beneath the lacrymal, in advance of the orbit. The ascending ramus of the mandible has a convex lind border curving from the condyle, 20 , to beneath the last alveolus, where it ends by a slight projection below the inferior border of the horizontal ramus. The coronoid process, 19, is long, narrow, and recurved.

The stylohyals, fig. 305, st. h, long and rib-like, articulate by a rounded 'head' to the petromastoid; expranding beyond this, to form a sort of ' tubercle,' and continued, slightly contracting, to the short epiliyal, ϵ, p, h; by means of which they articulate with the ceratohyals, c, h; which unite with the basilyal, h, h, where this is joined to the thyrohyals, h, b. The basihyal supports a glossohyal, g, h. The homology of the thyrohyals with the ceratobranchials in Fishes and Batrachia is illustrated by the figures b, $h b$, introduced (reversed) in the same cut.

C. Bones of the Limbs.--These are chiefly modified in their

 proportions with refcrenee to dcgree of swiftuess of coursc in the different species: which have diverged, in this respect, from the old tertiary type as excmplified by the Palmothere, in two directions, the extremes of whiel arc now shown in the Rhinoeeros, fig. 165, and the Horse, fig. 300 . The segments farthest from the trunk are the seats of elief varicty, and here the elongation and attcnuation of the bone is attended with suppression of certain of the digits.The seapula is long in proportion to its breadtly, and most so in the Horse, fig. 300, 51 : the anterior angle is largely rounded off : the spine developes no aeromion, but gradually subsides as it approaches the neck of the scapula: it is situated nearce the hind border in the Tapir (fig. 299, 51), nearcr the front border in the Horse, with coneomitant differences in the areas of the supra- and infra-spinal fosse : in the Rhinoeeros it cqually biseets the bladebone, and is most prominent at its upper third. The coraeoid is a mere tubcrosity in all. The front border or 'eosta,' in the Tapir, has a wide and deep notch. Macrauchenia differs most from other Pcrissodactyles in the continuation of the spine, without loss of height, to the neck of the seapula, above whieh it forms a slightly produced angle and is perforated.

In the Rhinoeeros, fig. 165, the humcrus is remarkable for the strength of the tuberosities and deltoid ridge, and for the smooth basal surfaees between the tuberosities and on the outside of the external one. The medullary artery enters the back part of the bone, and proeceds obliquely forward and downward. In the radius, the surface for the ulua extends along the baek part of the ridge bounding that for the humerus. The two antibrachial bones interloek at their distal ends by reciprocally adapted cavities and tuberosities. The usual eight bones are prescnt in the earpus : but the trapezium does not support a digit, and the unciforme is small and has ouly the digit answering to the fourth: this, with the medius and index, being alone developed in the Rhinoeeros. The ilia are massive, short, and less expanded than in the Elcphant, subvertieal in position, coneave anteriorly, and also behind in the transverse direetion. The terminal angle of thic rough thick erest is bifureate. The ischia are relatively longer than in the Elephant, with thiek outwardly-bent tuberositics. The ischio-pubic symphysis is prominent. The lumboiliac angle is 125°

The head of the femur is impressed by a deep semicircular pit at its margin. The third trochanter, fig. 165, 65 , is a remarkable
feature, from its great size and forward eurvature. Ossification sometimes extends from the great trochanter to the third trochanter. The rotular surface is distinct from those on the condyles. The inner wall of the trochlear surface for the patella is thicker, more prominent, and is prolonged farther up the shaft of the femur than the outer wall is; the condyles are nearly of the same length. The medullary canal commences at the baek part in the upper half of the shaft, and inclines forward and downward. The bones of the hiud-foot are explained at p. 309, fig. 193.

In the Tapir, the intercondyloid part of the humerus, fig. 299, 53 , is perforated, as it is likewise in the IIyrax. I have found the radius, 54 , and ulna, 55, partially anchylosed at their distal ends in the Malayan Tapir, and have observed their distal epiphyses to coalesce with each other before uniting with their respeetive shafts. The carpus resembles that in Rhinoceros; but the unciforme is rather larger, and supports the metacarpal of a fifth, as well as of a fourth digit. The first or trapezial digit is absent, and the one articulated to the magnum, answering to the third, is the largest and of symmetrical shape, the whole fore-foot plainly showing the perissodactyle type, though with four toes. The little Hyrax and an extinct hornless Rhinoceros (Acerotherium) have a similar unsymmetrically tetradactyle fore-foot. That of the Macrauchenicu was tridactyle. The expanded part of the ilinm of the Tapir, ib. 62, is an oblong quadrate plate with the upper and hinder angle articulating with the sacrum. The canal for the medullary artery of the femur, which begins near the small trochanter, extends downward to a small medullary cavity at the middle of the shaft, 65 ; which is longer than that of the tibia, 66 . The bones of the hind-foot closely resemble those of the Rhinoceros, forming the same number of toes: the heelbone, d, is more prominent.

In fig. 190, 'bones of the fore-limb of the Horse,' the suprascapular cartilage is ossificd and confluent with the base of the scapula, $g: o$ is the infraspinal fossa, p the supraspinal fossa, i the prominent and thickened part of the spine, h the neck, m the anterior border or 'costa,' l the posterior 'costa;' the line from n to n marks the base of the scapula snpporting the supraseapula; k is the coracoid protuberance. In the humerus, a is the shaft of the bone, b the lower part of the deltoid ridge where the 'teres major ' is inserted, e is the great tuberosity which is grooved by the tendon of the biceps, f is the ' neek.' The proximal epiphysis of the young bone forms both the head and the tuberosity. At
the distal end, k marks the trochlear surface for the radius, the fore part of which bone, o, passes into the depression l, when fully flexed: k is the inner condyle, i the outer condyle; m the posterior fossa for the olecranon, when the antibrachium is extended. The ulna, represented by its olceranon, s, and upper part of the slaft, u, coalesces by the latter, in aged Horses, with the radius: it presents a small articular surface, t, for the humerus. The radius and ulna coalesee in Macrauchenia. The equine carpus includes, in the proximal row, the scaphoid w, lunare x, cuneiforme y, and pisiforme z, which latter is large and prominent. The os maguum, 2 , in the second series of earpal bones is remarkable for its great breadth, corresponding to the cnormous developement of the metacarpal bone of the middle toe, 4, 5, which forms the chief part of the foot. Splint-shaped rudiments of the metacarpals, answering to the sceond and fourth, 6 , of the pentadactyle foot, are articulated respectively to the trapezoides and the reduced homologue of the unciforme, 3. The miocene Hipparion retained stunted hoofs supported by the sceond and fourth digits of the fore-foot, as in the hind-foot, fig. 194: but all modern and existing representatives of the genus Equus have the digital developement concentrated on the medius: of which, in fig. 190, 12-13 shows the proximal phalanx, called in Hippotomy the 'great pastern'; 14-15, the middle phalanx, ealled the 'small pastern'; 16, the ungual plataux, called the 'coffinbone': 11 and 17 are 'sesamoids,' the latter being called the ' nutbone.'

The ilium of the IIorse, fig. 300, 62, is longer and less expanded superiorly than in the Tapir; but it articulates by the eorresponding part to the sacrum, which renders it hammershaped. The femur is characterized by the partial dirision of the great trochanter, and, as in other Perissodactyles, has the third trochanter. The medullary artery enters the middle of the shaft at its postero-internal side, and inclines slightly upward. In fig. 195, a is the shaft, b the ' neck,' c the head; $d d$, the great trochanter, of which the upper division is called 'the spoke;' f is the 'third trochanter,' g marks the place of a deep fossa giving origin to the gastrocnemius externus, h is the outer condyle. In the tibia, $s-w$ is the protuberance and ridge for the rotular ligament, v the articular liead of the bone, u the outer concavity. The distal end is excavated by a decp oblique double trochlear eavity for the astragalus, 5 . The fibula is represented by its head, 1 , and a slender styliform portion of the shaft, ending in a point, at 2. There is no representative of the distal end, as in Macrauchenia
and the Ruminants. The bones of the foot are described at p. 308, fig. 193 (Horse).

The astragalus shows the extreme perissodactyle modifieation by the depth and obliquity of the superior trochlea, and by the extensive and undivided anterior surface, which is almost entirely appropriated by the naviculare: the eetocuneiforme, which is the homotype of the magnum in the earpus, is equally remarkable for its large size, since it supports that metatarsal, answering to the middle one in pentadaetyle quadrupeds, which eonstitutes the chief part of the hind-foot in the Horse.
§ 188. Skeleton of Artiodaetyla.- Some of the common osteological characters of this order, with the genera representing it, are given at pp. 285, 286.
A. Vertebral Column. - In the Hippopotamus, fig. 306, the

vertebral formula is:- 7 cervical, 15 dorsal, 4 lumbar, 6 sacral, 16 eaudal. The pleurapophysial parts of the transverse processes of the third to the sixth cervical inclusive develope hatchetshaped plates, progressively increasing in size, which overlap each other. The sceond and third eervicals have bituberculate hypapophyses. The transverse processes of all the cervicals are perforated by the vertebral arteries. The ncural spines elongate from the third to the seventh cervical, c. Six pairs of ribs directly join the sternum, which consists of five bones and a broad ensiform cartilage. A metapophysial ridge is developed above the diapophyses of the eightl dorsal, changes its position and shape with increase of size in the two succeeding vertebre, in the eleventh projects forward from above the prozygapophysis,
and so continues throughout the rest of the dorsal and the lumbar series. There are no anapophyses, but a broad plate is developed from the baek part of cach transverse process of the last lumbar, which presents an articular convexity for a corresponding concavity on the fore part of each transverse process of the first sacral vertebra.

In the Peceari (Dicotyles), the vertebral formula is:-7 cervical, 14 dorsal, 5 lumbar, 5 sacral, and 6 caudal. The axis vertebra has a short pointed diapoplysis: the third vertebra has a pleurapophysial lamclla coextensive with the centrum. The corresponding lamella inereases in the fourth, the fifth, and very remarkably in the sixth cervical, and they overlap each other. The bony plate between the anterior zygapophysis and diapophysis is perforated by the spinal nerve in the last four cervical vertcbre: the third and fourth terminate above in a large platform of bone supported by vertical neurapophysial walls, without a neural spine; in the fifth a neural spine is developed, and the spine progressively increases in length and inelines forward in the sixth and seventh cervicals. The neural spines of the first and second dorsals are vertical, and as long as the plcurapophyses of the same vertebre. The succeeding dorsal spines gradually diminish in length and ineline backward to the twelfth, which is short and vertieal. The metapophyses begin to be developed at the third dorsal, and increase in length to the eleventh, after which they rise upon the zygapophyses. The neural arches of all the dorsal vertebre are directly perforated by the spinal nerves, and the base of the diapophysis is vertically perforated. The diapophysis of the fourteenth dorsal vertebra begins to show the increase of size which characterizes the lumbar series. Seven pairs of ribs direetly articulate with the sternum, which eonsists of six bones.

In the IIog (Sus Scrofa), the vertebral formula is : -7 eervical, 13 dorsal, 6 lumbar, 4 sacral, and 23 caudal, with varietics, ehicfly depending on the number of moveable ribs devcloped in the domestic breeds. The fifth and sixth cervical vertebre are remarkable for the great expanse of the lameliform, overlapping, aud downwardly dirceted eostal parts of the transverse processes, and the seventh cervical for the absence of the pleurapophysis and the sudden increase in the length of the neural spine. This is far surpassed by the spincs of the anterior dorsal vertcbre; after which those processes progressively decrease in height to the last three dorsals, where they gain in antero-posterior extent: the vertieality of the spiue of the eleventh dorsal indieates the
centre of motion of the trunk. The dorsal neurapophyses are directly perforated by the spinal nerves, and a bar of bone conneets the end of the diapophysis with the lind part of the centrum, circumscribing a vertical perforation on each side. The metapophysis commences as a tuberosity upon the diapophysis of the middle dorsal vertebræ, projects forward midway between the di- and prozyg-apophyses in the tenth, passes upon the prozygapophyses of the eleventh dorsal, and is continued in that position throughout the lumbar series. There are no anapophyses.

In the Dromelary, fig. 307, and Camel (Comelus bactrianus), the vertebral formula is: -7 cervical, 12 dorsal, 7 lumbar, 4 sacral, and 18 eaudal. Seven pairs of ribs articulate directly with the sternum, which consists of six bones, the last being greatly expanded and protuberant below, where it supports the peetoral callosity in the living animal. The eervical region is remarkable for its length and flexuosity; the vertebre are opisthocolian, but resemble those of Macrauchenia in the absence of the perforation for the vertebral artery in the transverse proces., with the exception of the atlas; that artery, in the succeeding cervicals, enters the back part of the neural eanal, and perforates oblicquely
the fore part of the base of the neurapophysis, as shown in the longitudinal section, fig. 308. ${ }^{1}$ The eostal part of the transverse process is large and lamelliform in the fourth to the sixth eervieal vertebre inclusive: in the seventh it is a short protuberance: in this eervieal the neural spinc becomes conspicuous. The metapophysial tubcrele is developed from the diapophysis in the eleven anterior dorsal vertebre, and passes upon the zygapophysis in the twelfth, eontinuing in that position throughout the lumbar serics. There are no anapophyses. The spinous process in the first dorsal suddenly exceeds in length that of the last cervical, and increases in length to the third dorsal; from this to the twelfth dorsal the summits of the spines are on almost the same horizontal line, and are expanded and obtuse above, sustaining the sulstance of the hump (Dromedary) or humps (Camel); the spines of the lumbar vertebre progressively deerease in length. The diapophyses of the last six lumbar vertebra are very long: those of the last lumbar do not articulate, in the Cametide or in any Ruminant, with the sacrum.

In the Llama (Auchenia) the last sterneber is not so expanded as in the Camel: the vertebral formula is the same: the fifth lumbar has the largest spine: the cervicals, besides having imperforate transverse proeesses, resemble those of Macrauchenia in the flatness of the terminal articular surfaees, and the neek is habitually less bent down than in the Camels.

In the Musk-deer (Moschus moschiferus), the vertebral formula is : -7 cervieal, 14 dorsal, 5 lumbar, 5 saeral, and 6 caudal. The atlas has a hypapophysis, but no neural spine. The transverse process is a broad thin plate coextensive with the length of the vertebra: it is perforated transversely from the neural canal outward to beneath its base, for the exit of the nerve, and then vertically, by the vertebral artery, which also perforates the neural areh. The axis has a sharp hypapophysial ridge extending from below the base of the odontoid process to beyond the posterior surface of the centrum, where it underlaps the next vertebra. A similar ridge and lackwardly produced process are developed from the two suceceding cervieals, beyond which the ridge gradually subsides to the seventh vertebra. From the third to the sixth cervieal inelusive, the pleurapophysial part of the transverse

[^121]process equals or exceeds the length of the vertebra, and those parts are arranged so as to overlap each other. There is a distinct, but less extensive diapophysial portion projecting external to the vertebrarterial canal: this part alone represents the transverse process in the seventh cervical. The spines of the third and seventh eervical vertebre are vertical, those of the intermediate ones incline forward. The spines of the anterior dorsal vertebre are remarkable for their height, those of the postcrior dorsal and of the lumbar vertebree for their antero-posterior extent, the anterior angle being produced forward and overlapping the spine in advance. A distinct metapophysis begins to be developed from the second dorsal, and attains its greatest length on the twelfth. There are no anapophyses. The notehes for the nerves increase in depth as the vertebre recede in position,

and in the last dorsal the neural arcl is eompletely perforated by these, which is likewise the case in most of the lumbar vertcbra. Eight pairs of ribs directly articulate with the sternum, which eonsists of seven bones. The tubercle disappears from the penultimate pair of ribs, and the diapophysis is redueed to a short rough tuberosity; but in the last pair the costal tubercle with its articular surface reappears, and the diapophysis resumes its normal size and articulation with the rib. In the first lumbar vertebra the diapophysis suddenly increases in length and breadth, and is probably augmented by the ossified and eoaleseed beginning of a rib.

In the common Ox (Bos Taurus, fig. 309), the vertebral for-
mula is:--7 cervical, 13 dorsal, 6 lumbar, 5 sacral, and 21 caudal. The spines of the cervical are short, save in the last, and they incline to that of the third cervical, as the centre of the movements of the neck: these are facilitated by the ball-and-socket articulations of the bodies, common to the true Ruminants with most other Ungulates. The neural spine is longest in the third and fourth dorsals, whence the spiues gradually shorten to the tenth : the metapophysis passes from the diapophysis to the zygapophysis in the tenth, eleventh, and twelfth dorsals. In the first lumbar the diapophysis exchanges its short, thickened, obtuse shape for a long, broad, vertically compressed plate: these processes increase in length to the fourth lumbar. The foramina for the spinal nerves directly perforate the neurapophyses of the dorsal vertebre; they escape by conjugational foramina at the interspaces of the lumbar vertebre.

The European Bison has 14 dorsal and 5 lumbar vertebre, the American Bison has 15 dorsal and 4 lumbar, and this is the extreme reached, in the Ruminant order, of moveable pairs of ribs, equalling in number those of the Hippopotamus. The ribs are more slender in Bison than in Bos.

In the Roan Antelope (Antilope equina), the vertebral formula is:-7 cervical, 14 dorsal, 6 lumbar, 4 sacral, and 14 caudal. The atlas and dentata send out strong diapophyses: from that of the third cervical a broad pleurapophysial ridge extends forward and underlaps the diapophysis of the axis: a similar structure is presented by the fourth and fifth cervicals, and in the sixtlo the pleurapophysis forms a broad subquadrate plate extending downward and a little outward. This element is absent in the transverse proeess of the seventh vertebra, which is imperforate. The dorsal spines begin progressively to shorten from the firth; that of the thirteenth is vertical, and indicates the centre of motion of the rrunk. A metapophysis is developed from the front of the diapopliysis of the sccond to the ninth dorsal vertebre inclusive, where it begins to be transferred to the anterior zygapophysis, from which it extends in the last four dorsals and in all the lumbar vertebra. There is a slort anapophysis in the last two dorsals, but not in any of the lumbar vertebre. Nine pairs of ribs directly join the sternum, which consists of eight bones and the xiphoid cartilage.

These characters are found in the vertebral column of most Antelopes.

In the Wild Sheep of Thibet (Ovis Nahura), as in the English domestic Ovis Aries, the vertebral formula is:-7 cervical, 13
dorsal, 7 lumbar, 4 sacral, 10 caudal, the latter being subject to variety. The pleurapophysial parts of the transverse processes of the third, fourth, and fifth cervieals underlap the diapophysial parts of those in advance: the pleurapophysis of the sixth cervical is an oblong quadrate plate; the seventh is imperforate, as in Ruminants gencrally. The neural spines inerease in leight from the third to the seventh cervical, and are suddenly and greatly

surpassed in height by those of the anterior dorsals. The metapophysis is developed on the second and suceeeding dorsals; attains the anterior zygapophysis in the eleventh; and projects from that part in all the lumbar vertebra. The last pair of ribs are joined by the head, only, to the vertebra: the seven auterior pairs direetly join the sternum, which ennsists of six hones.

The Giraffe is, in some respeets, intermediate between the
'hollow-horned' and 'solid-horned ' Ruminants, though partaking more of the nature of the Deer.

In the Nubian Giraffe (Camelopardulis Giraffa, fig. 310), the vertebral formula is: -7 cervical, 14 dorsal, 5 lumbar, 4 sacral, and 20 caudal. The vertebral artery perforates the fore part of the neurapophysis of the atlas twice, vertically and transversely: the atlas las a hypapophysis: this process in the dentata is a long thin ridge : the upper and fore part of the transverse proeess is perforated by the vertebral artcry in this and the sueceeding cervieals: a pair of exogenous proeesses is developed from the

under and fore part of the body in the thind to the seventh cervical inclusive: the second to the sixth are remarkable for thicir length and almost want of neural spines: the short one of the seventl cervical is antroverted: those of the dor:als rapidly increase to the third, which, with those of the fourth and fifth, raise the outline of the back, like a hump: they then gradually diminish to the last dorsal. The ribs are long, corresponding with the great depth of the chest. Seven pairs directly join the sternum, which consists of six bones.

In the Rein-deer (Cervus tarandus, fig. 311), the vertebral
formula is:-7 cervical, 14 dorsal, 5 lumbar, 4 sacral, and 11 caudal. The pleurapophyses of the third, fourtl, and fifth cervicals arc developed forward as well as backward; those of the sixth are also of great breadtl, and are more produced downward. The metapophysis is distinctly developed upon the second and succecding dorsal vertebræ, and attains the outside of the zygapophysis in the eleventh. All the dorsal ribs are biarticulate, retaining both head and tubercle. Eight pairs of ribs directly join the stcrnum, which consists of seven bones. In the Megaceros, fig. 166, as in the Fallow and most other Deer, there are thirteen dorsal and six lumbar vertebræ.

The opisthocolian ball-and-socket joints of the ccrvical vertebræ facilitate the habitual inflections of the neck in the grazing and browzing actions in all Ruminants, while the long spines of the antcrior dorsals afford adequate surface of attachment to the elastic and muscular structures sustaining the head-heavy in most of them with horns or antlers.
B. Skull.-This presents great diversity of shape in the Artiodactyla, with some common characters, already noted, which distinguisl it from that of Perissodactyla.

In the Hippopotamus, fig. 312, the occiput is subvertical: from the upper part of its crest the contour of the skull runs nearly straight to the fore ends of the nasals, 15 . The orbits, small and with an entire, or almost entire, rim
 of bone, singularly project both upward and outward, the frontals, 11, rising toward them, and arching lengthwise across their upper half. The upper jaw, c, which is almost cylindrical in advance of the molar series, suddenly expands to form the alveoli of the upper tusks, the mandible similarly expanding for those of the lower tusks, c; in the upper jaw a scoond terminal expansion, divided by a decp groove from the first, increases the pace for the large tuskshaped incisors. The depth of the temporal fosse renders that part of the cranium, 7 , narrower across than any part of the face: the fosse meet above to form a parietal crest in old males. The farial part of the lacrymal is extensive, but the small decp-seated orbital part is perforated by the lacrymal foramen. The malar, 26, sends
up a process to the postfrontal, which it rarely reaches: it extends backward to the glenoid cavity, and forms the under part of the zygoma: the upper part is due to the squamosal, 27. The external nostril is terminal, vertical, and formed by the nasals and premaxillaries: the maxillaries are perforated by a moderately large antorbital foramen far in advance of that cavity: the lateral series of molar alveoli slightly diverge anteriorly-a disposition which Cuvier regarded as peculiar to the Hippopotamus among Mammals. The bony palate is deeply notehed anteriorly between the premaxillaries: there are two pairs of 'foramina incisiva.' The ascending ramus of the mandible, i, has a posterior convexlycurved outline descending to an antroverted angular process; the horizontal rami, divided by a deep notch from the angle, run forward alnost parallel with each other, and expand at the symphysis, along whose upper and anterior broad truneated border the incisor sockets, four in existing, six in some extinct, Hippopotami, form a straight transverse line, between the tusks, c.

In a very young Hippopotamus may be observed the following evidences of eranial strueture. The basioccipital has partially coalesced with the basisphenoid, but not with the exoccipitals; it forms no part of the occipital condyles, and developes no processes from its under surface: its lateral synchondrosal surfaces are divided into two facets, one for the part of the exoccipital behind the preeondyloid foramen, the other for the smaller part in front. These parts of the exoccipital have not coaleseed on the inner side of that foramen, which is single : the exoccipital developes, besides the condyloid process, the paroceipital and a broad process to join the mastoid. The superoccipital is a thick, rhomboid, vertical plate. The alisphenoids lave coalesced with the basisphenoid: they are short, and are grooved behind by the boundary which they contribute to the foramen common to the foramen ovale and the basicranial foramen lacerum, and more deeply in front by the part they contribute to the foranen common to the foramen rotundum and foramen lacerım anterius: they develope long ptcrygoid processes, which are imperforate, and articulate along their iumer sides with the entopterygoids. The presphenoid has coalesced with the orbitosphenoids and with the rulimental prefrontals, which are connate, compressed, and form the median septum of the great anterior outlet of the cranial cavity. The vomer is a long, slender, pointed bone, deeply groored above. The parictals articulate with the alisphenoids, orbitosphenoids, squamosals, mastoids, frontals, superoecipital, and each other. The under part of the frontal is divided into a cranial, orbital, and
olfactory surface; the orbital surface being the largest, and the superorbital ridge broadand much produced. The petrosal, mastoid,

tympanic and squamosal elements of the temporal have coalesced. The meatus internus is a decp fossa divided into a cribriform surface below and a canal above: the tympanic swells into a large threesided comical protuberance below. The palatines prolong the bony palate beyond the series of grinding teeth in use.

The composition of the Mammalian skull has been more fully exemplified in the young of the genus Sus (p. 300, fig. 189). In fig. 314, is given a back view of the neural arch of the occipital vertebra, showing the flattencd centrum (basioccipital), c 3, the neurapopliyses (exoccipital×), ce 2, with their convex post-zygapoplyses or 'condyles,' and long descending diapophy-
 ses (paroccipitals). The neural spine (superoccipital), $c \quad 1$, is a
vertical, quadrate, expanded plate, which completes the upper part of the neural canal (foramen magnum).

The superoceipital enters into the formation of the upper surface of the skull, as at 3, fig. 313. The parietals present flat supracranial, ib. 7, 7, temporal, and intra-cranial surfaces, fig. 315, 7. The frontals present, also, a flat supracranial surface, fig. 313, 11, an orbital, and an intra-cranial surface, fig. 315,11 . The postorbital process is not joined by a malar one: the superorbital canals are large, as in Ruminants. The nasals, 15, are long and pointed: the premaxillaries, 22 , unite and eircumscribe with them the external nostril. There is a prenasal bone, o, which strengthens the uprooting snout in most of the hog-tribe. The maxillary, 21,

in the adult Boar, developes a large outwardly-curved alveolus for the tusk; strengthened above, in the Indian wild Boar, by a longitulinal ridge : the antorbital perforation is of moderate size: the maxillary unites posteriorly with the large facial plate of the lacrymal, fig. 313,7, , and with the malar, $2 f$. This has no postorbital process. It is united with the zygomatic part of the squamusal, 27, by a double notel. The small cranial plate of the squamosal is shown at l, fig. 315. The articular surface for the mandible is convex from before backward, concave trausversely, in which direction it is most extended. The alisphenoid is marked f, in fig․ 313 and 315. The floor and sides of the long nasal canal are formed by the premaxillaries, fig. 315, 22, the maxillaries, 21, and the palatines, 20: to the latter succeed the pterygoids, f : the depth of the canal is gained by depressing the backwardly-
extended bony palate below the level of the basis cranii, 1-9. The petrotympanic bulla, 16 , is large, prominent, and subcompressed. In the interior of the cranium the rhinencephalie compartment, l, is large and woll defined.

The skull of the Babyroussa (Sus Babyrussa), as compared with that of Sus Scrofa and Sus larvatus, shows a broader and lower oceiput; the mastoids are larger; the temporal fossæ more approximated on the upper part of the cranium ; the bony palate is more produced beyond the last molars. The mastoids show a

pneumatic cellular structure, and beeome confluent with the tympanic and squamosal, not with the petrosal. This bony capsule of the acoustic organ retains its primitive individuality, as such, and may be detached from the surrounding bones forming the otocrane: neither paroccipital nor mastoid are dismemberments thereof, as misinterpreters of developmental phenomena allege. There is no ossified prenasal. In the maxillary the long sockets of the canine tusks bend upward; the naso-maxillary part of the cranium being slightly compressed between them. Λ remarkable peculiarity is also presented by the fosse at the inner side of the base of the pterygoids, which lead to sinuses communicating on one or both sides with the sphenoidal simus. The air-cells extend from the nose to the occiput.

Ir the Wart-hog (Phacochrerus AEliani, fig. 316), the frontoparietal region is broad and flat, except transversely, where it is rendered concave, as in the Hippopotamus, by the orbits being raised above its level: those cavities, e, are placed farther back than in the other Suida, and are partly defended by a post-orbital process of the malar. The paroceipital processes are long and
slender. The mastoids are compressed and pointed, and are much less developed than in the Wild Boar, the Masked Boar, or the Babyroussa. The pterygoid fossæ are simple; not divided into an extcrnal and internal compartment, as in the Babyroussa, but they are morc extended backward. The soekets of the eanines, c, have not the process from the upper part, as in the Sus larvatus. The maxillo-premaxillary suture is early obliterated, except at the apex of the premaxillaries whiel extend beyond the sockets of the tusks. The nasals, 15 , are of great length. The fore part of the lower jaw, fig. 317, is expanded for the sockets of the tusks, c, and truncate, as in Hippopotamus; but the sockets of the incisors are soon obliterated. In the interior of the skull a tentorial ridge is developed.

In the Peceary a strong ridge extends from the lower border of the malar. The pterygoids have not the fosse shown in the Babyroussa and Wart-hog, and are less laterally expanded. The paroceipitals rise more to the outside than in Sus. The articular surface for the mandible is coneave from before backward.

In the skull of a Camel (Camelus bactrianus, fig. 318), the oceipital condyles are divided into two surfaces meeting at an
 aeute angle, and they come in contact with each other bencath the basioceipital, which contributes an equal share with the exoccipitals to their formation. The paroccipitals are small, and shorter than the mastoids. The oceipital, 11, and parietal, 9 , crests are sharp: the zygomatic arches, in relation to the laniariform teeth, s, a, o, are longer and overspan a wider temporal fossa, 10 , than in true Ruminants. The orbit has an entire bony rim. The premaxillaries, 1 , do not reach the nasals, 7 , and the maxillaries, 2 , contribute to form the external bony nostril. In the Llama and Vicugna (Auchenia), the premaxillaries exelude the maxillaries from the nostril. A vacuity between the maxillary, lacrymal, frontal, and nasal remains large in Llamas, but is reduced in old Camels to a small size, between the frontal, 8 , and maxillary, 2 ; or it may be obliterated, as is usual in the Vieugna. The antorbital foramen, b, opens above the last premolar. The orbital plate of the lacrymal
shows two perforations. The external pterygoid process is formed by the alisphenoid, the internal one by the true pterygoid; both are far behind the bony palate, which is divided from the last molar alveolus by a noteh. The cranial wall in the Camel is unusually thick, with a elose cancellous diploë, save where the air-cells penetrate the frontal and presphenoid. There is no bony tentorium. The lateral sinus bifureates above the petrosal into two wide venous canals. The hinder one again divides, one branch terminating on the superoccipital surface, above the mastoid, the other descending to terminate at the ordinary 'foramen jugulare:' the anterior eanal descends to the base of the zygoma, where it also divides, one division opening on the inner and the other on the outer side of the post-glenoid process. In the Llama the venous opening above the root of the zygoma is large: and there is a smaller one at the fore part of the root. The foramen rotundum is blended with the foramen lacerum anterius. The rhinencephalic fossa is narrow but deep. The osseous septum is coextensive with the nasal bones in old Camels. The angle of the mandible, w, is singularly elevated, and the contour of the ascending ramus makes a convex swecp to the lower border of the horizontal one. The outlet of the dental canal, r, is below the laniariform premolar, s. The fore part of the symphysis expands horizontally for the incisor alveoli.

In the true Ruminants the skull is characterised by the small size and edentulous condition of the premaxillaries, the slender zygomatic arches, the entire bony rim of the orbit, the large facial plate of the lacrymal, and by the processes of the frontal bone for the formation of horns or antlers. These latter, however, are wanting in both sexes of the Musk-deer (Moschus, Tragulus), asin the Camel tribe. The occipital condyles, fig. 319, closely approximate below:
 the paroccipital is longer than the mastoid. The temporal fosse, in the formation of which the parietals, 9, take a large share, with the squamosals, 10 , are divided above by a parietal crest, and resemble those of the Camel. There is a small vacuity between the frontal, 8, lacrymal, 3, maxillary, 2, and uasal, 7, in Moschus moschiferus, which docs not exist in Tragulus. The malar, 4, is
marked by a ridge continued from the lower border of the orbit. The petrotympanic forms, in the smaller Musk-deer (Tragulus) and Antelopes (Cephalophus), a large 'bulla ossea:' and the orbits gain in proportional size as the bulk of the species decreases. The lateral emarginations of the bony palate are usually deeper than the median one, in true Ruminants, the reverse being the case in the Llama and Vicugna. In Microtherium the premaxillaries do not reach the nasals, nor yet quite in Hyemoschus.

In the skull of the Bovida I have usually seen that, although the full size and mature dentition have been acquired, the suture between the exoccipitals, fig. $320,11^{\prime}, 11^{\prime}$, and that between these and the superoccipital, ib . ${ }_{11}$, remain distinct. The occipital condyles, i, are wide apart, as in Antelopes and Deer. The paroccipital, 1 , and fig. $321, a^{\prime \prime}$, descends much below the mastoid, 10 ; the exoccipitals complete the foranen magnum, above: the basioccipital has a pair of tubercles. In the Ox (Bostaurus) the whole of the upper surface of the cranium

is formed by the frontals, fig. 321, c : the parictals, which, at an earlier period, encroach upon the back part of the upper surface, are now pushed quite to the posterior or occipital aspect. This deposition does not take place in the Bison, fig. 320, but the frontals, at the interspace between the horns, are, with the conjoined parictals, 9 , dercloped into a ridge rising above that formed by the supcroccipital, 11 . The petro-tympanic, fig. 320, $10,321, e^{\prime}$, is prominent and rough. The squamosal, e, has a venous outlet above the base of the zygoma. The malar forms the lower part
of the orbit and extends largely upon the face, at k, to join the maxillary, h. The eorresponding plate of the lacrymal is still more extensive and here joins the nasal, f, leaving a small fissure between those bones and the frontal, c. This very cxtensive bone has a large superorbital fissure. The nasals are cleft at their fore cnd. The premaxillary, g, has but a small or loose junction with the nasals. The maxillary, h, is extensive, the antorbital foramen, h^{\prime}, perforates it above the first premolar. In Bison europeus the horns arise in advance of the ridge formed by the superoceipital bone, the parietals advaneing to the upper surface of the skull and bcing interposed betwcen the frontal and superoecipital. The Bison differs from the Buffalo (Bubalus) in the greater breadth and convexity of the frontal, and in the much greater extent of the orbital processes of that bone, which, with the coextensive processes of the lacrymal and malar, form a prominent eylinder. The nasals are relatively shorter and broader than in the $\mathrm{Ox}_{\mathrm{x}}(\boldsymbol{B o s})$; but the chicf distinction between the Bison and the Ox_{x} is seen in the shorter premaxillaries, which do not rise to join the nasals: here, therefore, six boncs enter into the formation of the external nasal aperture, instead of four, as in Bos and Bubalus.

The frontal sinuscs extend into the horn-cores in all Bovines, but not so in the majority of Antelopes. In this ruminant group, with some exceptions, e. g. Aigoceros, Lyroceros, Strcpsiccros, Dicranoccros, the facial plate of the lacrymal is impressed, often deeply, by the autorlital cutancous sac, commonly called ' lacrymal.' In the Duykerbok (Cephalophus meryens), the parietals are produced in an angular
 form between the bases of the horn-cores, which spring as usual from the frontals. In the Chickara (Tetraceros) the frontal developes two pairs of horn-cores: and this peculiarity was also manifested by some gigantic Antelopes (Bramatherium and Sivatherium), now extinct, of the same continent (India): in which, also, the posterior horn-cores werc ramified, as in the Prong-horn (Dicranoceros furcifer). The Sivathere was also remarkable for the shortness of the facial part of the skull and the termination of the nasals in a down-bent point, fig. 322. In the Duykerbok, Cha-
mois, Goral, Saiga, Chiru, and one or two others, the premaxillaries do not join the nasals; but this junction is seen in most Antelopes.

In all, as in the Sheep and its allies, both the superoccipital,
 fig. 323, 11 , and fig. 324, a, and the parietals, ib. 9 and b, maintain their position at the back part of the vertex : the frontals, ib. 8, 9 , and c, still form the chief part and alone develope the horn-cores: the nasals, 7 , are not expanded postcriorly, as in Camelida. Both frontals, c, and malars, k, fig. 324, cxtend far in advance of the orbit, d, but are exceeded in this extension by the lacrymals, i, which articulate with the nasals, f, for an equal cxtent with the maxillary, h. In the wild Ovis Ammon there is a lacrymal pit, and this, in Ovis Vignei, deeply impresses the facial plate of the bonc. The premaxillaries in the same wild Thibctan sheep join the nasals suturally, but in the domestic Ovis Aries, the premaxillaries, g, barely touch the nasals. In the Nahura Argali (Ovis Nahura), the premaxillaries do not reach the nasals: nor is the lacrymal impressed with the pit. The 'incisive' fissures in the palatal plates of the promaxillaries, figs.

168 and $323, \mu$, are long and narrow. The maxillo-palatal sutures, fig. 168, d, turn obliqucly outward and backward to the inner wall of the socket of the last molar, opposite the hinder half of
which are three posterior palatal notches. The pterygoids form no part of the bony palatc.

The following differences may be noticed in comparing the skull of the Goat (Capra Hircus) with that of the Sheep (Ovis Aries). In the Sheep the postorbital process or plate is broader and more bent outward, forming a deep depression between it and the origin of the horn; it also turns the plane of the orbit more obliquely forward: in the Goat the aspect of this plane is more directly outward. The occiput is tigher in proportion to its breadth in the Goat than in the Sheep. The petrosal is rclatively longer and deeper in the Goat than in the Sheep. The nasals are relatively smaller in the Goat, where they are shorter than the premaxillaries; their upper surface is concave lengthwise, except at the free points, where they are slightly bent down. In the Sheep the nasals are relatively larger, are longer than the premaxillaries, and their whole upper surface is convex lengthwise. There are also differences in the connections of these boncs; in the Sheep the nasals join the lacrymals, rarely the premaxillaries, whilst in the Goat they join the premaxillarics but not the lacrymals,-a vacuity, which is not present or is rudimental in the Sheep, separating them from the lacrymals. The upper border of the maxillary bone is relatively shorter in the Goat, and the anterior border is not notched to reccive the upper end of the premaxillary, as it is in the Shecp. The premaxillary is narrower at its alveolar end in the Goat, and its upper end rises so as to overlap the side of the nasal: in the Sheep the premaxillary is relatively broader, and rarely rises to touch the nasal. The lacrymal bone of the Goat is shorter in proportion to its breadth, and is not impressed on its facial surface by a lacrymal fossa; it does not touch the nasal: in the Shecp the lacrymal is longer in proportion to its breadth, and is more regularly quadrate in form; it joins the nasal, and thus obliterates that vacuity which is present in the skull of the Goat; its facial plate is usually impressed by a concavity for the cutaneous lacrymal pit. In comparing the upper contour of the skull, from the occipital ridge to the free extremity of the nasal bones, it forms, in the Goat, nearly a right angle, with the two sides equal: in the Sheep it forms a more open angle, with the anterior side twice as long as the posterior one.

In the skull of the Giraffe (Camelopardalis Giraffa, figs. 325, 326), the exoccipitals form a marked protuberance above the foramen magnum and below a deep fossa for the implantation of the ligamentum nuchæ. The parietals are chicfly situated on
the upper surfaee of the skull; the osseous horn-eores are originally distinet, with their bases erossing the eoronal suture, and resting equally upon the parietals
 and frontals: they, however, coalesee therewith in old males, and the frontal and parietal sinuses extend into the lower fourth, the rest of the horn-eore being a solid and dense bone. The protuberanee upon the frontal and eontiguous parts of the nasal bones is due to an enlargement of those bones (as obvious in the section, fig. 326), and not to any distinet osseous part : its surface is roughened by vaseular impressions, undermining the basal periphery and simulating a suture. The laerymal is separated from the nasal by a large vaeuity intervening between those bones, the frontal and the maxillary. The premaxillaries, whieh are of unusual length, articulate with the nasals. The petro-tympanie is a separate bone. The symphysis of the lower jaw is unusually long and slender. The artieular surfaee of the prominent oeeipital eondyles is so extended vertieally as to admit of the head being raised into a line with the neek, and

even slightly bent back beyond that line. The great freedom given to the movements of the head relate, like the length of neck and general altitude of the body, to the culling of leaves from the trees browzed on by the Giraffe. The part of the skull to which the elastic ligament is attached is raised considerably above the roof of the cranial cavity by the extension backward of large sinuses, or air-cells, as far as the oceiput, fig. 326. The sinuses commence above the middle of the nasal cavity, and increase in

depth and width to beneath the base of the horns, where their vertical extent equals that of the cerebral cavity itself. The exterior table of the skull, thus widely separated from the vitreous table, is supported by stout bony partitions, extended chiefly in the transverse direction, and with an oblique and wary coursc.

Two of the most remarkable of these bony walls are placed at the front and baek part of the base of the horns, intercepting a large sinus immediately over the middle of the eranial cavity, and from a third and larger one behind. The pre-sphenoidal sinuses are of a large size. ${ }^{1}$

The ehief peculiarity in the skull of the Deer-tribe is the annual development, from the frontals, of the solid deciduous exostoses which serve as weapons (fig. 326, l, b) during a portion of the year, in the males of all kinds and in both sexes of the Rein-deer. Most species likewise show vacuities between the frontal, 8, nasal, 7 , maxillary, 2 , and lacrymal, as in figs. 327 and 328. The base of the zygoma is perforated by a vein from the lateral sinus.

The chief peculiarity of the skull of the Elk (Alces) is seen in the great length of the premaxillaries and of the edentulous portion of the maxillaries, and in the shortness and breadth of the nasal bones, which do not join the premaxillaries. The vomer is carinate beneath.

In the Rein-deer (Tarandus) the antlers spring from within an inch of the superoccipital crest, and the frontal bones are proportionally extended backward on each side of the parietal, in which the sagittal suture becomes obliterated: the frontal snture is persistent, and is complex in its dentations at its posterior half. The large lacrymal presents two canals upon its orbital border and a deep oblong depression on its facial surface, above which is the vacuity leading to the olfactory chamber. The premaxillaries do not join the nasals. In the Fallow-deer (Dama) the frontal bones do not extend so far back as in the Rein-deer, and the antlers, in consequence, rise at a greater distance from the occipital crest. The lacrymal bone has two perforations at its outer border, and its facial plate is nearly equally divided into an upper convex and a lower concave surface. The antorbital depressions show but a small perforation, if any.

[^122]The skull of the Barking-deer (Cervus Muntjak) is remarkable for the great length of the persistent pedicles (fig. 328, c, c) which support the antlers, and which are continued from two strong ridges that traverse the outer side of the frontal bone from its junction with the nasals. The lacrymal presents a deep and well-marked fossa, anterior to which is the antorbital vacuity. The sockets of the upper canines are largely developed in the maxillaries.

In all Ruminants, and especially the horned kinds, the temporal fosse are small, the zygomatic arches weak, the coronoid processes of the mandible fig. 319, g, narrow, the base of the ascending ramus expanded; in short, the attachments of the biting muscle are restricted, those of the chowing muscle expanded. That for the masseter is shown by the ridge and fossa continued forward from the zygoma below the orbit: that for the 'pterygoidei' by the backwardly produced and rounded angle of the lower jaw. The exceptions to the edentulous premaxillaries have been noted. The articular surface for the mandible is broad, slightly convex, with a posterior semicircular channel bounded by a ridge.

The hyoid arch includes long, compressed, hammershaped 'stylohyals,' fig. 329, 1, having at their promixal
 end the articular, a, and muscular, b, processes, the short ' epilyals,' 2, the ccratohyals, 3 , the basihyal, 4 , and thyrohyals, 5 ; attached to posterior angular processes of the basihyal.
C. Bones of the Limbs.-Artiodactyles have the limbs terminated by feet of 4 or 2 toes, in symmetrical pairs: but, as in other Ungulatcs, almost restricted to locomotive functions. The Hippopotimus and the Gazelle manifcst in the even-toed scries analogous extremes in the proportions of the limbs, as do the Rhinoceros and Horse in the Perissodactyles. The blade-bone is long and narrow; but the spine is more commonly produced into an acromial angle in the Artiodactyles. In the Hippopotamus, fig. 305, this angle is slightly produced: the coracoid is recurved. The greater tuberosity of the humerus is divided into two subequal processes, the inner one separated by a deep
and wide bicipital fossa from the lower inner tuberosity. The ulna and radius have coalesced at their cxtremities and at the middle of their shaft, the interosseous space being indicated by a deep groove and two foramina. The trapezium does not support any digit: of the other four, the two middle ones, answering to the third and fourth, are most developed.

In the pelvis the ilia expand and bend outward from their sacral attachments almost into the same plane with the broad and flat sacrum: the lumbo-iliae angle is about 150° The ischia, fig. 305, 63, are long and with the dorsal angles of the broad and thick tuberosities produced toward the caudal vertebre, as in other Artiodactyles, figs. 308 and 310. The ischio-pubic symphysis is long and more backward than in the Rhinoccros; the obturator vacuities are large; the acctabula look downward and outward, their planes being about 50° from the perpendicular. The femur has a straight subcylindrical shaft. The canal for the medullary artery commences at the upper and fore part of the shaft. The fibula is distinct from the tibia, and extends from its proximal end to the calcancum. The internal cuneiforme is present in the tarsus, but there is no rudiment of the innermost toe: the proportions of the other four resemble those of the fore-foot: the bones of the hind foot are noted at pp. 308, 309, and figured in cut 193, ' Hippopotamus.'

In the Wild Boar (Sus scrofu) the spine of the scapula is most developed at its middle, where it is bent baek: there is no acromion. The coracoid is a low tubercle: the glenoid cavity is nearly circular. The humerus has an intercondyloid vacuity, as in the Pcccari ; in which the inner division of the great tuberosity rises above the head of the bone, higher than in Sus. The radius and ulna are distinct in Sus, but invariably connceted by a rough longitudinally grooved surface. The olecranon is large and compressed: the distal end of the ulna presents a small trochlear surface for the carpus and a narrow strip for the radius. In the Peccari the radius and ulna coalesce thronghout nearly their whole extent. The trapezium and pollex are not present: the 'index' and 'miminus' digits are small; the 'medius' and ' ammuris' large, and chiefly serviceable in progression.

The pelvis is longer and narrower, relatively, in Suide than in the Hippopotamus: the lumbo-iliac angle is 145°, the ilio-pubic angle 120° The medullary artery of the femur cuters the fore part of its upper third and the canal slopes downward. The tibia and fibila are distinct, and the latter fully developed in both Sus and Dicotyles. In both, the symmetrical pair, which are
most developed and chiefly serviccable in progression, answer to the third and fourth digits of the pentadactyle foot: but in Sus the homologues of the fifth and second are present; whilst in Dicotyles the fifth as well as the first toe are wanting in the hind foot: in this the second toe is small; the third and fourth are very large, and form a symmetrical pair, showing that the Artiodactyle structure essentially prevails, although the toes, by the nondevelopment of the fifth, are, exceptionally, reduced to three in number in the hind foot of the Peccari.

In the Camelida, fig. 306, the scapula though longer than in the non-ruminant Artiodactyles, is broader, relatively, than in horned Ruminants: its spine is produced into a short pointed acromion: the coracoid is grooved below, or sub-bifid. The humerus is weaker than in the Ox, stronger than in the Deer, longer relatively to the rest of the limb than in the Giraffe: the great tuberosity does not rise above the head: the ridge upon the outer condyle is less marked. The ulna has coalesced with the radius, and appears to be represented only by its proximal and distal extremities. The carpal boncs have the same number and arrangement as in ordinary ruminants, but the pisiforme is proportionally larger. There is no trace of the digits answering to the first, second, and fifth in the pentadactyle foot: the metaearpals of those answcring to the third and fourth have coalesced to near their distal extremities, which diverge more than in the ruminants, giving a greater spread to the foot, which is supported by the threc phalanges of each of those digits. The last phalanx deriates most from the ordinary form, by its smaller proportional size, rougher surface, and less regular shape: it supports, in fact, a modificd claw rather than a hoof. The ilimn, in proportion to the isehium, is longer than in the Hippopotamus. In the femur, the chief deviation from the ordinary Ruminaut type is seen in the position of the orifice of the canal for the medullary artery, which enters the back part of the middle of the shaft, and inclincs obliquely upward. The fibula is represented by the irregularlyshaped ossicle interlocked between the outer side of the distal end of the tibia and the calcaneum. The scaphoid is not confluent witl the cuboid as in the normal Rumiuant: the rest of the hindfoot deviates in the same manmer and degree from that type, as does the fore-foot. In both metacarpals and metatarsals, notwithstanding the intimate blending of the two bones apparent externally, their medullary cavities are distinct: the canal of the medullary artery enters the baek part of caeh, above the middle, and ascends obliquely to its respective cavity.
lin true Ruminants the spine of the seapula is not produced, as in Camelide, but terminates in an acute (Bos) or a right angle (Cervus): the Musks and Chevrotains agree with the horned families in this eharacter, but the coracoid is a better defined process in the latter: in all, the scapula is a long slender triangle, with two equal or subequal sides, the infraspinal division eliefly expanding to the base, which is truncate in Bos, fig. 309, Antilope and Cerous, fig. 311 ; but rounded off at the hinder angle in Camelopardatis, fig. 310: in this Ruminant the eervix scapula is umusually long. The humerus, fig. 330, A , is short, but strong, with slightly expanded ends: the outer tuberosity, at the proximal one, rises above the head of the bone, and bounds, with the inner tuberosity, a deep bicipital groove: the deltoid crest, 1 , is less prominent than in the Horse. The distal articular end presents three prominences answering to the hollows of the head of the radius, the internal one being the broadest and lowest. The supracondylar ridges are but little produced: the olecranal fossa is deep, and perforated in Musk-deer, Chevrotains, and Microtheres, as in the Hogtribc. In the Gnu (Antilope Gnu) the humerus is as long as the metacarpus: in the Ox , fig. 309, it is longer; in the Giraffe, fig. 310, and Gazelle, fig. $330, \mathrm{~A}$, it is shorter. The radius, fig. 330, $\mathrm{A}, 2$, is the chief bone of the antibrachium: its proximal trochlear surface offers three eminences and as many depressions to the humerus, restrieting the movements of the fore-leg to one plane. The shaft is slightly bent forward: the distal end is moulded to the irregularities of the carpios, and is most impressed by the scaphoid, espeeially

[^123]in the Cherrotains. The ehief part of the ulna, ib. 3, is its compressed oleeranon: the slender shaft may be continued to the earpus, as in Moschida, most Antelopes, Sheep, the Elk, the Rein-deer, fig. 311, the Fallow-deer, and the common Ox. In the Chevrotains it longest maintains its individuality: in the Musk-deer and Elk the distal extremity eoalesces with that of the radius; in the Rein-deer the shaft, also ; in the Ox this is so eonfluent as to be hardly traeeable from the olecranon to the styloid extremity. In the Giraffe the ulnar shaft is interrupted at its lower third, but the distal end reappears, as the 'styloid process,' but is connate with the distal epiphysis of the radius. The radius and ulna are so interlocked that the fore-foot is kept ' prone,' or with the surface answering to 'palm' turned back and downward: there is a narrow cleft at the upper part of their line of union, and sometimes a second lower down. In the carpus the usual four bones of the proximal row remain distinct: in fig. 330, A, c, 4 is 'scaphoides,' 5 lunare, 6 cuneiforme, 7 pisiforme: the distal row consists of the 'trapezoides,' a, in some, and in all of the 'magnum,' 8 , supporting the moiety of the metacarpal answering to the 'third' one of the pentadactyle foot, and the unciforme, 9 , supporting the moicty answering to the 'fourth' metacarpal. These metacarpals early coalesce into a single ' eamon-bone:' but a longitudinal section, as in fig. $331,{ }^{1}$ shows the medullary canal of each distinct, in Megaceros, as in most Ruminants; in a few, e.g. the lak (Bos grunniens) the septum becomes prartially absubed. ${ }^{2}$ Longitudinal grooves at the fore (fig. 330, A, 10) and back parts of the cannon-bone, with antero-posterior perforations, are the outward signs of the original separation: they are

section of a metacarnal of Megaceros. XOVI: most strongly marked in the Cherrotains (Traynlus); and the severance persists in the Water-Musk (Hyemoschus) as in the extinct Dichodons, Anoplotheres, and Microtheres. Each moiety of the camon-bone has its distinct distal trochlea, fig. 331, ", b, which is traversed by a median ridge, c, from before backward. To each trochlea articulates a proximal phalanx, fig. $330,1,11$, supporting a middle, 19 , and this an unequal phalanx, 13 , of a triedral eonical shape, modified to be sheathed in a hoof; the unsymmetry of each hoof being such as to form a symmetrical pair. They resemble the single hoof of the horse cleft in twain: whence the

[^124]Ruminants are said to 'divide the hoof.' In the Giraffe, fig. 310, Antelopes, fig. 330, and Decr, fig. 311 , the proximal phalanx is longer than the next: in the Ox and Musk-deer the difference is small: in the Cherrotains, they are more nearly of the same length. In the Giraffe, as in the Camel-tribe, there is no trace of other toes: in most truc Ruminants stunted portions of them are suspended to the back part of the distal end of the cannon-bone, whence dangle the pair of 'spurious hoofs,' fig. 330, b. In the Bison the bones of these consist in each of the middle and distal phalanges: and there is a styliform representative of the proximal end of their respective metacarpals articulated, in the forc-foot, one to the connate trapezoid, the other to the unciform and cmeiform bones. ${ }^{1}$ In Deer the spmrious hoofs are supported by the three phalanges proper to the second and fifth digits, and by a styliform distal end of their respective metacarpals with the point upward: these hooflets are large enough in the Rein-decr, fig.311, to usefully inerease the base of the 'snow-shoe,' formed by its broad hairy and horny foot, with the advantage of their collapse as the foot is withdrawn. The Moschus moschiferus has a similar bony structure of the seeond and fifth digits; while the still smaller Chevrotains, like the emlryos of larger Ruminants, slow so much more of the generalised foot-structure as is exemplified by the extension of the slender metaearpals of those 'spurious hoofs' from them to the carpus.

The os imnominatum is elongate with the iliac portion concave lengthwise, convex across, externally, with tho expanded anterior end divided by a ridge into the portions b and c, fig. 332, articulating with the sacrum, a, and rising as high as, or above, the sacral spine: the portion, c, is thickest and broadest in the heavier Rominants: the ilium joins the spine at au angle of about 145° The ischium extends back from the acetabulum, two-thirds or threc-fourths the length of the ilium, with the tuberosity, e, bending upward: the tuberosity is strengthened in Deer, Antelopes, and Oxen by a ridge, g. In the male Chevrotains the ischia join the clongated sacrum by ossifications of the sacrosciatic ligaments, but in the females these retain their normal extensile texture. The tendons and aponeuroses of the dorso-spinal muscles become more or less ossificd by age, and a thin roof of bone may thus overarch the pelvis, as c.g. in Tragulus jowanicus, Tr. Kanehil, ${ }^{2}$ \&c. The pubics, f, are slender : they converge to the symphysis at an iliopubic angle of about 135° The iliopectineal spine is well marked in some

[^125]Deer. In the Ox, fig. 332, the symphysis pubis is plaeed obliquely, so as to cause the anterior pelvic opeuing to be longer than the posterior one: in the Decr, fig. 333, the symphysis runs more parallel with the sacrum. The acctabula are earried by the length of the ilia opposite the last saeral vertebra, at the apex of the wide arch of the os innominatum : the plane of the aperture is inclincd about 40° from the perpendicular. In the Cow, near the period of parturition, the isehial tuberosities, by the relaxation of the ligaments and sinking of the sacrum, become more protuberant than at other times. In the Giraffe the posterior concavity bctween the ilium and ischium, as in the Deer, fig. 333, is scarcely interrupted by the prominenee of the eonjoined bones above the aeetabulum. The Harderian groove of the acetabulum is wide and deep, and breaks through the border of that cup.

The hind-limb, fig. 330, в, exeeeds the fore-limb, ib. A, in length in all Ruminants: lcast so in the Camelide and Giraffe, most so in the bounding Deer and Antelopes.

The femur of Ruminants, ib. B, I, as of other Artiodactyles, has no third trochanter ; and the medullary artery enters the fore part of the shaft, usually at the upper third, and goes downward and
 backward to the medullary cavity: the antero-posterior expanse of the distal end is great, especially in the Giraffe: and the inner border of the rotular channel is more produced than in the Hog-tribe, without developing an irregular prominence as in the Perissodactyles. The Camelide offer the exception in the position of the foramen and canal of the inedullary artery, and in the sub)cqual development of the borders of the rotular channel. The

Moschidce agree in both characters with the horned Ruminants; but the rotular elannel is unusually long and narrow in the Cherrotains. The head of the femur turns but little out of the longitudinal axis of the shaft, of which the great trochanter is the highest part: the articular surface extends from the head toward the base of the trochanter, in a subtrochlear form: the ligamentous pit is in the middle of the hemispheric part of the head. The back part of the proximal end is flattened, especially in Camelide: the trochanterian fossa is deep, that above the outer condyle is shallow; its outer border is continued from the ' linea aspera,' and is rough : there is a rough eminence at a similar distance above the inner condyle.

The tibia, ib. в, 2, like its homotype the radius, is the chief bone of its segment ; it is also the longest bone of the hind limb. The proximal end is most expanded : the two articular surfaces rise at thic middle of the head, and that of the inner surface higher in Bovidee than in Cervide: there is a tuberosity at their posterior interspace: the broader base of the anterior spine fills up the anterior one, but is separated from the outer condylar surface by a deep groove: the spine projects from the fore part of the upper fourtl of the shaft, inclining outward: it subsides toward the inner side of the shaft, the back part of which is flattened and marked by longitudinal intermuscular ridges. The distal articular surface is subquadrate, with a noteh and articular fossa on its outer side for the ossicle representing the distal or ' mallcolar' extremity of the fibula, ${ }^{1}$ fig. 193,67, (Ox) ; this coalesces with the tibia in Chevrotains. In the Rein-deer, as in Moschus moschiferus and M. aquuticus, the proximal end of the fibula projects downward as a slort styliform process from the outer part of the hoad of the fibula: in Tragulus Napu it extends more than half-way down the tibia, ${ }^{2}$ and the shaft exists as a selerous tissue in all Ruminants. The distal articular surface of the tibia presents a pair of deep antero-posterior channels divided by a transversely convex tract of equal extent: they are less oblique than in the Horse-tribe: the inner malleolus descends the lowest.

The tarsus, fig. 193, 'Ox,' consists of astragalus, it, calcaneum, $c l$, scapho-cuboid, $s-b$, and ectocuneiform, $e c$: the confluence of the naviculare or seaphoid with the cuboid does not take place in Camelida: it does so in Moschidere, and the fusion extends to the ectocunciform in Tragnlus. ${ }^{3}$ A mewncunciform is present in

[^126]${ }^{3}$ Ib. and Lxxif: p. 59.

Chevrotains for the support of the slender metatarsal of the toe answering to the second of pentadaetyle feet. The corresponding metatarsal, fig. 334, c, of the fifth or outermost toe, ib. b, articulates with the cuboid, 9. In Moschus aquaticus, the second and fifth metatarsals coexist with an almost complete severance of the third and fourth, whieh, in a state of confluence, represent the metatarsal segment in other Ruminants. The true Musk-deer and most horned Ruminants have the distal ends of the seeond and fifth metatarsals ossified, and supporting the small digits terminated by the 'spurious hoofs,' fig. 193, iI, v: in the Giraffe and Canel tribe these are wholly absent, as are their homotypes in the fore-foot. The digital phalanges of the hind-foot, fig. 330, $\mathrm{B}, 11,12,13$, b, closely correspond with those of the fore-foot.

In all Ungulates the eneasing of the end of the digit in a hoof is aceompanied by a junction of the radius and ulna such as to prevent reciproeal rotation of those bones on each other, and by

Bones of hind-foot of Chevrotain (Tragulus). xovi'. a joint with the humerus restricting the movements of the antibrachium to flexion and extension in one plane. The expansions of the humerus for attachment of pronator and supinator museles are uncalled for; while the proximal proeesses giving leverage to the permitted motors of the limb may projeet in a degree which would impede its more varied and freer motions. The length of the blade bone and of muscles arising from it is inereased at the expense of their breadth; the aeromion is stunted, and clavicles are absent. The concomitant modifications of the skull aud jaws in relation t, masticating vegetable food are best exemplified in the Ruminant Ungulates, and have been specified at p. 471.
§ 189. Skeleton of Carnivora.-In the Unguiculate Gyrencephata the whole frame is modificd, in degrees corresponding with the perfection of the claws as prehensile weapons, for mastery and destruction of other animals. The mandible, fig. 341,32 , is short and strong, it is articulated by a close-fitting joint to the skull almost restricting its movements to one plane, as in opening and closing the mouth, for biting, and for dividing, not pounding the food. The coronoid process giving insertion to the temporal muscles is broad and high; the fosse from which they rise are large and deep, and augmented by peripheral ridges of bone. The zygomatic arch spans across the musele, lenending outward to give space for its passage, and arching upward for the
more extensive and favourable attachment of accessory fascicles. Each toe has its distinct metacarpal or metatarsal. The digits, especially in the fore-limb, enjoy frccdom of motion and power of reciprocal approximation and divarieation ; the terminal phalanx is compressed and deep, with a plate of bonc reflected forward from the basal periphery, beyond which the apex of the phalanx projects like a peg from a shcath : the claw is fixed upon the peg, its base being firmly wedged into the interspace between the peg and the sheath. In the Felines, which are the most perfect carnivorous Unguiculates, the claw phalanx is retractile. The forcpaw, so armed, is attached to the radius and ulna, which are entire, distinct, and strong bones: these articulate with the humerus by a joint, which, although well knit, allows both freedom of motion in bending and extending, and also a reciprocal play of the two bones, the radius rotating on the ulna, and carrying with it, by the greater expanse of its lower end, the paw, which can thus be turned 'prone' or 'supine,' whercby its efficacy as an instrument for seizing and tearing is enhanced. The humerus has strong ridges from the outer and inner sides above the condyles for extending the origins of the muscles of the paw ; and, to defend the main nerve and artery of the fore-leg from compression during the action of these muscles, a bridge of bone spans across them in the feline, and some other Carnivora. The upper end of the humerus las a long and strong deltoid ridge; but the tuberosities do not project beyond the round head of the bonc so as to impede its movements in the socket. The scapula is of great breadth, with well-dcveloped spine, acromion, and coracoid. A small clavicnlar bone is interposed in most Carnivora between a muscle of the head and one of the arm, giving additional force and determination of action to them. Such are the chief modifications of the framework of the unguiculate as contrasted with the ungulate Gyrencephala.
A. Vertebral Column.-This part of the skeleton of Carnivora is modified in relation to the medium of life, degrec of carnivority, and modes of motion of the species. In no Carnivore do cervical vertebre articulate by ball-and-socket joints; and in all, the seventh has the transverse processes imperforate, consisting only of diapophyses. The Harp Seal (Phoca grcenlandica, fig. 332) has 15 dorsal, $\mathrm{D}, 5$ lumbar, $\mathrm{L}, 4$ sacral, s , and 8 caudal. Ten pairs of ribs dircetly join the sternum, which consists of eight boncs: the manubrium, 52^{\prime}, is much produced, for extending the fore-and-aft origins of the pectoral muscles. The neural arches of the middle dorsal vertebree are slender, leaving
wide intervals of the neural canal. The bones of the neck are modified to allow of great extent and freedom of inflection. The perforated transverse processes of the third to the sixth cervicals inclusive are remarkable for the distinctness of their di- and pleurapophysial parts. Metapophyses are developed on the last five dorsal vertebra: the strong hypapophysial ridge of the lumbar vertebre divides into two tuberous processes. These processes indicate the great developement of the anterior vertebral muscles, c.g. the ' longi colli' and ' psoæ,' and relate to the important share

which the vertebre and muscles of the trunk take in the locomotion of the Seal-tribc, especially when on dry land, where they shuffle along on their belly.

In the Sterrink or Saw-toothed Seal (Stenorhynchus serridens), with 15 dorsal, 5 lumbar, 3 sacral, and 11 caudal, the metapophyses commence as tubercles outside the prezygapophysis on the second dorsal, are distinct on the third dorsal, pass on the fore part of the diapoplysis in the fourth, and continue rudimental as far as the tenth dorsal, on which they are well and distinctly developed; they again pass upon the outside of the prezygapophysis in the eleventh and twelfth dorsals, and so continuc throughout the lumbar, sacral, and anterior caudal vertcbre. The anapophyses are mere rudimental projections from the back part of the diapophysis. The transverse processes of the axis are more developed than in the Phoca greanlandica; they show as distinctly as in the other cervicals, but on a smaller scale, the pleur- and di-apophysial parts of the process. The cervical and
anterior dorsal vertebræ have a hypapophysial ridge, which, in the latter, is produced into a tuberosity: the lumbar vertebre are characterized by a pair of hypapophyses from near the hinder end of the centrum. The cared Seals have the same vertebral formula: the anterior sacral vertebre are narrow.

The Walrus (Triclecus Rosmarus), like the Otter, has 14 dorsal and 6 lumbar vertebre. Nine pairs of ribs directly join the sternum, which consists of eight bones. The anterior sacrals have greater relative breadth than in Phoca or Otaria: as in true seals the tail is short, with 9 or 10 vertebre.

In the Bear-tribe, as in the Seal-tribe, the number of true vertebre is 27 , as a rule, and 14 of these usually bear movable

ribs; but I have seen 15 'dorsal' vertebre in Crsus maritimus, fig. 333, and in U. letbiurtus; the latter having is hmbar instead of 6 , which is the common mmber. Nine pairs of ribs articulate directly with the sternum, which consist of eight bones, with a xiphoid appendage. The manubrium is truncate anteriorly. The number of anchylosed sacral vertebre may vary from 5 to 7 , that of the caudal vertebre rarely exceeds 10 . The met- and anapophyses are distinct on the twelfth dorsal, diverge and increase on the succeeding dorsals, the metapophyse continuing throughout the lumbar series; the anapophyses, after underlapping the prozygapophyses of the first and second lumbar, rapidly subside. The neural spines are bettcr developed than in the Scal-tribe,
but do not indieate a eentre of motion, save in the smatler and more aetive subursines. In the Racoon they eonverge to the twelfth dorsal : the caudal vertehre, 16 in this plantigrade and 18 in the Badger, inerease to 31 in number in the Kinkajou, where the tail is prehensile, whenee the name Cercoleptes caudivolvulus. The Benturong (Artictis) has a similar catudal developement, with hemal arehes on the ten anterior vertebre. In the last five eervical vertebre of the Ratel the neural arehes are longer than the centrums and overlap each other in an imbrieated manner, giving great strength to the articulations of this part of the vertebral column. The number of dorsal vertebree is 15 , as in Myduus and Meles, with 5 lumbar ones.

In the more digitigrade Mustelines, the Sable (Atustela zibellina) has 14 dorsal, 6 lumbar, 3 saeral, and 18 candal. The eleventh dorsal vertebra is that toward which the spines of the other trunk-vertebre converge. The anapophyses begin to be developed upon the ninth dorsal, and are continued to the penultimate lumbar vertebra. Ten pairs of ribs directly join the sternum, which consists of nine bones, with a xiphoid cartilage. In the Ermine (Putorius ermineus), with a similar vertebral formula, the spines of the tentl and eleventh dorsal vertebre converge towards each other and almost meet, indicating the centre of motion of the trunk. Ten pairs of ribs directly join the sternum. The neek is strengthened by the overlapping of the costal parts of the transverse processes of the third to the sixth cervical vertebra. Some of the anterior candal vertebra have hæmapophyses. The Otter (Lutra vulgaris) has 25 or 26 eaudal vertebre. Ten pairs of ribs directly join the sternum, which consists of nine bones and an ensiform cartilage. The spine of the eleventh dorsal vertebra is vertical, and those before and belind it converge towards it. The metapophyses begin to be developed on the twelfth dorsal vertehra, and are continued throughout the lumbar serics; they are low and obtuse. The anapophyses commence at the eleventh vertebra, aud are contimued to the pennltimate lumbar. The spines of the three sacral vertebree have coalesced to form a rertical crista. Mrmapophyses are developed beneath several of the anterior caudal vertebra ; they are articulated, and some of them beeome auchylosed to short hypapophyses or cxogenous processes from the under and fore part of the centrum, and then are continued in several of the succeeding vertebra, which have not the homal arch complete. The neural arch is incomplete beyond the eighth candal vertebra. The entire tail is longer and much stronger than in the terrestrial

Mustelide: it is the clief organ in regulating the course of the Otter through the water.

In the Civet (Viverra civctta) the transverse processes of the atlas have a more extensive origin than in the Otter, and are perforated both horizontally and vertically by the vertebral artery before it pierces the neural arch. In the axis the median inferior ridge, and the two lateral ones continued upon the transverse processes, are longer, deeper, and sharper than in the Otter. Certain Viverrines, e.g. the Palm-cats (Paradoxurus) have the tail organised for preliension, including upwards of 30 joints, with homal arches beneath the interspaces of the first eight or ten. The prozygapophysis of one lumbar vertebra is received into the intcrspacc between the postzygapophysis and the anapophysis of the anteccdent vertebra: this interlocking which commenced in the plantigrade and musteline Carnivora, is continued in the prosent (riverrine) and subsequent families.

Among the Canide the Wolf (Canis lupus), has 13 dorsal, 7 lumbar, 3 sacral, and 15 candal. Eight pairs of ribs articulate directly with the sternum, which consists of eight bones. The eleventh dorsal vertebra is that towards which the spines of the other trunk-vertebre converge. Metapophyses begin to be developed on the eighth dorsal, and are continued to the fourth lumbar vertebra.

The Dog agrees with the Wolf in vertebral characters.
In a Fox (Canis rufus) the vertebral formula is the same, save that the tail-joints are nore slender and numerous, being 22 . A few of the anterior caudal vertebre have hrmapophyses: the supporting processes or 'hypapophyses' are developed from a greater number. The sacrum is remarkable for its sudden diminution of size, as compared with the lumbar vertebre, and only the first sacral vertebra articulates directly with the iliac bones.

The Hyrnas have 15 dorsal and 5 limbar vertebres: the striped kind (II. vulgaris) has 3 sacral and 23 caudal: the spotted kind (H. crocuta) has 4 sacral and but 16 or 18 caudal. Eight pairs of ribs articulate directly with the sternum, which consists of eight bones. The transverse processes of the atlas are perforated longitudinally and vertically by the vertebral artery before this perforates the nerual arch. The strong spine of the axis is bifid posteriorly. The convergence of the dorso-lumbar spines towards that of the thirteenth dorsal is feeble compared with other Carnivora. Anapoplyses begin to be developed on the tlirteentlo dorsal and subside on the penultimate lumbar vertebre.

The Lion (Fclis leo, fig. 337) has 13 dorsal, 7 lumbar, 3 sacral,
and 23-25 caudal vertebræ. The spine of the axis has great height, length, and posterior breadth, arching forward and backward, overlapping the third, of which the spine is obsolete; that of the fourth is short and vertical, indicating a centre of the motions of the neek. The anterior dorsal spines are lofty and strong, for the origin of museles implanted in the ridged and pitted back part of the skull, whereby the head can be raised together with the prey which the jaws have scized: a Lion thus draws along the carcase of a Buffalo, and can with ease raise and bear off the body of a man. The eleventh dorsal is that toward which the

spines of the other trunk-vertebre converge: the anapophyses begin to project backward from this vertebra, and are continued to the penultimate lumbar. Eight pairs of ribs directly join the sternum, which consists of eight bones. The lumbar diapophyses are long and antroverted. The tail is the chief seat of variety in the vertebral column of the feline group. The Lynx (F. $\left.L_{y} n x\right)$ e.g. has the number of caudal vertebre reduced to 15. In a tailless variety of domestic cat a stunted mass of 4 or 5 coalesced caudals has beeome hereditary.

The carnivorous unguiculate do not, like the herbivorous ungulate Gyrencephala, show two series by numerical charaeters of trunk-vertebre ; the constaney of twenty dorso-lumbars is remarkable and significant: the exceptions are not only rare, but
abnormal. Where the trunk is lithe and subject to varied and agile turns and bends, the number of pairs of free elongate pleurapophyses is small, and that of the vertebre wanting them great; thus the springing Cats, the swift-footed Dogs and Foxes, the climbing Benturong, have 13 dorsal and 7 lumbar: the Viverrines and Mnstelines eommonly show 14 dorsal and 6 lumbar; the stiffer-trunked Hyænas, Bears, and Seals have 15 dorsals and 5 lumbar: and mostly, where an exceptional excess oeeurs in any of these groups in one series of vertebre, it is balanced by as exceptional a deficiency in the other series.
B. Skull.--In the Harp Seal (Ploca gronlandica) the basioecipital is a thin plate, and shows a vacuity in front of the foramen magnum : it carly coalesces with the basisphenoid: the paroecipital is small, subretroverted: the mastoid large, swollen, not prominent. The frontal, fig. 338, 11, gives its larger proportion to the orbital and olfactory ehambers. In the latter the confluent prefrontals and vomer form an extensivc bony septum between the meatuses which are blocked up anteriorly by the complex turbinals. Both the tentorium and posterior part of the falx are ossified. The shallow 'sella' has overhanging posterior clinoid processes. The petrosal is perforated by the entocarotid and impressed by a deep transverse cerebellar fossa. The tympanic forms a 'bulla.' The meatal portion of the tympanie is slightly bent and directs the external auditory aperture obliquely forward and upward. The squamosal has a small eranial plate, g, and a
 large thick zygomatie process, 27 , witl rises at its junction with the malar, 26 , to partially define the orbit posteriorly.

The seals, like other carnivora, have the orbit, e, incomplete behind, and continuous with a large temporal fossa; the masals, 15, are short, and the nostril looks more or less mpward, in reference to their common sojourn in water and the neecssity of rising to the surface to breathe. The eondyle is the lindmost part of the mandible.

In the Grey Scal (IIalichoorus griseus) the sknll is remarkable for the straightness of its upper contour and the sudden bending down of the equally straight line formed by the deep and narrow premaxillaries. There is a deep depression in the superoceipital,
overarched by a thickly-developed oecipital ridge ; the squamosal and malar rise abruptly at their junction at the middle of the zygoma. The acoustic bulla receives the meatus auditorius by an expanded and oblique opening. The olfactory fosse contain, as in all Seals, large and eomplex turbinal bones. The bony palate is terminated behind by a semieireular notch.

In the Monk Seal (Pelagius monachus) the upper contour of the skull presents a sigmoid eurve. The temporal ridges meet, and form a low sagittal erest over the posterior half of the frontals and parietals. The upper jaw is mueh less deep than in the Halichorus, the eanines are relatively larger and the nasal bones are much shorter. The entocarotid canal perforates the back part of the petrosal as in the Phoca groenlandica: the ectoearotid does not pieree the pterygoid process.

In the Sterrinks (Stenorhynchus) the skull is longer, more 'canine' in the proportions of jaws to cranium, than in other Seals. The malar is long and slender, defining the orbit below: a lacrymal process of the maxillary projects from the anterior rim. The basis cranii is long and narrow in Stenorhyncus leptonyx. In the saw-toothed Sterrink (Stenorkynchus servidens) the facial part tapers more gradually than in the Stenorhynclus leptomyx. The paroccipitals are sinall, but distinct. The petrosals are perforated posteriorly for the entocarotids; the pterygoid processes are imperforate. The temporal ridges meet upou the sagittal suture, but do not develope a crista. The malar bones are slender, strongly curved, bifurcate posteriorly, the upper prong rising to form, with the zygomatic process of the squamosal, the postorbital boundary. There is no eorresponding process from the frontal. The antorbital process of the maxillary is small, but distinct. The premaxillaries are narrow and slender, but do not reach the nasals. The posterior border of the bony palate is terminated by a deep semi-elliptic notch. Λ single superoccipital venous canal opens, in Sten. leptomyx, within the border of the foramen magnum. The basioecipital shows two depressions. The sella turcica is very shallow, and is defined only by a posterior clinoid ridge, between which and the platform for the optic chiasma there is a long tract. The petrosals terminate by obtuse subdepressed apices. The foramina lacera anteriora are of unusual size, and appear to include the foramina rotunda: there is no ridge indicating the division between the auterior and middle lobes of the cerebrum. The rhinencephalic fosse are small, but deep and well defined, and completcly divided by a broad and thick erista galli.

In the Ursine Scal (Arctocephatus austratis) the border of the superoceipital, forming the upper part of the foramen magnum, shows the orifices of two venous sinuses. The postcrior border of the bony palate has an angular notch. The pterygoid processes are pierecd for the ectocarotids. The frontal developes a superorbital plate. The mastoid projects frec of the tympanic. The olfactory chambers extend backward exterior to the rhinencephalic fossa.

In the Hooded Seal (Cystophora cristata), the thin basioccipital shows a small vacuity. The superoccipital inclines from below upward and forward. The temporal cristr have not met above the parictals. The premaxillaries do not reach the nasals: they form with the maxillaries an antorbital prominence. In the great Proboscis-Scal, or Sca-Elcphant (Cystophora proboscidea), the occipital condyles mect upon the basioccipital: the paroecipitals arc less prominent than in the Cystophora cristata. Traces of the suture between the basisphenoid and the basioccipital and between the basisphenoid and presphenoid long remain. The entocarotid eanals at the back part of the petrosals are very conspicuous: there are no ectocarotid canals. The sagittal crista is fecbly indicated, but the occipital ercst is conspicuous for its great height and thiekness; the lower border of the superoccipital presents two vertical venous perforations, which are likewise present in the Cystophora cristata. The tentorium is less ossified than in the Otaria leonina. The walls of the eranium formed by the parietals are thick with a coarse diploë: a very small proportion of the squamosals cnters into the formation of those walls: the mastoid has a dense structure where it coalcsces with the base of the zygomatic proccss. Two vertieal venous sinuses terminate above the foramen magnum: the basioccipital is also perforated by a similar venous sinus near its middle part. The petrosal is excavated by a deep but narrow cercbellar fossa; a long groove or notch upon its upper surface leads to the meatus auditorins internus: tlie petrosal is, as it were, bent upwards upon this groove. The tympanic bulla supports the under part of the petrosal like a capsule. The tympanic carity is divided into two chambers, one above the termination of the meatus cxternus, the other beneath and internal to it. The carotid eanal perforates the tympanic internal to this part of the ehamber. The Eustachian groove commences from the angle between the supraand infra-meatal divisions, and grows decper and wider until it forms the canal at the fore part of the tympanic bone. The rhinencephalic fossa is divided by a strong and sharp crista
galli. The frontal bones form an unusually small proportion of the cranial cavity: they are extensively overlapped posteriorly by the parietals. Besides its superior size, the skull of Cystophora proboscidea differs from that of the Cystophora cristata in the form and proportions of the palatine bones, the posterior borders of which present three notehes; in the relatively shorter extent of the nasal processes of the premaxillaries; in the greater prominence of the antorbital processes of the maxillaries; and the absence of the depression beneath the antorbital foramen. In the skull of a young Proboseis-Seal I have seen traces of a suture partially dividing the orbital from the rostral part of the maxillary, extending from the side of the nasal aperture into the antorbital foramen : this ineompletely separated part might be compared with a large lacrymal, but there is no trace of a distinet bone or of any laerymal perforation.

In the 'Sea-Lion' (Otaria jubata) the superoeeipital is broader and more nearly vertical than in the preeeding speeies of Seal: the basioecipital is earinate below; the paroccipitals form an obtnse angle, but are less prominent than the large mastoids. The petrosals and tympanics are not expanded into a bulla ossea, but send down a subcompressed smooth tuberosity: the entoearotid pierces the petrosal. The pterygoids are pierced by the ectocarotids. The bony palate is very long, and remarkably eoncave, from the bending down of its sides: its posterior border is transversely truncate. The sagittal and oceipital erista are singularly elevated. Each frontal sends out an obtuse process near its junction with the parietal, into the middle of the extensive temporal fossa, and each developes large, horizontal, triangular, postorbital processes. In old males, the parictal also sends out a ridge, and the great temporal minscle scems thus to have been divided into three masses: there is a ridge from the inner side of the parietal, dividing the middle from the anterior lobe of the cerebrum, parallel with the external ridge projecting into the temporal fossa. The maxillaries develope antorbital proeesses. The nasals are short and broad, and articulate with the premaxillaries as well as the maxillaries.

The posterior part of the falx and the whole of the tentorium are ossified. The superoccipital sinus, commencing by a common aperture at the hinder extremity of the longitudinal sinus, diverges on each side into the substanec of the exoccipitals, and terminates in a deep and wide fossa on the inner side of the condyle, from which fossa one canal leads backward to open external to the eondyle, and another downward and inward to terminate in the
foramen jugulare. The bony tentorium terminates anterior to the petrosal, which has an obtuse expanded imner apex, and shows no petrosal pit. There is no Gasserian fossa. A ridge divides the foramen ovale from the foramen rotundum. The sella turcica is broad and shallow: it is defined by posterior clinoid processes: there are no anterior ones. The rlinencephalic fossa is narrow, but of unnsual longitudinal extent: the optic nerves traverse a common camal of nearly an inch in extent before it divides. The ascending plates from the palatine processes of the maxillary form a deep groove for the reception of the romer. The superior turbinals occupy that part of the olfactory fossa which overarches the rhinencephalic chamber: this is divided by a broad crista galli. A large oblong vacuity at the outer and posterior side of the nasal passages between the frontal, presphenoid, palatine and maxillary bones, is elosed by membrane in the recent animal. There is a smaller vacuity in the corresponding part of the skulls of some other species of Seals.

In all Seals, the convex mandibular condyle is transversely extended, terminal, the border of the jaw extending from below the condyle forward, and rarely developing an angle: this is best marked in Phoca groentandica: in Otaria it seems to project just below the condyle.

The hyoid arclı consists of stylo- epi- and cerato-lyyals, and of a basi-hyal in form of a transverse bar, with a pair of thyro-liyals: the stylo-hyals are attached by ligament to the outer side of the petrosals.

In the Walrns (Trichecus rosmarus, fig. 339), the basioceipital is subearinate below. The superoccipital, 3 , inclines a little upward and forward, is divided by a median crista, and is bounded above by a brond rugged tract. The renous fossa on the inner side of the condyles is divided by a bony bar. There is a wide sphenopalatine vacuity. The paroccipitals are broad, but not very prominent: the hinder surface of the skull is much cxtended laterally by the great development of the mastoids, 8. The alisphenoid is excluded from the parietal, 7 , by the junction of a small part of the frontal, 11, with the squamosal, 27. There is no trace of a lacrymal bone, but a small elliptical canal perforates the base of the antorbital process of the frontal slightly upwards. The zygomatic process of the squamosal is remarkably thick. The malar sends up a lofty postorbital process, but there is none on the frontal: the maxillary, 21, developes a large but low sub-bifid antorbital process: it is perforated by a large antorlital foramen, and excarated by a large aud deep socket for the
eanine tusk. The premaxillaries, 22 , are minute. There is a large oval vacuity in the lateral wall of the posterior nares. The skull is singularly expanded, short, obtuse, and, as it were, truneated anteriorly; and, being constricted between the orbits, the upper surface presents an hour-glass form. The parietes of the cranium are thick and dense, with a diploë, gradually degenerating into a coarse eellular textnre, in the enormous mastoids. The tentorium is bony, the sella tureiea large and shallow, with anterior and posterior elinoid proecsses, and the erista galli is prominent. The petrosal terminates bclow in three obtuse processes, but there is no bulla ossea. The pterygoid process is perforated by the eetoearotid. The bony roof of the palate is very concave towards the mouth, and terminates behind by a broad biangular noteh. The tympanie cavities are smooth, and almost hemisphcrie : the antorbital eanal is large : the nasal fosse contract as they pass forward to the vertical external nostril. The osseous part of the septum narimm is formed by the canaliculate vomer and the eoaleseed plates of the prefrontals, dividing the postcrior halves of the olfactory ehamber. The lateral sinuses are completely surrounded by bonc. A vein perforates the hack part of the parietals and terminates in the longitudinal sinus. The bony tentorium terminates above the base of the petrosal; a thick, smooth ridge enters the lower half of the fissure between the anterior and posterior cerebral lobes. A similar but shorter ridge from the inner side of the frontal more eompletely defines the rhinencephalic chamber: an elliptic foramen leads from the lower and outer corner of this fossa into the back part of the orbit between the orbitosphenoids and frontal.. The mandible, 32 , articulates by a thicker condyle than in true Scals: it is terminal: the feeblc angle slopes forward from it: the earonoid is oblique and rounded.

In the Bear-tribe, as in the Seals, the tentorium is ossified: the interparietal unites with and forms a triangular process of the superoceipital: the alisphenoid articulates with the parietal: the ectocarotid pierces the pterygoid process. There is no pterygoid forsa.

In the European Black and Brown Bcars (Cresus arctos) the frontal region of the skull is raised and convex. In the Ameriean

Grisly Bear (Ursus ferox), the faeial part of the skull is relatively longer than in the Ursus arctos, and the nasal proeesses of the premaxillaries are much longer, are more slender, and artieulate direetly with the anterior processes of the frontals. In the Brown Bear, the maxillaries artieulate with the small part of the nasals and separate the premaxillaries from the frontals. In the Polar Bear (Ursus maritimus, fig. 340), the lower extremities of the oeeipital eondyles are united by a ridge, whieh, however, is less prominent than in the Ursus ferox. The precondyloid foramen is exposed. The superoeeipital, 3, terminates above in a strong ridge overhanging the condyles. Both paroeeipitals, 4, and mastoids, 8 , are well developed, but the latter are the larger

processes. The temporal ridges, eommeneing at the postorbital processes, converge at a right angle and mect at about two inehes behind the orbits, and form a long and prominent sagittal erest, the upper border of wheh is straight; the frontal region is low and flattened. Within the eranium the eerebellar fossa is formed by the bony tentorium above, and by a shorter osseous ridge below, separating the eerebellum from the upper part of the medulla oblongata. The commencement of the entoearotid eanal may be seen distinet from the fore part of the forsa jugularis; the petrosal fossa is divided into two cells for the reeeption of the eerebellar appendages. The mastoid is oceupied by a elose diploë, which receives no air-eclls from the tympanie eavity. The meatus auditorius terminates obliquely within the tympanie eavity. A triangular constrietion separates the proseneephalie from the rhineneephalie chamber. The malar, 26 , alone forms the postorbital rising: the squamosal, 27 , does not reach so far; it developes a low subyuadrate cranial plate, g. The mandible
devclopes a long angular process, 30, which rises toward the coudyle.

In the Racoon (Procyon), and Coati (Nasua), the entocarotid pierees the inner border of the tympanic bulta: there is no cetocarotid canal. The mastoid is thicker than the paroceipital. The bony tentorium terminates upon the petrosal above the shallow depression of the cerebellar appendage. The upper cranial parietes are moderately thiek and with a diploë. In the Coati the olfactory chamber, with the superior turbinals, extends above the whole rhineneephalic fossa, and forms in part the frontal elevation of the cranial contour. In the Benturong (Ailurus), the eetocarotid perforates the pterygoid, as in Bears.

The skull of the Badger (Meles taxus) is ehiefly remarkable for the closeness with which the transverse condyles of the lower jaw are grasped by the borders of the articular grooves at the base of the zygomatic processes, so that the mandible eannot be disarticulated without some violenee. The lateral sinus terminates behind the glenoid cavity, as in other Ursida, and the subpetrosal sinus terminates at the entocondyloid formmen. There is no eetocarotid eanal.

In Ratetus the transversely extended base of the paroccipital is applied to the back part of the bulla. In the Glutton (Gulo) the eranial cavity is less expanded postcriorly, and less eonstrieted anteriorly, than in the Ratel. There is a smooth articular surfaee in the basioeeipital, but it is less distinctly continuous with the oceipital condyles than in the Ratel. The zygomatie arches are larger, stronger, and more curved : the palate is relatively broader: both the paroceipital and the mastoil proeesses are feebly developed.

In the Stoats and Weasels (Putorius), the meatus auditorins is an oblique perforation in the lateral and infcrior parietes of the skull, directed from within outward and forward, and not produeed upon an auditory process. The bulla tympanica is very extensive. The bony tentorium, whiel projeets rather from the upper than the back wall of the cranium, terminates upon the back part of the petrosal, above the deep eireular pit for the cerebellar appendage. The rhinencephalic fossa is less distinetly defined than in Plantigrades from the rest of the eranial cavity; the olfaetory ehamber extends backward both above and beneath that fossa, causing the eranium to appear dilated at that part : the air must be filtered, as it were, through the eomplex turbinals before passing into the eanal of the posterior nares.

In the Otter (Lutre), a narrow articular surface upon the basi-
occipital eonnects together the two eondyles: the temporal ridges, commencing from the postorbital processes, meet at an open angle, and extend backward, as a low and straight sagittal crest, as far as the broader oecipital crest. The zygomatic arches are strong and boldly curved; they bifureate anteriorly to surround the large antorbital foramen. The cranial walls are thin, without diploë : the impressions of the convolutions are strongly marked: there are no frontal sinuses. The cranial cavity is remarkable for its great posterior expanse and its extreme contraction between the prosencephalie and rhinencephalic divisions. The bony tentorium terminates upon the petrosal above the small pit for the cerebellar appendage. The sella tureiea is shallow. The tract for the optie chiasma is long and narrow. The crista galli extends backward through nearly the whole of the rhinencephalic fossa. The longitudinal sinus communicates behind with two small venous foramina in the superoccipital bone. The olfactory chamber commences directly in front of the rhinencephalic fossa, the cribriform plate, or back part of the olfactory capsule with the coalesced prefrontals, separating them. The entry to the nasal passages is almost blocked up by the large and complex turbinals.

In the Civet (Viverra Civettex), the occipital condyles are separate from each other at their lower extrenities. The paroceipitals and mastoids have coaleseed and form a triangular plate of bone, applied to the posterior part of the tympanic bulla, like the eapsule of the acorn to the seed. This bulla is more circumseribed and much more developed than in the Otter: the bony meatus auditorius is much shorter, and opens directly into the tympanic eavity. The nasal proeesses of the upper maxillaries extend lackward much further than the nasal bones, the reverse being the case in the Otter. The pterygrid processes are perforated by the ectocarotids. The cranial cavity is longer and narrower, and the postombital constriction much less, than in the Mustelide. The bony tentorium is continned forward beyond the petrosal, and terminates above the foramen rotundum. The petrosal is impressed by a deep pit for the cerebellar appendage. A vertical inverted traet of the cranial walls divides the prosencephalie from the rhinencephalic compartments. The olfaetory forsa is continued backward above as well as beneath the rhinencephalic compartment. The crista galli is rudimental. When the squamosal is removed, the extensive surface of the parietal and alisphenoid is exposed to which it was applied, and the shall racuity in the siture between those bones which was left
for it to cover in completing the eranial walls. In some Viverrines (Ichnezmon, Mangusta), the orbital processes of the frontal and malar meet and eireunscribe the rim of the orbit.

In the Common Fox (Canis Vulpes), the paroccipital is triangular, and applied to the back part of the aeoustic bulla, but is smaller and thicker than in the Viverrines', and stands off more from the bulla. The alisphenoid articulates with the parietal. The interparietal, which has anchylosed with the supcroceipital, penetrates the posterior interspace of the parietals. The nasal processes of the maxillaries are truncate, and terminate on the same transverse line as the nasals. The maxillaries directly articulate with the middle part of the nasals below the bony tentorium, which appears to be developed from the superoccipital.

The skull of the Wolf (Canis Lupus), as of the Jackal (Canis aureus), differs from that of the Fox in the median depression and transverse convexity of the frontal region produced by the bending down of the postorbital processes; in the greater posterior extension of the nasals, as compared with the maxillaries; and in the encroaehment of the lacrymal on the face. The frontal bones of the Wolf preserve a more uniform breadtl than in the Jackal, being less expanded posteriorly where they join the parietals. The short and wide meatus auditorius terminates obliquely in the tympanic bulla. The base of the zygomatic process is piereed by a vertical venous canal.

Like the Jackal and Wolf, the Dingo (Canis Australis) differs from the Fox in the greater transverse convexity of the frontals, especially opposite the postorbital processes, and in the greater longitudinal depression between the frontals; in the greater posterior extension of the nasals, as compared with the maxillaries; and in the encroachment of the laerymal bone upon the facc. In a comparison of the skull with that of the Marsupial Carnivore (Thylacinus Harrisii) from the sume part of the world, which equals the Dingo in size, the most striking difference is the comparative superiority of the eerebral eavity in the wild Dog, and of the olfactory cavity in the Thylacine, the proportions being reversed in the two specimens. The superoceipital overhangs the foramen magnum in the Dog, but is on the same vertical plane with it in the Thylacine. The paroceipitals are more compressed in the Thylacine, and their base is not applied to the acoustic bulla, which is of mueh smaller size and formed exclusively by the alisphenoid,

[^127]not by the petrosal and tympanic, as in the Dog. The tympamic las preserved its distinctness in the Thylacine, but has coaleseed with other elcments of the temporal bone in the Dog. A wide and deep groove divides the bulla from the basisphenoid in the Thylacine, but the sides of the basisphenoid in the Dingo are swollen and abut against the large tympanic bullae. The articular cavities for the lower jaw are much nearer the occiput in the Thylacine than in the Dingo, and the malar bones enter partially into their formation. There are two large vacuitics in the back part of the bony palate in the Thylacine, but this part is entire in the Dingo. The antorbital foramina are larger in the Thylacine, and much nearer the orbits than in the Dingo; they are also formod partly by the malar, and are not wholly perforated in the maxillary bone, as in the Dingo: the lacrymal bone is much larger in the Dingo, and encroaches much more upon the face: the nasal boncs are broader posteriorly in the Dingo, and extend further back, as compared with the maxillaries. The petrosals are much larger in the Dingo, and send bony plates into the tentorium, which plates are not present in the Thylacine. The chief bony part of the tentorimm projects from ncar the middle of the occiput, and does not reach the petrosal in the wild Dog. The sella turcica is defined by the posterior clinoid processes in the Dingo, but not in the Thylacine. The foramina optica and lacera anteriora are blended together in the Thylacinc, but are distinct in the Dog. Although the olfactory chamber is so much larger in the Thylacine, the rhinencephalic fossa is smaller than in the Dog. The lower jaw, besides its greater length and stenderness in the Thylacine, differs by the bending in of the angle, which is the characteristic of the Marsupials. In most of these distinctions the Thylacine manifests its nearer affinity to the oviparous type of skeleton.

The chief distinction between the wild and domestic Dogs is the greater proportional size of the cranium to the face in the latter, and this increases as the size of the variety diminishes.

The affinity of the Hymena to the Viverrida is shown, in the skull, by the broad, triangular, rough plate formed by the paroccipital and mastoid, and applied to the back part of the acoustic bulla: but the pterygoid processes are not picreed by the ectocarotids. The strength of the muscles which work the jaw is shown by the extent of the temporal fossa, the licight of the sagittal crest, the thickness and the expanse of the zygomatic arches, the height of the coronoid processes, and the depth of the strongly-defined fosse into which the great museles of mastication
are inserted. The antorbital foramina are small semilunar slits. The nasal processes of the maxillaries extend further baek than the nasals.

The specifie eharaeter of the Lion (Felis Leo), as eompared with the Tiger (Felis Tigris), is shown by the obtusely-pointed termination of the nasal process of the maxillary, and its extension baekward to the same transverse line as that whieh the hinder ends of the nasals reach. In the Tiger the nasal bones are relatively longer and extend further baek than the nasal proeesses of the maxillaries, whieh are, as it were, truneated. The eoneavity of the frontal platform between the defleeted postorbital proeesses is narrower than in the Lion ; the suborbital foramina are smaller.

The earnivorous character of the skull, fig. $34 \mathbf{i}$, as exemplified by the sagittal, 7, and oeeipital, 3 , erests, by the strength and expanse of the zygomatie arehes, 27 , by the depth and shortness of the jaws, by the height and breadth of the eoronoid processes, and by the extent of the muscular fossa of the lower jaw, reaches its maximum in the skull of the old males of both these large Felines. The triangular oceipital region is remarkable for the depth and boldness of the seulpturing of its outer surface. The eonjoined paroeeipital, 4, and mastoid, 8, form a broad and

thiek eapsular support for the back part of the acoustic bulla. The pterygoid processes are imperforate. A well-marked groove extends on each side of the bony palate from the posterior to the anterior palatine foramina. The premaxillaries, 22 , are eomparatively short, and one half of the lateral border of the nasals, 15, directly articulates with the maxillaries, 21 .

The bony tentorium extends above the petrosal to the ridge over-langing the Gasserian fossa : the petrosal is short, its apex is neither notehed nor perforated: the ecrebellar pit is very shallow.

The sella turciea is deep, and well defined by both the anterior and posterior elinoids. The rhineneephalic fossa is relatively larger than in most Carnivora, and is defined by a well-marked angle of the inner table of the skull from the prosencephalic compartment: the olfactory chamber extends backward both above and below the rhinencephalic fossa: the upper part of the chamber is divided into two sinuses on each side: the superior turbinals extend into the anterior sinus, and below into the presphenoilal sinus. The inner surface of the squamosal is tripartite; the upper facet rough for the broad squamous suture, the anterior and inferior one smooth and deep for the natiform protuberance of the hemisphere, and the posterior facet smooth and undulated where it is applied to the petrosal eapsule, its juncture with which is effected by the medium of the mastoid, which is ancliylosed to both.

The strengtlening of the cranium in Carnivora, in reference to the foreible action of the museles attached thereto, is gained by the growth of bone in the form of ridges both from the outer and the inner surfaces of the eavity. This is so completely filled by the brain, its blood-vessels and membraues, that were any concussion conceivable of ecrebrum against cerebellum through an active bound or leap, an interposed membrane so clastic as to yield and recover would best meet the contingency: to suppose that a hard plate between the two soft masses had any suel relation to the spring of the stealthy feline implies both dull physiological reasouing and limited knowledge of the comparative osteology of the Carnivora: the commonly aseribed final eause of the bony tentorium of the Cat is refinted by the presence of that part in the plantigrade Bears that do not move by bounds, and in the pinnigrade Scals that ean only shuffle along the ground, and are pillowed by the waves during their swiftest and most habitual movements.

The hyoid arch of Felines consists of stylo-cerato- and basihyals, with the appended thyro-liyals. The stylo-hyals, as a rule, comneet the arch to the base of the skull: but in the Lion a long ligament inter venes between the stylo- and ecrato-hyals, allowing more freedom of motion to the base of the tonguc and larynx, in relation to the characteristic vibratory roar of the king of beast.. ${ }^{1}$
C. Bones of the Limbs.-The general characters of these in the Cetrivora have been defined, and the prineipal modifications determining the piuni- planti-, and digiti-grade modes of locomotion are illustrated in figs. 172-175, 11. 288, 289.

The pimigrades are pentadactyle, and without traee of elavicle. ${ }^{1}$ comaxyi ol. vii p. 38.

The scapula is broad and curved backward, the anterior and basal borders are continued in Phoca by a bold eonvex line to the angle terminating the posterior costa, which is as strongly concave, fig. 335. In Otaria the breadth is increased by the production of the fore part of the seapula, eausing a disproportionate extent of the prespinal surface, on which is a low aceessory ridge, anterior to the true 'spine,' not posterior to it as in Megetherium. The spine is farther from the posterior eosta in Trichecus. In all Phocidce it terminates in a short aeromion. The humerus is shorter than the seapula in Phoca, longer in Otaria; it is renarkable for the great development of the imer tuberosity and of the deltoid ridge, which is deeply excavated on its outer side. The inner condyle is perforated in Phoca, not in Otaria, Monachus, and Trichecns. The middle of the distal end is exeavated by the artieular troehlea; an olecranal fossa is feebly or not at all marked. The antibrachial bones are compressed, and firmly united, the interosseous space being widest in Oturia: the olecranon is large and hatehet-shaped. The forepart of the lower half of the radins is produced. The seaphoid and limar bones are connate: the fiftle metacarpal articulates with the cunciform as well as with the unciform: the magnum is the least of the earpals. Although the pollex or the first digit exceeds the third, fourth, and fifth in length, it presents its characteristie inferior number of phalanges, by which the radial border of the fin is rendered more resisting. The pelvie arch is renarkable for the stunted development of the ilia, and the great length of the ischia and pubes: the symplysis is short, and divaricable in parturition, as in the Guinea-pig (p. 380). The femur is equally peculiar for its shortness and breadtli: its head has no pit for a 'round ligament.' The tibia and fibula present the more usual proportions, bat are anchylosed at their proximal ends. The astragalus, fig. 173, a, has its proximal articular surface in two facets, one for the tibia, b, the other for the fibula, m : a part of the beme projects 'proximad' of these surfaces; and it is produced 'distad' to articulate with the mavieulare, s : the co-extended caleancum, cl, is applied to the tibial side of the astragalus. In Otrria the calcancal proeess is longer. The entoemeiform, i, mesoeuneiform, ectocuneiform, c, and cuboides, b, have the usmal eomncetions. The bones of the foot are much developed, and are modified to form the basis of a large and powerful fin: in Phoce, the middle toe is the shortest, and the rest inerease in length to the margins of the foot: in Olurin and Tricheces the thes are subequal in lengtlo. The long-bones of Seals have no medullary cavity.

In the plantigrade Carnivora the clavicle is wholly wanting. In the Bear-tribe, the seapula, fig. 336, 51 , is remarkable for its alinost quadrate form, and for the strong development of the ridge between the infraspinatus and teres major, constituting alnost a second spinc. The inner condyle of the humerus is not perforated, save in Ursus ornatus. The antibrachials little, if at all, exceed the humerus in length; their shafts are of equal strength. The scaphoid and lunar bones of the carpus have coalesced: the pisiforme is elongated and expanded at its free end like a calcancum. The fore-foot is 5-dactyle, the pollex being a little shorter than the other toes, which are subequal in length; the basal sheath of the ungual phalanges is thickened and tuberculate below : the claw-bearing part is long, subcompressed, and slightly arehed. The ilia are shorter, tlicker, and broader than in Digitigrades: the isehia are short and expanded, forming with the strong pubies a long symphysis. The acetabula are large and deep; the ilio-pubie angle is 125° The femur is rewarkable, in Bears, for its great lcngth, and superficial resemblance to that in man; but its shaft is relatively thicker, straighter, and rather flattened from before backward; it differs also in the more shallow pit for the round ligament, in the great trochanter being longer though less prominent above, in the less projection of the small trochanter, in the minor expansion of the distal condyles, and in the smaller size of the rotular channcl. The medullary cavity is confined to the middle third of the bone. The medullary artery, which enters at the posterior and inner side, below the middle of the shaft, takes an oblique course upward. The tibia is one-fourth shorter than the femur: the fibula is much smaller and compressed: but the medullary eavity extends through nearly the whole of the shaft of this slender bone. In fig. 174, $c l$ marks the ealcaneun, s the naviculare, e the eetocuneiform, b the cuboides; the astragalus is almost as broad as long, without a calcaneal process. The hallux is rather shorter than the other toes, which are of subequal length, and form the basis of a broad flat foot.

In the seapula of the Racoon (Procyon), the pre- and postspinal fosse are of equal extent. The inner condyle of the humerus is perforated as in all Subursines. In Nasua and Arctictis, a supplementary earpal ossicle is wedged between the scapholunar and the metacarpal of the pollex, external to the trapezium: the tarsus shows a corresponding ossicle wedged between the naviculare and entocuneiform. In the Racoon, the fibula is characterised by three processes behind its distal end : the malle-
olar process is very short, but plays upon a well-marked articular surface of the astragalus. In a Kinkajou (Cercoleptes), I have seen the eondyle notehed in the right and perforated in the left humerus. In the Badger (Meles taxus), the seapula presents a subquadiate form, crossed diagonally by the spiue, and with one angle produced to form the glenoid eavity: the eoracoid is represented by a low tubercle: there is no inferior ridge or spine. In a Ratel (Ratelus meliivorus), with a similar shaped scapula, the eoracoid is sub-bifid, and the acromial tuberele is slightly produeed. I have seen both humeri perforated between the eondyles, only the right one above the inner condyle. There is no medullary eavity in the tibia. The humerus of Mydaus shows both the intercondylar and entocondylar holes. In the Glutton (Gulo), the seapula is of a trapezoidal form, equally and obliquely bisected by the spine, which developes a bifid acromion: there is a distinet coracoid tuberele. The inner condyle of the humerus is perforated. The deltoid ridge terminates on the middle of the shaft. Both pollex and hallux are relatively shorter to the other toes, in most Subursines, than in the true Bears. Besides the patella, the fabellæ are commonly present at the knee-joint.

In Mustelide the acromion is more distinetly bifureate than in Suburside: the posteriorly produced plate is broad in the Poleeat (Putorius), in which the glenoid surfaee is continued upon the coracoid tuberele. In that of the Otter may be notieed the greater expanse of the prespinal portion and the well-marked division of the acromion, the broader and posterior part bending down, and the narrow and anterior one extending forward: the coraeoid tuberele is rudimentary. The humerus is remarkable for the compression of the shaft, whieh is strongly bent forwards, and for the eontinuation of a ridge from the deltoid as far as the distal condyles. The inner one is perforated. The ulna is mueh longer, and is stronger than the radius. The supplementary ossicle answering to that marked i in fig. 361, is present in the earpus of both Lutra and Putorius. The diminution of the pollex proeceds: that of the hallux in a less degree: the third and fourth digits are the longest in both fore and hind feet.

In the Viverride the scapula is longer, more quadrate, and more equally bisected by the spine than in Mustelide: the aeromion is bifid, but the divisions are less distinet. There are detached elavicular styles. The innermost digit is relatively shorter than the rest in both fore and hind feet, taking no share in the snpport of the body. In Mangusta tetradactyla the pollex is absent. In the Civet, and Cynogale, the humerus is piereed
between the eondyles, but not, or rarely, above the imer condyle. In the Genet, the humerus shows the entocondylar, but not the intercondylar hole. In the femur a ridge cxtends from the great trochanter more than half-way down the shaft of the bone. In the Iehncumon (Mangusta), the npper contour of the scapula is slightly sigmoid, very convex antcriorly, and the prespinal is larger than the postspinal fossa. The acromion is bifid. The humcrus is pierced both between the condyles and above the inner eondyle. The supplementary ossicle at the radial side of the earpus is present in most Viverrida. Its homotype exists in the tarsus of Cynogale and Bassaris. The hallux is wanting in both Mangusta penicillata and M. tetradactyla.

In the Canide the seapule, and especially the limb-bones, are longer and more slender, relativcly, than in the forcgoing earnivorous families. There are elavieular styles. The humerus has the intereondylar vaeuity, not the entocondylar perforation. The pollex is reduced to the 'dew-claw' appendage; and, in Canis pictus, to a metacarpal style, which is coneealed. The ulna and radius are closely and extensivcly united: swift course is the characteristic of the present digitigrade family. The slender fibula closely adheres to the lower half of the tibia. The hallux is reduced to a minute begimning of the metatarsal. The accessory earpal ossiele and the fabello are present.

In the Hycena, the humerus is usually pierced between the condyles: it is thicker in proportion to its length than in the Dog, but is more bent and twisted : the sane characters mark the radius and ulna, which are still shorter in proportion than in the Dog. The pollex is reduced to a rudiment of its metacarpal. In fig. 191 (Hyena, p. 306), sl marks the 'seapholunar' common to the carpus of all Carnivora, c is the cuneiforme, p the pisiforme; t trapezium, d trapczoides, m magnum, and u unciforme. The femur is more compressed antero-posteriorly than in the Dog, and the swall trochanter is more posterior in position. The neck is longer, and the head of the bone larger : there is a fabella belind cach eondyle. The tibia is shorter than the femur : the rotular ridge is less produced than in the Dog. The fibula is less flattened at its lower half, and more independent of the tibia than in the Dog. The entocnnciform supports a rudiment of the metatarsus of the hallux, as in the Dog : the calcancal process is shorter and thicker.

All Felines have the clavicular bone s. The humerus perforated above the imner condylc, but not betwcen the condyles. In the Lion, fig. 337, the supraspinal fossa of the scapula, 51 , is less
deep than the infraspinal one, and its border is almost uniformly convex : the acromion is bifid, the recurved point being little larger than the extremity or anterior point. A supplementary ossicle is wedged in the interspace between the prominent end of the scapho-lunar bone and the proximal end of the metacarpal of the pollex. The ilia, fig. 342, c, are long and narrow, but thick; placed so obliquely upon the vertebre, a, as to form an angle of about 155° with the lumbar series: the ischia, c, are also long and directed on the same antero-posterior plane: the length, ridged strength, and great obliquity of the 'innominate' bone, afford powerful attachment and adrantageous leverage to the muscles acting upon the lind limbs. The boundary of the ischiatic notch is feebly marked at g. The pulbis is short, but the ischio-pubic symphysis, f, is long: the ilio-pubic angle is 120° in the Lion. The posterior exceeds the anterior pelvic outlet in
 size. The os penis exists in all Carnicora, and is remarkably developed in Bears and Scals.

The pollex, in the Felines, is retained on the fore-foot, and, like the other toes, is terminated by a large, compressed, retractile ungual phalanx, forming a deep sheath for the firm attachnent of the large curvel and sharp-pointed claws. This highly-developed unguiculate structure, with the dental system and concomitant modifications of the skull, completes the predatory character of the typical Cornicors.
§ 190. Skeleton of Quadrumana.-The Quaitrumana combine the opposable thumb, in the lind limb with complete clavicles, and a greater relative capacity of cranium than in foregoing Gyrencephala. The orbits are turned more forward, have the bony rim entire, and in most of the order are partitioned off by bone from the temporal fossa. In no Quadrumane is the hyoid arch complete, or articulated by bone to the bavis cranii.

To the Quadrumana the transition is, not from the Gyr-, but from the Liss- encephalc. For promoting the Colugns to the Lemurs the grounds are almost as good as for degrading them to the Bats. It has required a thorough knowledge of the structure
of the Ayc-aye to gain a majority against kecping Cheiromys amongst the mice. The singular group of Lemuridx, which, from the superior brain-development, especially the posterior extension of the cerebrum over the cercbcllum, I assoeiate with the Gyrencephala, ${ }^{1}$ and by the hinder thumb with the Quadrumana, offers great diversity in dentition and minor characters.
A. Vertebral Column.-All Quadrumana have the seven eervical vertebra. In the Lemurine or Strepsirrhime group the following are the numbers of the other vertebre:-

	D	L	s	c
Galeopithecus	13 or 14	6 or 7	3 or 4	18 or 19
Tarsius spectrum	13	6	2 or 3	29 or 30
Cheiromys madagaseariensis	13	6	2 or 3	22 or 23
Perodicticus Potto.	15 or 16	6 or 7	2 or 3	19 or 20
Stenops tardigradus	16	8	3	7 or
, gracilis	14 or 15	9	3	5 or
Otolicnus Peli	13	7	3	23
" crassicaudatus	13	6	3	27
Lichanotus Indri	12 or 13	8 or 9	4	10 or 11
Tarsius spectrum	13	6	3	29 or 30
Lemur	13	6	2 or 3	28 or 29

The majority, including the type-form, of the Lemuride thus have 19 dorso-lumbar vertebre: the slow nocturnal specics have longer and less flexible trunks, approaching in the number of dorso-lumbars-24-to the vertebral characters of the lisseneephalous Sloths. The tail is, as usual, the seat of the greatest diversity; the slow lemurs, again, in the shortness of this terminal appendage, recal a bradypodal charaeter. In Stenops gracilis a metapiophysial tubercle is developed on cach of the twelve anterior dorsals: on the thirteenth it takes the place of the diapophysis, and in the fourteenth cxtends forward, and offers an articular surface for the outcr side of the postzygapophysis: it has the same disposition in the lumbar serics, where the diapophyses are scrial repetitions of the base supporting the anchylosed rib in the first lumbar vertebra. The succeeding lumbars slightly decrease in sizc as they approach the sacrum. No centre of motion of the trunk is indicated by the direction of the dorso-lumbar neural spines. In the more active and flexible-bodied Lemuride the trunk-vertcbree resemble in proportions, connections, and direetion of neural spines those of the agilc Carnivora. In Lemur

[^128]nigrifons the metapophysis begins to be dcveloped in the middle dorsal vertebre, and, in the tenth, projects above, but distinet from, the diapophysis. In the eleventh the diapophyses have disappeared, and the metapophysis is on the outside of the prozygapophysis. From this vertebra a well-marked anapophysis is developed, which is continued from all the succeeding vertebre. The diapophysis reappears upon the first lumbar, and increases in length and breadth as the other lumbar vertebre approach the sacrum. The centre of motion of the back is indieated by the vertical spine of the tenth dorsal vertebra, towards which those of the other dorsal and of the lumbar vertcbræ ineline.

In the Aye-aye (Cheiromys), fig. 343, the true vertebre describe one slight curve eonvex backward from the middle dorsal to the penultimate lumbar, bcyond whieh there is a slight bend in the opposite direction to and ineluding the sacrum. The bodies of the dorsal vertebre gradually lengthen and deepen as they approach the loins, with a narrower and at last almost earinate under surfaee. The diapophysis, longest on the first dorsal, very gradually shortens to the eleventh, where the beginnings of the metapophysis and anapophysis are manifest. These proeesses beeome widely separated in the twelfth and thirteenth dorsals, and the diapophysis is lost. The neural spines are of equal length throughout the dorsal series. The vertieal one is on the eleventh VOL. II.
dorsal, towards which the rest of the dorso-lumbar series slightly incline.

The vertebre go on increasing in size to the fifth of the lumbar series,-the diapophyses more espeeially, which recommenee in the first lumbar; these processes are direeted forward and downward, as well as outward, are truncate, with the anterior angle a little produced; that of the last lumbar is similar in shape and direction, but is smaller than the two preceding. The anapophysis overlaps the front margin of the following vertebra to the fifth lumbar, in which it beeomes too short; it disappears in the sixth. The metapophysis overhangs the back part of the ncural areh of the preceding vertebra. The neural spine deereases from the third to the last lumbar, where it has 3 lines of length. The last two ribs join their own centrum elose to the front intervertebral space; the rest have the usual intervertebral articulation of the head. The first rib is the shortest (9 lines) and thickest; the others inerease in length to the ninth, and then gradually shorten to the thirteenth, whieh is 1 inch 3 lines in length. The tuberele and diapophysial articulation exist to the eleventh rib; the twelfth and thirteenth artieulate only by the head. The first cartilage artieulates with the manubrium, the second to the seventh inelusive with the joints of seven stcrnebers, the eighth with the seventh, and the ninth to the joint between the seventh and eighth stemeber.

The bodies of the cervical vertebrex are broad, short, and flattened below in the last five. The last three have no neural spines: there are tubereular beginnings of these in the fourth and third; in the seeond it is 2 lines long, thick, and produced anteriorly; in the atlas it is as a small tuberele. The seventh cervical has a simple slender diapophysis, 2 lines in length; in the sixth it coalesees with the tuberele of a short pleurapophysis, also confluent by the head with the centrum, and projecting outward, baekward, and downward, with an obtuse end. The vertebral artery, in its forward course, enters the canal between the pleur- and di-apophyses. The pleurapophysis simply completes that bony eanal in the fifth eervical, making a short angular projection outward and forward in the fifth, fourth, and third cervicals. The low flat neural arch is narrowest in the fifth. The slape and disposition of the zygapophyses give an imbricate character to the union of those arehes in the last six cervieals. The body of the axis is carinate below ; that of the atlas has the usual state of an 'odontoid process; the hypapophysial bar uniting with the neurapophysial pillars or crura of the atlas is
carinate. Besides the wide canals for the vertebral arteries in the 'transverse processes' of the atlas, the neural arch is perforated above the base of that process on cach side for the passage of a nerve.

In the short-tailed Indri (Lichanotus Indri), the atlas las a short hypapophysis, but no neural spine: the transversc process is moderately long and broad, and is perforated lengthwise and vertically by the vertebral artcry, which afterwards pierces the neural areh. The transverse process is perforated in all the other cervical vertebre: the pleurapophysial portion of that of the sixth forms a broad lamella directed downward and outward. Laeh of these cervicals has its hypapophysial ridge and neural spine, the latter moderately long and slightly increasing to the seventl. The broad neural arch is fissured behind. The spines of the dorsal vertebrex are continucd of equal length throughout that region, and have the same direction. The dorsal diapophyses support each a metapophysial tubercle, which augments as they diminish, and seems to take their place in the eleventh and twelfth vertcbre, the ribs of which have no tubercle. In the twelfth dorsal the metapophysis projects from above the prozygapophysis, and is continucd backward upon a well-developed anapophysis, which commences at oncc in that vertcbra, and continues to be developed, although decreasing in lengtl, to the penultimate lumbar inclusive. The metapophyses, wlich are prominent in the anterior lumbar vertebre, gradually subside as these approach the sacrum. The diapophysis has a low rough tubercle on the first lumbar, which is developed into a depressed plate increasing in length and breadth as the succeeding lumbars approach the sacrum. As in the true Lemurs, eight pairs of ribs directly join the sternum, which consists of seven boues and an cnsiform cartilage.

Nineteen is the usual number of dorso-lumbar vertebre in the Platyrrhine group, the Spider-monkeys (Ateles) offering the exception of eightecn, viz. D 14, L 4 : the varieties which have been formulised in the type-genus Cehus are due to frectom or confluence of pleurapophyscs, as e.g. D 12, 1.7, Cebus hypoleucus; D $13, \mathrm{~L} 6$, C. capucinus; D 14 , L 5 , in most Capuchins. The tail is long in all, and prehensile in most Platyrdhines; it rarely has so fcw as 18 (Callithrix sciureus and C. Spixii), usually 30 vertebre, or upwards, as in Atcles paniscus, which has 33 caudals.

In the little Ouistiti (IIapale Jacchus), the accessory tubercle appears upon the middle dorsal vertchra; it divides into met- and
anapophyses on the tenth dorsal, where a diapophysial prominenee still artieulates with the tuberele of the rib. The diapophysis disappears in the sueeeeding dorsals in whiel the met- and anapophyses beeome distinct and remote, with progressive increase of size. The diapophysis reappears in the first lumbar as a short depressed process, and inereases in length and breadth to the penultimate lumbar. In tlis vertebra the anapophysis beeomes much shorter, and almost disappears in the last lumbar. The transverse proeess of the atlas is perforated lengtliwise and vertically by the vertebral artery, and the neural areli is perforated. The bodies of the sueceeding eervicals are produced posteriorly into a convex prominence whieh fits into a coneavity on the fore part of the eentrum behind. Eight pairs of ribs direetly articulate with the sternmm, whieh eonsists of seven bones.

In the Capuehin (Cebus capucinus), the tubereles representing met- and an-apoplyses project distinetly, the one from the fore part, the other from the baek part, of the diapophysis of the fifth dorsal : they progressively increase in size, and beeome quite distinet in the thirteenth dorsal, in whieh the metapophysis has risen upon the anterior zygapophysis. The anapophyses eontinue to be developed to the penultimate lumbar. The diapophyses progressively inerease in length from the first to the last lumbar vertebre. Hromal arehes are articulated to the inferior interspaces of the six anterior eaudals, and are supported by distinet hypapophyses from the fourth caudal, whieh proeesses eontinue to be developed after the hrmapophyses have eeased to be so. Nine pairs of ribs artieulate direetly with the sternum, whieh eonsists of seven bones and an ensiform eartilage.

In the black Spider-monkey (Ateles niger), the tuberosity above the dorsal diapophyses beeomes a ridge in the eleventli dorsal, and is produeed forward into an angular metapophysis: in the thirteenth dorsal it is produeed to the same extent baekward into an anapophysis: in the fourteenth dorsal these processes are distinet and well-developed but the diapophysis has disappeared. The anapophysis is developed from the first and second lumbar vertebre, and the diapophysis from all the lumbars, progressively increasing to the penultinate one. A pair of hypapophyses begin to be developed from the fifth caudal, and inerease in size in the sixtli and seventh. The hemal areh is anehylosed to these proeesses in the eighth and ninth eaudals, but the hypapophyses eontinue to be developed, without the addition of that arch, throughout the suceeeding eaudal vertebre. The auterior zygapophyses disappear in the uinth caudal, but the
metapophyses which support them in the preceding caudals continue to be developed to uear the cud of the tail. The diapophyses are single on each side in the seven auterior caudals, but are divided into an anterior and posterior portion on each side of the vertebre throughout the rest of the tail. The third to the sixth cervical rertebre inclusive show an anterior concavity and a posterior convexity of the articular ends of the centrums in the transverse direction, an anterior convexity and posterior concavity in the vertical direction, producing an interlocking joint, combining strength with freedom of motion, and analogous to that in the neck of birds. The pleurapophysial part of each transverse process is a broad depressed plate, with its anterior margin produced, and progressively increasing in size from the third to the sixth vertebra. A similar increase is prescated by the neural spincs, cspecially in the sixth vertebra. As in the Capuchins, the transverse process of the atlas of the Spider-monkeys is perforated lengthwise only by the vertebral artery, which aftcrwards perforates the neural arch. The atlas has a hypapophysial ridge, and the axis shows a corresponding tubercle. Nine pairs of ribs articulate directly with the stcrnum, which consists of eight bones and an ensiform cartilage.

The vertebral column of the Platyrrhinc Quadrumana is the seat of greater and more important varicties: the caudal portion is reduced to a stunted 'coceyx,' the lumbar region is shortened and strengthened, and the sternum is composed of fewer and broader bones in the Apes properly so called. In the Monkeys and Baboons, the dorso-lumbar vertebre are ninetcen in number as a rule, cither D $13, \mathrm{~L} 6$, or D 12, I 7. The latter is the common formula in the Macacques: the caudals varying from upwards of 20 in Macacus radiatus to 15 in M. rhesus, and being reduced to 3 or 4 in M. inuus. In the Baboons (Cynocephatus), the caudals also vary from 25 in C. porcarius to 10 very small and stunted vertebre in the Mandril (C. papio, fig. 344). In this, as in the Black-faced Drill (C. porcarius) and Thoth (C. Thoth), the dorso-lumbar vertebree are redueed to D 12, I 6 . An anapophysial tubcrele is developed from the diapophysis of each dorsal vertebra, increasing in length to the two last, in which it has an independent origin. The metapophysis is suddenly developed from the tenth dorsal, and presents an articular surface to a second facet on the outer side of the hinder zygapophysis of the vertebra in front. The anapophyses continue to be developed from all the lumbar vertebra, progressively decreasing as these approach the sacrum, and appearing in the last as a mere ridge
on the upper part of the base of the diapophysis. The homotypal ridge may be recognised on the first sacral vertebra. There are rudiments of hypapophyses on the middle caudal vertebre. Seven pairs of ribs articulate with the sternum, which consists of seven bones and an ensiform eartilage. The transverse process of the atlas is perforated lengthwisc and vertically by the vertebral artery; which afterwards pierees the neural arch: the neural spine is represented by a small tuberele, and there is a hypapo-

physial ridge. The centrum of the axis is much produced backward, underlapping that of the third vertebra: this charaeter is gradually lost in the succeeding vertebre: the transverse process of the axis ends in two tubercles. The lower (pleurapophysial) division of the process is compressed in the third cervical, and becomes developed into a plate, progressively increasing, and disproportionately so in the sixth cervical: it is absent in the seventh cervical, the transverse process of which is, however, still perforated by the vertebral artery. The neural spines are
simple, and inerease in length from the third to the seventh cervicals. Those of the dorsal vertebre are longer and stronger, but diminish in length as they approach the loins: that of the tenth indieates the eentre of motion of the trunk.

In the Pig-tailed Macaeque (Macacus nemestrinus), the atlas has a strong hypapophysis, but no neural spine or tubercle: the transverse process is perforated obliquely. The baek part of the centrum of the axis is much produced ; that of the third cervical is less produced. The spine of the axis is long and bont backward. A pleurapophysial plate extends obliquely from the transverse processes of the third, fourth, and fiftll cervicals, and projects downward and outward as a distinct broad plate from that of the sixth vertebra. The long and simple transverse process of the seventh is not perforated by the vertebral artery. Metapophysial tubereles are developed upon the diapoplyses of the second and succeeding dorsal vertebre, increasing in distinetness and size to the tenth: in the eleventh the anapophyses become separate processes, and the metapophyses develope a facet for the accessory articular surface of the posterior zygapophysis of the tentl vertebra. This additional interlocking is continued to the antepenultimate lumbar, the joint being further strengthened by the underlapping of the long anapoplyses: these disappear in the last lumbar. The diapophysis is a rudimental ridge in the last dorsal, but becomes a distinct depressed sharp plate in the first lumbar, and progressively increases in size with an antroverted direction in the succeeding lumbar vertebra. Light pairs of ribs articulate directly with the sternum, which consists of eight bones and an ensiform cartilage.

The Doucs (Colobus, Nasalis, Semnopithecus) have commonly D 12, L 7: but sometimes D 13, L 6 (S. melalophis). In Semnopithecus Enteltus, the cervical transverse processes incline downward : their plewrapophysial divisions from the second to the sixth increase; but this part is wanting in the seventh, and the transverse process is imperforate. The accessory tubercle is woll developed on the diapophysis of the mintlo and tenth dorsals; the diapophysial part disappears on the eleventh and twelfth dorsals, in which the accessory tubercle becomes divided into well-marked met- and an-apophyses. The diapophysis reappears on the first lumbar, and progressively increases to the antepenultimate onc. The metapophysis exists as an elongated tubercle ontside the prozygapophysis from the eleventh dorsal to the last lumbar, and the anapophysis is present from the tenth dorsal to the sixth lumbar. The hemal arch is present in a few of the anterior
caudal vertebre. Seven pairs of ribs direetly artieulate with the sternum, which consists of six bones, slender as in all previous Qucdrumana.

In the Gibbons, with D 13, the lumbar vertebre are 5, save in Hylobatcs syndactylus, fig. 189, where they are redueed to 4 . In the Silvery Gibbon (II. leuciscus), the transverse proeess of the atlas is only perforated lengthwise and the neural areh grooved by the vertebral artery. A pleurapophysial part of the transverse process begins to project forward on the fifth cervical, and becomes a distinet and larger depressed plate on the sixth: the transverse process of the seventh is a simple diapophysis, and is imperforate. The metapophysis and anapophysis beeome distinet in the twelfth dorsal, and diverge from each other with increase of size in the thirteonth. The anapophysis disappears in the lumbar vertebrex, whilst the diapophysis reappears and the metapophysis is retained. The interlocking joints, common to the preeeding Quadrumana with Carnivora, here and heneeforth cease. Seven pairs of ribs directly join the sternum, whieh consists of the manubrium, the body, whiel eonsists of two or more anchylosed broad and flat bones, and a slender bony base of the ' ensiform cartilage.' Two pairs of ribs, and part of a third pair, articulate with the manubriun.

In the Sianang (H. syndactylus, fig. 189), the last dorsal shows well the separate diapophyses, metapophyses, anapophyses, and zygapophyses, more partieularly the distinetion between the anterior zygapophysis and the now superadded metapophysis. The diapophyses are broad depressed plates, progressively increasing in the first three lumbar, whilst the anapophyses diminish and disappear on the third lumbar. The metapophysis recedes from the anterior zygapophysis in the last lumbar, and becomes quite distinet from it in the first saeral, in whieh, nevertheless, the articular surface of the zygapophysis has a nearly vertieal position. The saerum, by its greater breadth and the number of vertebre forming it, indicates the nearer affinity of the Siamang, than of other Gibbons, to the Oraugs.

In the Orang-utan (Pithecus Satyrus), the vertebral formula is : -7 eervical, 12 dorsal, 4 or 5 lumbar, 5 or 6 saeral, 2 or 3 eaudal. The transverse proeess of the atlas is bitnberculate, and is perforated lengthwise by the vertebral artery, whiel afterwards grooves the neural areh: there is a low hypapophysial tuberele, but no neural spine. The trausverse proeess of the axis is deeply grooved, but not perforated; eonsisting almost entircly of the pleurapophysial portion. In the third vertebra the two portions
of the transverse process are united, external to the perforation by the vertebral artery. In the fourth cervical the pleurapophysial part projects distinctly below the diapophysial part, and progressively diverges in the fifth and sixth, inereasing in size, especially in the latter, without, however, acquiring that antero-posterior breadth which gives it the lamelliform character in the inferior apes. The transverse process of the seventh eervical consists of the diapophysis only, and is grooved below, not perforated, by the vertebral artery. The distinet nature of the equally simple transverse process in the second and seventh cervical vertebre of this Orang is well shown by their different relative positions to the groove with which the vertebral artery has impressed them. The neural spine of the axis is bifureate; that of the third cervieal is simple, long, and slender; those of the succeeding cervicals are still longer, and progressively inerease in thickness as well as length. The metapophysis appears as a tubercle near the base of the anterior zygapophysis of the twelfth dorsal: it is equally distinet on the first lumbar, but subsides to a slight eminence on the suceceding lumbar vertebre. The anapophysis is only distinguishable from the diapophysis upon the first lumbar vertebra; it is not so developed as to interlock, but serves to illustrate the relation of the diapophysis of that vertebra to those of the antceedent dorsals and the succeeding lumbars. The spine of the third dorsal has an anterior and posterior prominence: the suceceding spines gradually diminish in length, but increase in breadth and antero-posterior extent to the penultimate lumbar. Seven pairs of ribs directly articulate with the broad sternum, which eonsists of the manubriun and four pairs of ossicles, the two lower pairs of which have coalesced. The manubrium is relatively shorter than in the Gibbous, and receives only the first and part of the second pairs of ribs. As a rule, the number of dorsolumbar vertebre, in Pithecus, is 16: that of the sacro-caudal vertebre 8. The first rib is less curved, and deseribes a smaller portion of a circle than in Man: its head is relatively larger, and is supported on a shorter neck: it has an epiphysis, as in Man. The distal portion is relatively less expanded than in Man. The other ribs chiefly differ in their more compressed form and their more gradual and equable eurvature.

In the Chimpanzec (Troglodytes niger, fig. 345), the vertebral formula is :- 7 cervical, 13 dorsal, 3 or 4 lumbar, 5 or 6 sacral, and 2 or 3 caudal. The pleurapophysial portion of the tramserse process of the atlas is shorter than in the Orang, and has not mited with the longer diapophysial division: the canal for the
vertebral artery is thus not quite eircumseribed by bone: the artery afterwards pierees the neural arch on the left side, and deeply grooves it on the right side. The two portions of the transverse process of the axis have coalesced, and form a thick tubercle externally, surrounding the vertebral artery: this tubercle

Chimpanzee (Thoglodytes Niger). CuIx. increases in breadth in the third, and in length in the fourth; in the fifth it sends a distinct tuberele from its lower part, and the answerable part forms an antroverted, obtuse, broad process in the sixth. The pleurapophysial element is wanting in the seventh, in which the diapophysis is deeply grooved below for the vcrtebral artery. The spines of the $4-7$ ecrvicals are long and simple. A metapophysis may be distinguished in the eleventh and twelfth dorsals, which becomes distinct from the diapophysis in the thirtecnth, and projects from the outside of the prozygapophysis in all the lumbar vertebre. The diapophyses are longest in the first and second lumbars, are shortest in the third, and are augmented in the fourth by the developement of a thick anapophysis at their back part, which here articulates with the first sacral vertebra. In old males the fourth lumbar becomes the first sacral by a more complete coalescence. Seven pairs of ribs directly join the sternum, which consists of five flat bones and an ensiform part: the fourth and fifth bones have coalesced: the manubrium, as in the Orangs, is the broadest, and receives the first pair and part of the second pair of ribs. These are shorter, and their neck relatively longer than in the Orang, and they are more curved. The thirteenth rib retains a distinct articular tubcrele and neck.

In the Gorilla (Troglodytes Gorilla, fig. 346), the dorsolumbar vertebre, as in the Climpanzee, are 17 in number, the
thirteenth dorsal answering to the first lumbar in Man, with the pleurapophyses retained as distinct elements. The bodies of the middle dorsal vertebre are shorter in proportion to their breadth; the diapophyses are thieker, stand more direetly outward, and the eostal surfaces are more eoncave and oblong than in Man; the metapophysis, whieh projeets distinetly in the eleventh vertebra in Man, does not so appear until the twelfth in the Gorilla. In the first dorsal the diapoplysis projeets direetly outward; the proportionate increase of the eentrum is greater than in Man; the neural spine is less obliquely bent baekward, and is thieker antero-posteriorly, though not longer; the anterior zygapophyses are more produced; the diapophyses are broader and somewhat shorter. In the eleventh dorsal the neural spine is much expanded at its extremity. In the twelfth, there are distinct and well-developed metapophyses, projecting. from the fore part of the diapophyses, and overhanging the ante-
 rior zygapophyses: this vertebra eorresponds in this character
with the elerenth of the Human subject. The neural spine is broader and tlicker, especially superiorly; there is but one costal surface on each side; the diapophyses are reduced in size, the metapophyses equalling them, the body and ncural spine increasing. The thoracic ribs are longer and thicker, more convex on their inner side, with the subcostal groove not defined, except in two or three of the longest ribs near their vertebral end; the neck is shorter and thicker than in Man; the longest rib is one foot four inches in length,- that of the longest rib in an average-sized man being thirteen inches. The manubrium sterni is much broader than in Man (fig. 183), and less deeply cxcavated for the clavicles; the three or four sternebers which coalesce to form the 'body' of the breast-bonc have a like character. The cervical vertebre differ most from the Human in the extraordinary length of the spines of the last five vertcbre; that of the fourth cervical is not less than three inches and a half; the spines of the sixth and seventh cervicals gradually decrease in length and increase in thickness: the spine of the dentata is trihedral, the surfaces being divided by produced sharp ridges: the canal for the vertebral artery decreases in diameter from the sixth forward to the atlas. The bodies of these vertebre are longer in proportion to their breadtlo than in Man, and the lower (pleurapophysial) part of the transverse process of the sixth is more suddenly increased in length and breadth, and diverges more from the upper division of the same process. The atlas is narrower than in Man, with a wider neural canal, especially between the condyles, which are smaller than in Man. An obtuse process is developed backward from the part representing the body, which is broader than in Man; the perforation of the transverse process is smaller, and that process is narrower, especially vertically; the groove behind the upper articular processes is deeper and narrower. The axis or dentata differs chiefly in the greater size of the neural canal, and in the greater length and less breadth of the neural spinc; the zygapophyses are smaller, the transverse processes are inore directly perforated by the arterial foramina, and the diapophyses are more produced.

In the first lumbar vertebra, fig. 346, 2 , the metapophysis is still large and distinct ; the anterior zygapophysis becomes more convex and oblique in position ; the diapoplysis is suddenly elongated, as compared with that of the corresponding (second) Human lumbar vertelra; the chicf difference is seen in the smaller size of the neural canal which relates to the infcrior developement of the lower extremities. The same difference
obtains in the second (3 , answering to the third Human) lumbar vertebra; the diapophyscs are broader and more dcpressed in the Gorilla; a fossa divides the anterior zygapophysis from the metapophysis ; the centrum is as broad as in Man, but is deeper and longer ; the neural spine extends more obliquely backward, and its expanded apex is bifid. In the third lumbar vertebra, 4, the difference is very striking in the minor cxpanse of the centrum in the Gorilla, especially behind, in the much smaller and more depressed form of the ncural canal, in the shorter and broader diapophysis, the more distinct mctapophysis, in the convex anterior and more approximated postcrior zygapophyses, and in the greater length of the centrum. In old males this vertebra is included by the ilia. The whole serics of true vertebre in the Gorilla form but one curvature, which is slightly concave forward, especially in the dorsal region.

The sacrum departs in a greatcr and more instructive degree from the Human type; it consists of five or six anchylosed vertebre, but they are longer and narrower than in Man, and present a very slight curve, with the concavity forward; the ncural foramina are much smaller, the neural spines much more developed, and coalesce to form a single strong bony ridge, cxtended over and gradually subsiding on the last sacral vertebra, the neural arch of which is entire; the first sacral vertcbra, ib. 5, answers to the fifth lumbar in Man; the zygapophyses are smaller, but the metapophyses are present and well developed. The posterior outlets for the sacral nerves are very small, and the whole neural canal is much more contracted than in Man.
B. The Skull.- The skull of the Ayc-aye, fig. 343, in comparison with that of lower mammals of similar size, is remarkable for the large projortion of the cranium to the face, and the extremic shortness of the latter in advance of the orbits. Its profile contour, from the upper border of the foramen magnum, curves rapidly from the occipital to the parietal region, and is continued with a bold convexity to the root of the nose, whence it slopes straight to the nostril. The cranium is still more convex transversely; it expands a little in advance of the lambdoid ridge, and gradually, but very slightly, contracts to the postorbital processes; these, meeting with the malars, complete the rim of the orbit, which opens widely beneath that part of the frame into the temporal fossa.

In the complete circumscription of the rim of the bony orbit Chiromys exemplifies its quadrumanous affinity ; whilst it shows the special family to which in that order it belongs by the
deficieney of the wall partitioning the orbital from the temporal cavity. The Lemurs, in this defeet, indicate the transition to the lower unguiculate Mammalia, the Galeopithecus, fig. 253, offering the last step by the incompleteness of the orbital frame-ring behind. The outlook of the orbits, in the Aye-aye, obliquely forward, upward, and outward, but least so in the last direction, differs significantly from the direct outward aspect of those illdefincd cavitics in most Rodents.

The basioccipital extends to the fore part of the large tympanic bullx, to abut against which its margins are slightly produced. The occipital condylcs are long and narrow. The plane of the foramen magnum forms witl the basioccipital an angle of 125°, its aspect being downward and backward. The paroccipital is a low eminence, and the mastoid in front of it is hardly more prominent ; neither process extends freely downward. The superoccipital, ib. 3 , is a thin plate moulded on the middle and lateral lobes of the cerebellum, and showing outwardly their respective prominences. The petrosal is impressed by the pit for the cercbellar appendage.

There is a small triangular interparietal. The basisphenoid is expanded by a large sinus, and coalcsces with the presphenoid. The alisphenoid developes the ectopterygoid ridge, extending from between the squamosal and tympanic to the outer side of the entopterygoid; both plates are imperforate. The natiform protuberances form deep depressions in the alisphenoid, on each side the flat square platform of the eranial surface of the basisphenoid, in the middle of which is the subcircular pituitary pit. There are no clinoid processes. The alisphenoids join the parietals, which contribute the greatest share to the formation of the calvarium. The tympanic, coalescing with the petrosal, is, together with that elcment, expranded into an oval bulla on each side the basisphenoid. The parictals, 7 , impressed from within to transparent thinness by the longitudinal convolutions of the eerebrum, do not exceed half a line in thickness elsewhere.

The coronal suture crosses the cranium transversely three lines bchind the postorbitals: the frontal suture remains, as in other Lemuride, and, like the sagittal, it is a harmonia. The fore part of the frontals, 11 , project a little between the origin of the nasals, and also between the nasals and maxillarics; they then join the lacrymals, form the upper half of the inner wall of the orbit, and unite behind with the orbitosphenoid, alisphenoid, and parietal. The rhinencephalic fossa is subcircular and large: the median septum is produced into a 'crista galli.' The frontal sinuscs give
no outward indication, but are extensive; they are divided from cach other by a median bony scptum ; each division communieates with the nasal chamber by a median orifice and by a lateral one with the antrum. The nasals, 15 , join above with the frontals and at the sides with the premaxillaries, 22. The presphenoid is short, smooth on the under surface, and coneave there transverscly. The vomer quickly assumes the form of a vertical plate, with the free hind border concave. The palatines form the hinder third of the bony palate; the suture of each with the maxillary is slightly convex forward: they are divided from the inner alveolar wall of the last two molars by a groove which deepens into a fissure, bounded beyond the last molar by the pterygoid. The maxillary forms more than the middle third of the palate, leaving the smallest share of the roof of the moutl to the premaxillary. The facial plate of the maxillary, 21 , extends by a narrow produced apex to the lacrymal, 73 , but is excluded from the frontal by the junction of the lacrymal with the premaxillary; it is perforated by a small antorbital foramen. The premaxillaries constitute a larger share of the facial wall, rising as high as the nasals, between which and the maxillaries they interpose a broad plate, circumscribing, with the nasals, the external nostril. The socket of the incisor curves upward and backward to the maxillary, in which it is continued to beneath the orbit. The malar bone, 26 , is long and decp, especially below the orbit, of which it forms the lower half; and where it bends outward to expand that eavity, it unites with the lacrymal and extensively with the maxillary anteriorly, and bifureates behind,--the narrower branch mounting to the postorbital, the broader one continuing backward to the squamosal, 27 . This essentially facial or maxillary element is anchylosed not only with the mastoid and petrosal, but also with the tympanic ; its cranial plate terminates by a convex border overlapping the contiguous borders of the alisphenoid and parietal. The articular surface for the mandible is broad and flat, save where its inner border bends down upon the side of the petro-tympanic bulla. There is no ridge behind it to prevent the free movements of the mandible backward and forward, accompanying the rodent action of the great scalpriform incisors: in this the Ayc-aye differs from other Lemurida.

The mandible, ${ }^{32}$, is short and deep: each ramus is compressed and straight; they converge at an acute angle to a short ligamentous symplysis. The condyle is sessile, narrow, rather long, convex both across and lengthwise, and the latter most so, looking hackward and upward, and placed on the level of the grinding-teetl.

The thin borders of the aseending ramus diverge from the eondyle as they pass, the one downward and inward to the low angle, and the other forward and upward to the better-marked and more advaneed eoronoid, the obtuse end of which is nearer the last molar than the condyle. A slight ridge above the angle bounds the surface for museular insertion behind; and here the angle is a little inflected.

In the Woolly Lemur (iichanotus laniger, fig. 177), the eranium has a short paroecipital and a shorter mastoid proeess which coalesees with the base of a large petro-tympanic bulla. The squamosal is perforated by a venous foramen anterior to the auditory meatus. The malar extends baekward almost to the glenoid eavity, whieh, as in following Lemurida, is defended by a posterior ridge. The large orbits reduce the intervening part of the frontal to a narrow ehannel. The premaxillaries are divided anteriorly by an angular eleft separating in the same degree the anterior or mid-ineisors from each other. The lower jaw is remarkable for the great production of its broad and rounded angle: the baek part of its symphysis is also produced.

In Stenops gracilis, and especially in Tarsius spectrum, the most remarkable feature in the cranium is the expanded frame of the orbits, which are elosely approximated above the nasal bones. These overhang the premaxillaries, the most produced part of which forms the lower boundary of the external nostril, from which, in the Slender Lemur, the premaxillaries slope downward and baekward to the ineisive alveoli. The temporal ridges are widely separated along the upper part of the globular eranium, where the eoronal and fronto-sagittal sutures interseet eaeh other
 at right angles. As in the Are-aye and most Lemurida, the eranial sutures are ' harmonix.'

In the Slow Lemur (Stenops tardigradus), the orbits are less elosely approximate than in the Stenops gracilis, and the anterior surfaee of the small premaxillaries is more nearly vertieal. The vomer divides the nostrils to their posterior apertures.

In the Potto (Perodicticus, fig. 347), as in other Slow Lemurs (Stenops), the eranial expansion behind the meatus auditorius forms one-third the length of the skull, owing to the great pro-
portional size of the occipital and mastoid. The intcrorbital space is broader than in Stenops tardigradus.

In the true Lemurs the facial part of the skull is more produced; it is formed by the lacrymals, nasals, and maxillaries; the premaxillaries continuing very minute. In Lemur Macaco the petrosal has a large and deep cerebellar fossa : a short tentorial ridge projects anterior to this. There is a low postclinoid ridge. The lateral sinus pierees the petrosal where it joins the parietal and meets a second venous channel traversing the middle fossa of the cranium to terminate at the postglenoid foramen. The foramen ovale is a small fissure between the petrosal and alisphenoid, less than the foranen rotundum, which is close to the foramon lacerum anterius: the outlet of the foramen ovale is in the Eustachian fossa.

The grey Lemur (Chirogaleus griseus, fig. 348) has the more common abbreviation of the antorbital part of the skull, in which the lacrymal foramen is conspicuous. The malar is perforated by the 'nervus subcutaneus mala.' The coronoid process of the mandible, well developed in all Lemurida, is here very high.

The anterior cornua of the hyoid, in Cheiromys and other Lemurida, are
 longer than the posterior, and include epi- and cerato-hyals, supporting a cartilaginous stylo-hyal.

In the Platyrrhines the cranium is proportionally larger and the jaws less, as the species are smaller in size: they thas exemplify the immature characters of the larger species. The cranium is more globular, the oceiput more protuberant, the 'foramen magnum ' more advanced in position, and with a more downward aspect, in the Marnosets (Jacchus), and Ouistitis or Ti-tis (Callithrix), than in the Howlers (Mycetes). The frontal suture is obliterated in all, and the single bone, thence resulting, is triangular with the apex extending back, between the parietals, in some Capucins (Cebus) as far as the superoccipital (fig. 239, Cebus) : thus repeating a piscine collocation of supra-cranial bones. The entocarotid perforates the back part of the petrosal.

In all Platyrrhines a division of the lateral cerebral venons sinus excavates the base of the petrosal to terminate at the $1^{\text {most- }}$ glenoid fossa, as in most Lemurs: the malar is similarly perforated by a facial nerve: the plate which divides the orbital from the temporal fossa exhibits a small monssified vacuity in VOL. II.

M H
most Platyrrhines. ${ }^{1}$ The petrosal has a deep cerebellar depression. The postchinoid plate is more developed, the rhinencephalic fossa is smaller, and the orbital walls project more into the cranial cavity than in the Strepsirrhines. The lacrymal is not extended upon the face, and the foramen is within the orbit.

In Callithrix sciureus the orbits do not communicate with the temporal fossse. There are no paroceipitals, and only a feeble mastoid ridge. The petrosals are slightly swollen at the basis cranii. The parietals articulate with the malars. There is a vacuity in the interorbital septum.

In Cebus, also, there are neither paroccipitals nor mastoids, and the petrotympanics form slightly swollen convexities. Besides
 the postglenoid venous foramen, there is a second at the end of the squamosal suture. The foramen ovale is between the petrosal and alisphenoid. The superoccipital plate has two large depressions, as in Callithrix. The orbital plate of the malar shows a small hole near its junction with the alisphenoid. ${ }^{2}$ The basi-hyal is excavated behind; not so in Cullithire: the anterior cornua are long, and formed by epi- and cerato-hyals; the thyro-hyals are broader, not longer.

In the Spider Monkeys (Atcles) the paroccipitals and mastoids form rough tubercles. There is the same venous foramen as in Cebus, formed by the meeting of two converging sinuses between the squamosal and alisphenoid. Ossification has extended into one half of the tentorium. The cerebellar fossa in the petrosal is of great depth. The foramen ovale is formed by the petrosal and alisphenoid. The vomer extends to the posterior nares. The incisive foramen is large and single.

The symphysis of the lower jaw is completely anchylosed, and the angle of the jaw rounded off, as in most Platyrrlines. The condyles and small coronoid processes are of equal height: in Marmosets the coronoid is higher, and in Hapule Jacchus the mandibular angle is slightly produced. The basi-hyal is a convex plate: the cerato-liyals are shorter than in Cebus: the thyrohyals are longer.

[^129]In the Red Howler (Mycetes seniculus, fig. 350) the superoccipital region is almost flat and vertical, at right angles with the parietal surface, from which it is separated by a well-defined ridge: the foramen magnum looks almost directly backward. The maxillo-premaxillary sutures demonstrate the junction of the premaxillaries with the nasals. The ectopterygoids nuch exceed the entopterygoid plates in size. The large malar foramen communicates with the orbit: the suborbital foramina of the maxillary are two in number, and small. The chief feature of peculiarity in the skull of the Howler is the extraordinary depth of the mandibular rami, especially of their angular and aseending portions. This development relates to the protection and support of the still more extraordinarily developed hyoidcan and laryngeal apparatus-the
 organs of the loud and dissonant cries which have procured for these South American Monkeys their common name. The superior length of the postglenoid process, in relation to the larger and heavier lower jaw, is worthy of notice. An obtuse paroecipital ridge extends from the condyle to the mastoid ridge. The precondyloid, jugular, and earotid foramina all open into an irregular fossa between the petrosal and paroccipital ridge. There is a small venous foramen outside the mastoid, and a second at the anterior border of the squamosal. The hyoid arch is reduced to the basi- and thyro-hyals; but the former is enormously developed, and expanded into a capacious sac with thin walls, and a posterior opening, admitting a laryngeal pouch. A narrow transverse plate descends from the roof of the bony sac. The cerato-liyals are obsolete. The thyro-hyals long, for suspending the sac to the upper angles of the large thyroid cartilage.

There is much greater diversity, and more marked ascending steps of structure, in the skull of the 'Old World' than of the ' New World' Monkeys. No Catarrhine shows ossification of the tentorium; and in all the preclinoid, as well as postclinoid, processes defend the sella. The same remark, as to concurrence of immature proportions of cranium and jaws with infantile stature, applies to the Catarrhine as to the Platyrrline Quadrimana. But the larger species of the lower groups ((y) nocephutus, Papio, e.g.) show more carnivorous or brutish pro-
portions of skull than do those (Orang, Gorilla) of the higher group.
In the Black-faced Drill (Cynocephatus porcarius, fig. 351)
 the facial much exceeds the cranial part of the skull. The superoccipital is almost flat: but, sloping upward and backward, forms an acute angle with the parietal, from which it is divided by a strong ridge, where the diploë is obliterated. The mastoid is more developed than the paroccipital prominence; but both are low. The jugular fossa is distiuct from the precondy loid and carotid foramina; outside the latter is a short ' vaginal' process. The petrosal bifureates anteriorly into a 'custachian' and an 'apical' process: the latter underlaps the base of the pterygoid process: the inner surface of the petrosal is closely applied to the basisphenoid and basioccipital as far as the 'foranen jugulare:' there is, thus, no 'foramen lacerum basis cranii.' The squamosal is perforated near its middle by one or two small foramina, but there are no ' post-glenoid' outlets of the lateral sinuses. The foramen ovale is between the petrosal and alisphenoid, and the nerve which it transmits pierces the base of the broad ectopterygoid: the entopterygoid plate is comparatively small, but ends in a hamular process. The glenoid articular surface projects from the under part of the base of the zygoma, and is slightly convex: it is defended by a postglenoid process. The vomer divides the posterior nostrils, and there is a venous sinus or foramen between its base and the presphenoid. The coalesced nasals are prominent and gradually expand as they advance forward: they unite with a small proportion of the premaxillaries. The fosse between the nasals and maxillary tuberosities are short and wide. The pterygoid fosse are large and deep. The alisphenoid is separated by the squamosal from the parictal. The ufiet angle of the matoid is nedged betiveen the superoccipital and parietal. The limits of the interparietal may be traced upon the inner surface of the calvarium. There is a shallow cerebellar fossa above the meatus internus. The optic
 fossa is much contracted by the bulging prominence of the roofs of the orbits.

In the Magot (Macacus Inuus, fig. 352) and other Macacques,
with a gencral reduction of the size of the animal, the jaws are concomitantly reduced, so that the cranial cavity forms onc half of the length of the skull. The general characters are those noted in the Drill. In Macacus nemestrinus, a process of styliform shape is developed from the lower end of each mastoid. The posterior clinoid plate is largely developed and is perforated. The cercbellar fossa is modcrately decp; the foramen ovale is betwcen the alisphenoid and petrosal. The
 entry to the rhinencephalic fossa is contracted by a pair of lateral processcs.

In the still smaller Monkeys (Cercopithecus, fig. 353) the cranial cavity forms a larger portion of the skull. In C. ruber, the alisphenoid joins the parictal on the left side, not on the right. In all the premaxillaries risc high between the maxillaries and nasals: the interior of the cranium shows the cerebellar pit of the petrosal, and the well-developed crista galli dividing the deep rhinencephalic fossa. The postglenoid process is pointed, and in some (Cerc. allogularis) the mastoid also: the entocarotids picree the petrosals. The Doucs (Semnopithecus) have a similar proportion of cranial cavity: in which the cercbellar fossa of the petrosal is both large and deep. The entry to the rhincneephalic fossa is constricted by the approximation of its lateral margins, which almost touch at
 the middle. The foramen ovale is between the petrosal and the alisphenoid. The tympanic air-cells extend into the mastoid and squamosal. The bony septum between the orbital and temporal fosse is entire in all Catarrhines.

In the Gibbons (Hylobates, fig. 354) the jaws are more shortened, the cranium more expanded. The alisphenoid is perforated by the foramen ovale, and joins the parictal. The premaxillaries do not reach the nasuls.

The petrosal still shows the cerebellar fossa: its exterior surface is no longer swollen into a cellular bulla, but exhibits a wellmarked eustachian process. The ento- and post-glenoid processes are well developed. The orbital border is thick and prominent, but the supcrciliary portions do not meet above the nasal. In the skull of a young Gibbon I have scen the exceptional extension of the frontal backward to the occipital, as in fig. 239 (Cebus). The mandibular symphysis is more nearly vertical and the angle more produced in the Siamang than in other Gibbons.

In the Orangs and Chimpanzees the foramen ovale is pierced
 in the alisphenoid, and the entocarotid traverses the petrosal, which has no cerebellar pit. The cranial and facial parts of the skull are about equal in the adult males, with fully developed laniary canines: in the females, with smaller canines, the jaws are less; and the cranial cavity predominates still more in the immature individuals. In some rarieties of Orang (Pithecus Satyrus, fig. 355) the cranium rises ligher than in others: and this feature is increased, in old males, by the growth of the parietal crest, which bifureates anteriorly, defining a flat triangular space upon the frontal, and posteriorly to form the lambdoid crests,-a provision, as in Carnionre, for the large and powerful temporal muscles. The superorbital ridge does not projeet above the nasal bone: this, usually single and small, is flat. The premaxillaries coalesce with the maxillaries when the sockets of the permanent laniaries are dereloped: and about the same time the basisphenoid coalesces with the basioecipital. The sphenoidal sinus is almont wholly formed by the presphenoid, and it is divided by a longitudinal septum. The lower border of the basi-ccripito-sphenoidal floor of the cranium is parallel with the bony palate or floor of the nostrils. The plane of the occipital foramen forms an open angle with the straight basi-occipito-sphenoidal line. The alisphenoid, 6 , joins the parietal, 7 ; the precondyloid foramina are usually double on each ide. The mastoid is not a
prominent process; the tympanic air-cells are continucd therefrom into the squamosal. The interorbital sinuses do not ascend to within half an inch of the upper level of the orbits, and there is consequently no proper frontal sinus : a eancellous structure occupies the usual place of this, below which the part of the interorbital septum formed by the hinder crista of the nasal bone and the frontal presents a very compact dense structure. The small venous eanal continued from the foramen cecum traverses the base of this septum to terminate at the lower end of the short nasal bone. The 'lamina perpendicularis æthmoidei,' or coalesced prefrontals, presents a quadrate form. The floor of the nasal carity is long and thick, as eompared with that in Man, and a larger proportion of it is contributed by the premaxillary. The orbits are directed forward and have a full oval shape. The area of the nasal cavity equals more than one third of that of the cranial carity. The most anterior part of this cavity is formed by the deep, narrow, and well-defined rhinencephalic fossa: the 'erista galli' is rudimental. The division of the prosencephalic compartment, for the anterior and middle lobes of the cerebrum, is very slightly defined by the orbitosphenoid. The tentorial ridge is not continued backward beyond the petrosal. The nasal end of the incisive canal is divided by the process extending from the premaxillary to the maxillary; but this is the only part of the premaxillary which does not coalesce with the maxillary. The turbinal plates are less developed than in the Gorilla; the lower one is shorter than the one above; and there is not any plate answering to the small superior turbinal in the Gorilla and in Man. There is, in some Orangs' skulls, a process, formed by the anchylosed base of the stylolyyal, which is defended in front by a low and obtuse raginal process. The compact wall of the mandibular symphysix is thick and dense. The symphysis slopes from above downward and backward.

In the genus Troglorlytes, the squanosal, fig. 356, 27,
 usually articulates with the frontal, 1 ; the premaxillaries coalesce with the maxillaries carlier than in Pithecus, the alveolar part of the suture being obliterated before the nasal portion; the palatal part long remains. In the
smaller species of Chimpanzee ($T r$. niger) the temporal ridges meet, in old males, upon the sagittal line, but rarely develope a crest: the lambdoidal boundary-ridges are better marked.

Independently of the superiority of size of the Tr. Gorilla over the Tr. niger, the skull of the former, figs. 357-359, presents well-marked differences of form, differences in the developement and proportions of the intermuscular ridges, in the disposition of certain sutures, and in the structure and proportions of certain teeth. Compared in profile, the skull of both species, figs. 356 and 357 , presents a striking difference from that of the Orang, fig. 355, in the prominence of the superorbital ridge; but the temporal ridges, after their junction upon the frontal, rise, in the Tr. Gorilla, into a strong and lofty sagittal erest,
 which is continued to the lambdoidal crest, the great extent of which masks the posterior convexity of the occiput. The zygomatic arch is proportionally much stronger in the Gorilla, and also differs from that in Tr. niger by the squamosal part being of equal depth with the malar part, and by its having its upper border convex, or produced into an angle instead of being straight or slightly concave. The alisphenoid is longer and narrower in Tr. Gorilla, and contributes less to the back wall of the orbit than in Tr. niger, in which it forms a much smaller proportion of that part than in Man. The spheno-maxillary fissure is not only larger in Tr. Gorilla, but is narrower and more vertical, not angularly bent as in Tr. niger. The extent of the premaxillary bones below the mostril is not only relatively but absolutely less in Tr . Gorilla, and the profile of the skull less convex at that part, or less ' prognathic,' than in Tr: niger. The breadth of the premaxillarics and of the incisor tecth is the same in both, whilst in all other dimensions the T r. Gorille greatly surpasses the Tr. niger: this is seen in the height of the sagittal crest, the thickness of the great superorbital bar of bone, the prominence of the ectorbital walls, and of the inferior tumid malar boundaries of the orbits, fig. 358, 26 . The nasal bones have united together
in Tr. Gorilla as in Tr. niger, but less completely, a linear indication of the median suture remaining along the exterior surface : the coalesced upper portions of the nasals ascend higher above the nasal processes of the maxillary than in Tr. niger, become contracted between those processes and there project slightly, their median coalesced margins being produced forward: they expand at their lower halves, and articulate not only with the maxillaries, 21 , but with an expanded superior portion or dismemberment of the premaxillaries, 22. In the immature Tr. niger, the maxillo-premaxillary sutures show that each premaxillary bone terminates above in a point which does not
reach the nasals. The orbits have a more subquadrate form, witl the angles rounded off, in Tr. Gorilla than in Tr. niger ; but their periphery is less sharply defined, especially below, than in Tr. niger. The ethmoidal cells are more swollen out, giving the interorbital space a greater breadtli below and the lachrymal fosse a more anterior aspect in Tr. Gorilla. The infraorbital canal issues upon the face relatively lower and further from the orbit. The whole nasal bone is relatively longer, and the distance fiom
 the orbits to the external nostril greater in the Tr. Gorilla. The malar bone, 26 , is nore convex outwardly, and is more remarkable for its vertical extent: it is flatter and developed more transversely in the Tr. niger. The larger proportional size of the eanines in $T r$. Gorillu impresses a corresponding difference 1 pou the alveolar part of the maxillary bone in that species. Fig. 3.57 contrasts the broad flattened superoccipital surface of the Gorilla with the convexity of the same part in the Tr.niger, fig. 356: the difference is due to the much thicker and broader lambdoidal ridge in the larger species, which prolongs the surface beyond the cerebellar fossa, and gives the condyles and foramen magnum a rather more advanced position as compared with the Tr. mifer. The next eharacter, explieable in relation to the greater weight of the skull to be poised upon the atlas, is the greater prominence of the mastoid processes in the $T r$. Gorilla, which are represented by only a rough ridge in the Tr. niger. These protuberances are cellular, and with a very thin onter layer of bone in the Tr. Gorilla. The lower surface of the long tympanic or auditory
process is smooth and flat, or slightly concave, in Tr. niger, and developes a slight tubercle anterior to the stylo-hyal pit: in the Tr. Gorilla the same process is more or less convex below, and developes a ridge, answering to the vaginal process, on the outer side of the carotid canal. The processes posterior and internal to the glenoid articular surface are better developed, especially the internal one in the $T r$. Gorilla, than in the Tr. niger: the ridge which extends from the ecto-pterygoid along the inner border of the foramen ovale terminates in Tr. Gorilla by an angle or process answering to that called 'styliform' or 'spinous' in Man, but of which there is no trace in the Tr. niger.

The palate is narrower in proportion to its length in the Tr.
 Gorilla, but the premaxillary portion is relatively longer in Tr. niger. Two anterior palatine foramina, one oll each side the almost confluent incisive foramina, are more constant and conspicuous in Tr. Gorilla: the posterior palatine foramina are nearer the posterior border of the bony palate in T. niger. The pterygoid fossia are relatively deeper and longer in $T r$. niger. The stronger zygomatic arches, with the more developed sagittal and lambdoidal crests, are adaptive developinents concomitant on the presence of larger canincs and stronger mandible in the Gorilla; but the larger proportional molars and the smaller proportional incisors, the prominence of the nasal bones at their median line of coalescence, and the reappearance of the premaxillaries upon the face above the nostril with their longer enduring sutures, constitute a series of differential characters of more importance than such as are due to greater bulk or activity of muscles, and are inexplicable by the operation of external influences. The baxi-hyal, as in the Chimpanzee, is deeply excavated behind: the cerato-hyals are olsolete: the thyro-liyals long and nearly straight. Further characteristics of the skull of the highest known Quadrumanous species will be slown in comparisou with the cranial characters of the lowest races of Man.
C. Bones of the Limb..-In Quadrumanes, as in Quadrupeds,
both pairs of limbs are coneerned in support and loeomotion; but are made prehensile in relation to an arboreal sphere of life by an opposable thumb-like condition of the innermost of the five digits, always eonspicuous upon the hind-limbs, and, in most, upon the fore-limbs. Complete elavicles, and an elbow-joint allowing both rotatory and flexile movements of hand and fore-arm, are present in all.

The seapula of Chiromys, fig. 343, 51 , differs from that of Rodents, and resembles that of Lemurs, in the proportions of the pre- and post-spinal fossa. The subseapular surface does not show the intermuseular eriste whieh are usually so well marked in Rodents. The length of the aeromion, a, is 6 lines; that of the coracoid is 7 lines: it is a simple compressed process. The glenoid cavity is a long oval, with the apex above and rather produced. The clavicle has a double bend upward and outward, and a half twist on itself.

The head of the humerus, 53 , has a long-oval form, regularly convex, and surpassing in both breadth and length those dimensions of the glenoid eavity. The great tuberosity projects on one side to the same height; the small tuberosity is somewhat lower. A sharp deltoid ridge extends from the fore part of the great tuberosity halfway down the shaft. The supinator erest begins below the middle of the shaft, near its back part, standing well out, and thence passes in an almost straight line to the eetocondyloid tuberosity. The internal ridge projects from nearly the fore part of the distal fourth of the shaft, bridging over the humeral artery and median nerve on its way to the entoeondyloid tuberosity where it eoalesees with a shorter and sharper ridge, eompleting the epieondyloid foramen. The inner tuberosity is much more prominent thau the outer one. The aneoneal fossa is oblong, of moderate depth, and imperforate. The tuberele for the radius forms nearly half of the fore part of the elbow-joint; the back part is exelusively formed by the well-defined trochlear cavity for the ulna. The humerus reaches to the tenth rib, when bent upon the ehest: and this proportion of length is eharacteristic of most Lemurida.

The radius, 5 t, is of equal length with the humerns; the head is nearly eireular. The ulna, 55 , is the longest bone of the fore-limb: it is eompressed helow the humeral joint, and gradually narrows to the lower fifth of the shaft.

The wrist-bones, 56 , are ten in number, including a supplemental scsamoid on the outer side of the seapho-trapezial joist. The scaphoid is the longest, presenting its convex articnlar surface to the onter two thirds of the radial concavitr, and articulating with
the lunare, which completes the wrist-ball; at its distal surface it joins the 'intermedium,' the trapezium, and the trapezial sesamoid: the cunciform offers a cup for the hemispheric end of the styloid process of the ulna and a flatter surface for the pisiform ; this wrist-bone is long, and its articular surface is divided between the ulnar process and the cuneiform. The intermedium and cuneiform combine to form the cup for the ball common to the magnum and unciform, of which the latter bone contributes the larger share. The internedium articulates with the trapezoid. The distal series of earpal bones have the usual relations to the metacarpals. The first, second, fiftl, and fourtl metacarpals, 57 , progressively increase in length, with similar proportions as to thickness; but the middle metacarpal is double the length of the second, and suddenly contracts into a shaft more slender by half than the contiguous metacarpals. The phalanges of the same digit, III., are filamentary, and support the hooked probe-like finger adapted for the extraction of the xylophagous larve - the favourite food of the Aye-aye-from the canal in the wood which has been exposed by the sealpriform incisors.

The ilium, 62 , is long and narrow, slightly expanded at both ends: it articulates with the two first sacral vertebrex, just touching the second by a projection above its middle. The iliac bones inchine to the acetabula at an angle of 140° with the lumbosacral axis. There is an elongate tuberosity above the acetabulum for the origin of the rectus femoris. The ischia, 63, are continued almost in a line with the ilia, the posterior contour describing a very fecble eurve concave backward; the tuberosities are slightly everted: a small projection behind the lower part of the acetabulun divides the great from the small ischiadic notches, both of which are very shallow. The obturator vacuities are large. The pubic oones, 64 , pass from the acetabula at alunost a right angle with the ilio-ischial axis; they converge to a short symphysis. There is a slightly marked ilio-pectineal prominence. The femmr, 65 , has a straight slaft, one third longer than that of the humerus. The neek is short: the great trochanter rises to the height of the head, and at the outer and lower part is developed into a small tubercle. Opposite to this the lesser troehanter projects from the imer side to a greater degree. 'The orifice for the medullary artery is at the back part, one fourth of the length from the head; the camal ascends. The inner condlyle is rather the larger. The outer border of the rotular groove projects most. There is a sesamoid bone ('fabella') in each origin of the gastrocnemius. The tibia, 66 , is about two
lines shorter than the femur, and soon contracts below the head to a compressed shaft, giving a long and narrow subelliptic section; at the upper half it is very slightly bent, with the convexity forward. A roughish surface is continued from the tuberosity nearly one third of the way down the fore and outer part of the shaft. The orifice of the medullary canal is one fourth of the way down, just within the posterior border ; the canal slopes downward. The tibia is one fifth longer than the ulna. The fibula, 67 , touches the tibia only by the two extremities articulating with that bone, leaving an interosseous space co-extensive with their shafts. The outer malleolus is shorter and thicker than the inner one. There is a sesamoid in the external lateral ligament of the knee-joint, at its insertion into the head of the fibula.

The tarsal bones, 68 , are seven in number. The naviculare has its shallow coneavity for the astragalus supplemented by the strong ligament arising from its posterior and inferior margin, and inserted into the fore part of the inner malleolus; anteriorly it articulates with the three cunciform bones, and externally at its fore part with the os cuboides: its depth excceds its length. The calcaneum offers two articular surfaces to the astragalus, rather far apart; the lever projects moderately beyond the linder surface, and is curved a little upward and inward. The eutocuneiform offers at the anterior half of its outer part a trochlear surface, concave in one direction, convex in the opposite, to the powerful hallux. The meso- and ecto-cuneiform bones are narrower, the outer one is of nearly equal length with the inner, the middle one being the shortest. The cuboid is large and long, with the lower half of its calcaneal surface convex, the upper half concave, for an interlocking joint with that bone; it is grooved externally and beneath for the peroncus longus, and, as usual, supports the two outer toes. The base of the metatarsal of the hallux is broad, and its under border is produced into contact with that of the second metatarsal. The third metatarsal is a little longer than the second; the fourth has nearly the same length, and so has the fifth, 69 , by reason of the backward production of the outer angle of its base. The proximal phalanx of the fourth toe is the longest. Fig. 343 shows how little the phalanges of $i i-v$ differ in length or breadth.

With the exception of the attenuated state of the third digit of the fore-foot, the characters of the limb-bones of Chiromys are closely repeated in other Lemurida. The Pottos (Perodicticus). however, offer an anomaly, in the fore-hand, by the stunted phalanges of the index digit; and the pollex is large and
opposable, fig. 343, B. The Galagos (Otolicnus) and the Speetres are, also, exceptional, by the excessive length of the calcaneum and naviculare in the hind-hand, whence the generie name Torsius given to the lattcr Lemurs. In the relative length of the tarsus to the leg and to the rest of the foot Chiromys most resembles Lichanotus and Propithecus: it is rather shorter than in Lemur proper, being less than one third the length of the tibia, and only about one fourth the length of the whole foot. The scaphoid and ealcaneum are proportionately rather shorter than in Lemur perodicticus ${ }^{1}$.

In the Indri (Lichanotus) the scapula is remarkable for the length and strength of its coracoid process. The humerus, as in Chiromys, is perforated above the inner condyle, but not between
 the eondyles. The interosseous space is considerable between the long and slender radius and the more slender ulna. The ilium has a strong tubereular process above the acetabulum. The femur is so long as to equal in length seventeen vertebre of the trunk, measured from the first dorsal backwards. The fore part of both the astragalus and calcancum is unusually produced. In the slender Lemur (Stenops gracilis) the humerus is perforated above the inucr condyle, and has a wide intereondyloid vacuity. The iliac bones, fig. 360, a, are long, slender, and extended almost in the same line with the sacrum. The pubic bones, b, c, join the ilia at a right angle, and are inelined to each other at an angle of 40°; they form a very short symphysis. There is a small ossificd patella. The feeble development of the vertebre in the long lumbar region, the small sacrum, and contracted pelvis are points of resemblance with the Bat-tribe; and, together with the long and slender bones of the extremitics, relate to the slow movements of this climbing quadruped.

In Lrmur Catta I have found the pubic symphysis ossified; the ilium lias an epicotyloid ridge. The coracoid and acromial processes of the scapula are subequal. The limerus is perforated above the inner condyle. Two fabella are usually attached to the capsule of the knee-joint. The fourth digit is the longest on both limbs of all Lemurida.

In Hapale Jacchus the coracoid sends a short process backward.

[^130]The humcrus is not perforated either above or between the condylcs. The ungual phalanges are compressed and faleatc, and the pollex is on a line with the rest of the digits of the fore-limb, not opposed to them. In the hind-limb the ungual phalanx of the hallux is depressed for the support of a nail, and it is opposed as a thumb to the other digits which have faleated ungual phalanges. The ilium is long and narrow, with a supracotyloid ridge. In the Marmoset (Callithrix sciureus), the pollex is partially opposable ; as it is also in Cebus. In a young C. capucinus I have found the humerus perforated both between the eondyles and above the inner condyle. There are fabelle behind the knee-joint. A sesamoid is wedged between the entocunciform and metatarsal of the hallux. A pair of sesamoids are developed beneath the proximal joints of each of the toes, and a single sesamoid beneath the last joint of the hallux.

In the Spider-monkeys (Ateles) the long and large coraeoid has an angular tuberosity, whieh sometimes joins the anterior costa, so as to eireumseribe the preseapular noteh. The humerus is not perforated either above or between the eondyles. This bone, and, still more, the radius and ulna, are remarkable for their length and slenderness; as are also the bones of the digits, with the exeeption of the pollex, which is reduced to a rudiment of its metacarpus, and is concealed boneatlo the skin in the recent animal. The fcmur, tibia, and fibula are longer than in the other Platyrrhincs, but the tibia is not attenuated in the same proportion. The inner border of the navieulare is much produeed. The thumb of the hind-foot is complete and well-dcreloped. The prehensile tail eompensates for the loss of that quality in the hand.

In the Catarrhine group the African Doucs (Cololus) repeat the abortive eondition of the pollex; but in all the rest it is a trie thumb, though smaller and weaker than that of the hind-hand.

In the Baboons the coracoid slows an angular ridge, but less developed than in the Capucins. In Mactucus nemestrimus the slort and broad eoracoid las an angular tuberosity. I have observed an intereondyloid racnity in this species; but, as a rule, the humerus is imperforate at its distal end. The 'intermedium' is present in the earpus of all Baboons, Macacques, and Doucs, as in the Gibbons and Orangs, fig. 361, h; and there are fabellie behind the knec-joint. In most there is an ussicle, ib. i, wedged between the scaphoid, a, and trapezium, d, in the wrist, and between the cuboid and fifth metatarsal in the ankle. The ischia expand into rough flattened tuberosities in all those Catarrhines that lave the eorresponding dermal callosities.

In the Long-armed Apes (Hylobates, fig. 180) both acromion and coracoid are large, and much produced. The elavicles are of unusual length, equalling the extent of the eleveu anterior dorsal vertebre. The bones of the arm and fore-arm are still more remarkable for their length and slenderness, as well as those of the fingers of the hand, the thumb of which is comparatively short and slender. The femur is long and nearly straight. The tibia is slightly bent. The thumb of the hind-foot is strong and well-developed, with two phalanges.

The great length of the pectoral limbs, and the provision made for the extensive origin of some of their muscles by the breadth of the thorax and the size of the scapulæ and clavieles, relate to the chicf share which these limbs take in the rapid and characteristic locomotion of this species, which swings itself thereby from branch to branch, with a force that propels the body through considerable distances.

The Siamang offers the peculiarity of a common tegumentary sheath of the proximal phalanges of the second and third digits of the hind-hand, whence the name (Hyl. syndactylus).

In the Orangs (Pithecus) the clavielc is less curved than in

Man, and the distal end is less expandecl. The scapula approaches, by its breadth, to the form of that of Man, but the acromion is narrower, longer, and more antroverted. The humerus, in some Orangs, shows a small perforation between the condyles. The
radius and ulna are remarkable for their length, and the extent of the interosseous space. The wrist, fig. 361, consists of nine bones, as in the inferior Apes,-resulting, as in them, from the presence of the intermedium, h : the scaphoid, a, and lunare, b, articulate with the radius; the cuneiform, c, is attached by ligament to the styloid process of the ulna; the 'sesamoid,' i, is imbedded in the tendon of the abductor longus pollicis. The metacarpals have only half the breadth of the proximal phalanges at their middle part. The phalanges are long, bent towards the palm, and expanded at their middle. The bones of the thigh and leg are disproportionately short: the articnlation of the latter with the tarsus is adjusted to turn the sole obliquely inward. The hallux is disproportionately short, and, in some Orangs, has but one phalanx. The bones of the other toes have great length, especially the metatarsals and proximal phalanges, which are bent toward the sole, indicating the labitnal application of the foot in the act of grasping and climbing. The joint of the lind-limb is made as free as that of the forc-limb, by the absence of the interarticular ' ligamentum teres.' The calcaneum projects but little beyond the astragalus, the tibial surface of which is inclined obliquely inward, so that the foot presents its onter cdge to the ground,-a mode of articulation favouring its prehensile power.

In the Chimpanzee, fig. 345 , the clavicle, 58 , is relatively shorter than in the Orang; the sigmoid eurvature is more marked, the sternal end is thicker, and the acromial end broader: the scapula is longer in proportion to its breadth, and the acromion is broader than in the Orang. The bones of the anterior extremity, especially those of the fore-arm, are shorter than in the Orang. The humerus, 53, is imperforate at its distal end ; it is shorter and stronger than the Orang; both tubcrosities are more developed, especially the inner one, and the bicipital groove is deeper: the antero-internal surface, bounded outwardly by the deltoidal ridge, is flatter than in the Orang: the supinator ridge commences above the middle of the shaft. The trochlear prominence of the distal articulation is more developed, and the canal which separates it from the ball for the radins is both deeper and wider. The radius, 54 , is shorter in proportion to its breadth, and presents a more marked sigmoid curvatme; the borders of the cirenlar proximal end are more produced; the trihedral character of the distal half is better marked. The distal end is more suddenly expanded, and the grooves for the extensor tendons are deeper and better defined. The ulna, 55, differs from that in the Orang in the proportion of its length aud thickness. The outer
or ulnar division of the great sigmoid cavity is less developed than in the Orang, and its margin is more extensively interrupted at its middle part: the radial division of the same eavity extends more nearly to the back part of the olecranon. The lesser sigmoid cavity is more nearly semieireular than in the Orang. The ridge continued a short way downward from the inner and ulnar angle of the great sigmoid cavity is sharply defined, but the fossa whieh it bounds is mueh less deep than in the Orang. The interosseous ridge is not marked, the bone being there rounded off in the Chimpanzec. The styloid process is better developed than in the Orang. The earpus consists of eight bones, as in Man. The thumb, 1 , is relatively longer and stronger than in the Orang. The pelvis is longer in proportion to its breadth than in the Orang. The tuberosities of the isehia are expanded, flattened, and bent outward, as in the Orang. The expanded part of the ilium, 62, is slightly concave anteriorly, but in the Orang it is plane. The spine of the isehium is parallel transversely with the middle of the obturator foramen, but in the Orang it is parallel with the upper border of that foramen. The ilio-isehial angle is 165° The ischio-pubie symphysis is longer than in the Orang: but retains its longitudinal parallelism with the saero-lumbar series of vertebre. The posterior wall of the acetabulum is still the dcepest. The bones of the hind extremity are relatively longer and stronger, espeeially the femur, than in the Orang; but the most marked distinetion between the two great anthropoid Apes is seen in the lengtlo and strength of the hallux, i, in the Chimpanzee. The artieulation of the tarsus with the leg still, however, favours the oblique position of the foot, and adapts it for grasping. The femur, 65 , shows the pit upon its head for the ligamentum teres: both troehanters are relatively larger than in the Orang: the neck is longer, thieker in proportion to the head, and passes off at a less obtuse angle with the shaft. The shaft is slightly bent forward; it is not straight : the condyles are more expanded, especially the inner one.

In the Gorilla, fig. 346, the scapula is broader than in the Chimpanzee, but differs from that of Man in the more oblique course of the spine, which gives greater extent to the superior costa; in the greater length and breadth of the eoraeoid, 52 ; in the straightness of the inferior costa; and in the greater convexity of the base, especially as it approaches the lower angle : the plane of the glenoid eavity is less parallel with the base than in Man, it looks more obliquely upward; the suprascapular notch is not defined.

The clavicle, 58 , is thicker than that in Man, with a subtrihedral shaft and the sigmoid flexure less marked ; the sternal articular surface is less oblong; the acromial end is broader and flatter below.

The humerus, 53, though surpassing in length that of Man, fig. 183, 53, is thicker and stronger in all its ridges and processes; especially at the lower extremity, the transverse diameter of which surpasses that of the upper extremity of the bone in a greater degree than in Man: both tuberosities are relatively greater, the 'lesser' one more especially. Immediately above the distal articular surface are two depressions divided by a ridge continued to the prominence between the radial and ulnar articulations; the outer or radial depression is the smaller and shallower, the inner or ulnar one is larger: it answers to the 'coronoid fossa' in Man, but becomes a foramen in full-grown Gorillas, by absorption of the thin plate of bone dividing it from the anconcal fossa behind. The ectocondyloid prominence is more marked than in Man: the entocondyloid one is more produced, is angular, and compressed. The back part of the humerus shows, as in Man, the musculo-spiral tract dividing the ridges for the external and internal heads of the 'triceps extensor.' The configuration of the lower articular surface is closely similar to that in Man; the whole surface extends a little further below the condyloid prominences, allowing to that extent a more free sweep of the fore-arm in flexion and extension, and adding power to the leverage of the tendons inserted into the antibrachial bones.

The medullary artery enters the fore part of the shaft, but nearer the middle of the bone in the Gorilia than in Man: in both the course of the canal is towards the elbow-joint. The head of the radius, 54 , has an elliptical contour: the shaft bends outward so as to leave a wider interosseous space than in Man. The neck expands to the tuberosity which shows an oblong rough prominence for the insertion of the tendon of the biceps, belind or 'ulnad' of the smoother prominence supporting the bursa interposed between it and the tendon. Below the tuberosity the shaft assumes a pyriform transverse section through the developement of the interosscous ridge, which extends to near the 'sigmoid cavity.' The styloid process is represented by a prominence which gives a larger surface than in Man for the insertion of the tendon of the 'supinator longus.' It is not impressed, behind or externally, so deeply by the two grooves for the extensor muscles of the metacarpal and first phalangeal bones of the thumb: a still stronger tulerosity divides the fossa for the radial extensors of the wrist, from the wider and deeper one for the strong tendons
of the extensor communis digitorum. The semicircular depression for the lower end of the ulna is well marked: the distal articular surface is divided, as in Man, by two concave facets, the larger one for the os scaphoides, the lesser for the os lunare: the anterior border of the latter is much produced, giving a greater proportional antcro-posterior extent to the 'lunar' surface than in Man. The orifice for the 'arteria medullaris' is situated as in Man, and the direction of the canal is 'proximad' or towards the elbowjoint. ${ }^{1}$ The shaft of the ulna, 55, presents two slight opposite curves, the upper one concave, the lower one convex, on the ulnar or inner aspect. Viewed sideways the whole bone has a slight bend convex backward. The lower half of the shaft becomes subeylindrical as it descends. The ridge, commencing below the lesser sigmoid cavity, is strongly marked and more vertical than in Man. The distal end of the ulna suddenly expands into a convex reniform articular surface, thickest at the middle, where it plays upon the lateral concavity of the radius. The difference from the Chimpanzec, most significant of their relative position in the Quadrumanous scries, presented by the antibrachium of the Gorilla, is its inferiority of length compared with the humerus; fig. 346, with figs. 345 and 180.

The bones of the wrist, 56 , agree in number and relative position with those of Man ; but the differences of shape and proportion give a greater breadth to the carpal segment in proportion to its length, in the Gorilla. The radial surface is nearly circular in shape, instead of being oval and oblong as in Man. The pisiforme of the Gorilla is much longer in proportion to its breadth than in Man; whilst the articular surface for the cunciforme is but little larger: its superior length gives stronger leverage to the great ulnar flexor of the wrist. The trapezium of the Gorilla differs most from its homologue in Man, by the production of its outer unarticular surface into two diverging tuberous processes: the articular surface, moreover, for the metacarpal of the thumb is relatively much smaller than in Man. This metacarpal, 57 , is a little longer than in Man, but not quite so broad: the proximal trochlea is more concave vertically and more convex transversely, and the distal surface is more convex. The proximal phalanx is one fifth longer, and is more slender than in Man. The metacarpals of the other fingers are more than onc third larger and longer than in Man, their shaft is more bent; the

[^131]tuberosities beneath the proximal articular surfaces are better developed. The proximal phalanges differ not only in their greatly superior size, but in the deep excavation of their under or antcrior surface, which is bounded by rough lateral ridges; they are also more flattened and rather more bent. The distal $p^{\text {halanges of the anterior extremity are longer, more slender, and }}$ less expranded at their rough terminations.

Lach os innominatum in the adult malc Gorilla, 62 , is one foot threc inches in length, that of Man being seven inches and a half: the breadth of the ilium is eight inches and a half, that of Man being six inches. The ilium is less concave, of a more triangular figure, the autcrior border being much longer and straightcr. The more clongated and narrower form of the sacral surface correspouds with what has been noticed in the sacrum: the posterior angle or spine of the ilium is above that surface, not behind it as in Man: the distance between the antcro-supcrior and antero-inferior spines is much greater in the Gorilla : the antero-inferior spine is situated, as in Man, just above the acetalulum. The upper ischiatic noteh is much less deep than in Man, and there is a very fceble rudiment of the tuberosity dividing it from the lower notch. The acctabulum is not much larger than that of Man: the posterior is deeper than the upper wall, providing for resistance to the femur in a semi-flexed rather than in an erect position. The ischium extends, as in the Chimpanzee, far below the acetabulum, where it forms a strong subtrihedral cohmm, terminating in a large flattened outwardly bent tuberosity, the aspect of which is wholly downward, not backward, as in Man: the united plates of the ischium and pubes, bounding the obturator foramen internally, are considerably broader than in Man. The plane of the ilium is twisted almost at right angles with that of the ischium and pubes.

The femur, 65 , is shorter than in Man, and much shorter in proportion to the breadtlo of the shaft: the head is more relieved from the neck, and shows a less deep depression for the ligamentun teres; the neek is less oblique than in Man; the great trochanter rises to a level with the upper border of the head; the small trochanter is less prominent, but has a larger base than in Man, and is more remote from the great trochanter. The linea aspera is less developed, and the back part of the lower half of the shaft is flat and smooth: the inner angle of the popliteal space presents a well-marked rough depression, which is not present in the Inman femme, and the shaft more gradually expands to the comdyles. The outer articular condyle is narrower than the imner one, the reverse being the case in Man: the inner condyle is not longer
than the outer one, as in Man. The rotular surface is shallower, the lateral borders are better defined: the medullary artery enters the middle of the back part of the shaft, and the coursc of the canal is proximad or upward.

The length of the tibia is one foot six lines, and its shaft is as thick as in Man, and expands more gradually to the distal end: the conformation of the proxinal surface is similar to that in Man; the spine is rather stronger, and an anterior spine or tuberosity is more distinctly developed. The internal tuberosity in front of the fibular one is better defined; the interosseous ridge is very fcebly marked in the Gorilla, and the anterior ridge of the shaft is much less marked than in Man. The astragalar surface is more undulating, less concave, and more dircctly coutinued upon the internal malleolus: the sidc of the distal end next the fibula, instead of being concave, forms an angular projection. The fibula is stronger in proportion to its length than in Man; the lower articular surface of the fibula is flatter, and divided into two facets more distinctly, than in Man.

The astragalus of the Gorilla equals in size that of Man, but is broader in proportion to its length: the surface for the tibia is less defined, especially from the inner facet, which in the Gorilla is almost horizontal and appears as a concave inner termination of the upper surface. The anterior surface is more convex, especially vertically, and more dircetly continued into the anterior calcaneal surface. The inner tuberosity is larger and more advanced: the Gorilla differs from the Chimpanzee in the greater size of this process, and in the greater proportional size of the scaphoid convexity, in which respect its astragalus more resembles that of Man. The calcaneum of the Gorilla is a longer and more slender bone than in Man, which is cliefly due to the greater lengtl and slenderness of the postcrior or calcaneal process. The lower surface of the bone is smoother, narrower, and inore concave longitudinally: the groove for the flexor tendons beneath the inner astragalar surface is wider and better defined: that astragalar surface is broader in proportion to its length, and therc is a deep longitudinal groove on the outer side below the outer astragalar surface, which does not exist in Man. The anterior cuboidal surface is placed further from the outer side of the bone than in Man; the outer side forming a rongh consex protuberance at its anterior half. The nariculare is one third larger than in Man, the increase being in its transterse extent, and due to the greater development of the rough convex protulerance at the inner end of the bone. The entocunciform has an equal vertical, but a minor
longitudinal, extent than in Man, and chiefly differs in the convexity of the articulation for the hallux, which articnlar surface in Man is nearly flat: this diffcrenee is very significative of the different funetion of the hallux in the two speeies; the chief fulcrum of the foot requiring a firm articulation in Man, but in the Gorilla great extent of motion for the functions of an opposable grasping thumb. The metatarsal of the hallux is fully as large as that in Man; it differs in the deeper coneavity of the proximal artieular surface, and in the more prominent convexity of the distal one. The proximal phalanx of the hallux also equals that of Man in size; the borders of its proximal coneavity are less neatly dcfined. The ungual phalanx is somewhat less than that of Man, especially in its terminal rough tuberosity ; it is eoneave below instead of being eonvex. The remaining metatarsals of the foot are much longer and stronger than in Man; the upper border is more bent. The first and second phalanges are larger and more bent. The ungual phalanges are longer and narrower in proportion than in Man.

In all the characters by which the bones of the foot of the Gorilla depart from the Human type, those of the Chimpanzee recede in a greater degree, the foot being in that smaller ape better adapted for grasping and climbing, and less for oceasional upright posture and motion upon the lower limbs. The lever of the heel is rclatively shorter and more slender; the hallux has still more slender proportions, and the whole foot is narrower in proportion to its length, more eurved towards the planta, and more inverted in the Chimpanzee.

On a retrospect of the skeletons of the latisternal tailless Catarrlines, it may be observed that no Orang, Chimpanzee, or Gibbon has mastoid processes; they are present in the Gorilla, but smaller than in Man. In the Chimpanzee, as in the Orangs, Gibbons, and inferior Simie, the lower surface of the long tympanic or auditory process is more or less flat and smootl, developing in the Chimpanzee only a slight tubercle, anterior to the stylo-hyal pit. In the Gorilla the auditory process is more or less convex below, and developes a ridge, auswering to the vaginal process, on the onter side of the carotid canal. The processes posterior and internal to the glenoid artieular surface, especially the internal one, are better developed in the Gorilla than in the Chimpanzee; the ridge which extends from the ectopterygoid along the imner border of the foramen ovale terminates in the Gorilla ly an angle or process answering to that (alled 'styliform' or 'spinous' in Man, but of which there is no trace in the Chimpanzec, Orang, or Gibbon.

The orbits have a full oval form in the Orang ; they are almost circular in the Chimpanzee and Siamang, more nearly circular, and with a more prominent rim, in the smaller Gibbons; in the Gorilla alone do they present the form which used to be deemed peeuliar to Man. The oecipital foranen is nearer the back part of the eranium, and its plane is more sloping, less horizontal in the Siamang than in the Chimpanzee and Gorilla. Considering the less relative prominence of the fore part of the jaws in the Siamang, as compared with the Chimpanzec, the oecipital eliaraeter of that Gibbon and of other species of Hylobates marks well their inferior position in the quadrumanous scale. The elaracteristies of the limbs in Man are their near equality of length, but the lower limbs are the longest. The arms in Man reach to below the middle of the thigh; in the Gorilla, fig. 346, they nearly attain the knee; in the Chimpanzee, fig. 345, they reach below the knee ; in the Orang they reach the ankle; in the Siamang, fig. 180, they reach the sole : in most Gibbons the whole palm ean be applied to the ground without the trunk being bent forward beyond its naturally inclined position on the legs. These gradational differenees coincide with other charaeters determining the relative proximity of the Apes compared with Man.

In the Gorilla, the humerus, thongh less long eompared with the ulna than in Man, is longer than in the Chimpanzee; in the Orang it is shorter than the ulna; in the Siamang and other Gibbons it is much shorter. The peculiar length of arm in those 'long-armed apes' is chiefly due to the exeessive length of the antebrachial bones.

The difference in the length of the upper limbs, as compared with the trunk, is but little between Man and the Gorilla. The elbow-joint in the Gorilla, as the arm langs down, is opposite the 'labrum ilii,' the wrist opposite the 'tuber ischii; ' it is rather lower down in the Chimpanzee; is opposite the knee-joint in the Orang; and opposite the anklc-joint in the Siamang. The iliae bones are not so broad in proportion to their lengtl in any ape as in the Gorilla. In the Orang they are flat, or present a coneavity rather at the back than at the fore part. In the Siamang they are not only flat, but are narrower and longer, resembling the iliae bones of tailed monkeys and ordinary quadrupeds.

The lower limbs, thongh charaeteristically short in the Gorilla, are longer in proportion to the upper limbs, and also to the entire trumk, than in the Chimpanzee: they are much longer in both proportions and more robust thau in the Orangs or Gibbons. But the guiding points of comparison here are the heel and the hallinx.

The heel in the Gorilla makes a more decided backward projection than in the Chimpanzee ; the heelbone is relatively thicker, deeper, more expanded vertically at its hind end, besides being fully as long as in the Chimpanzce. Among all the tailless Apes the calcaneum in the Siamang and other Gibbons least resembles in its shape or proportional size that of Man. Although the foot be articulated to the leg with a slight inversion of the sole it is more nearly plantigrade in the Gorilla than in the Chimpanzee. The Orang departs far, and the Gibbons farther, from the Human type in the inverted position of the foot. The great toe which forms the fulcrum in standing or walking is perhaps the most characteristic peculiarity in the Human structure; it is that modification which differentiates the foot from the hand, and gives the character to his order (Bimana). In the degree of its approach to this developement of the hallux the quadrumanous animal makes a true step in affinity to Man. The Orang-utan and the Siamang, tried by this test, descend far and abruptly below the Chimpanzee and Gorilla in the scale. In the Orang the hallux does not reach to the end of the metacarpal of the second toe; in the Chimpanzee and Gorilla it reaches to the end of the first phalanx of the second toc: but in the Gorilla the hallux is thicker and stronger than in the Chimpanzee. In both, however, it is a true thumb by position, diverging from the other tocs, in the Gorilla, at an angle of 60 degrees from the axis of the foot.
§ 191. Skeleton of Bimana. The parts of the bony frame of Man, fig. 183, are eo-ordinated for station and locomotion on and by the pelvie limbs, which sustain the trunk erect, and liberate the pectoral, now the upper limbs, for other uses.

1, I'retebral Colemn.-This is disposed in an undulating series of opposite eurves, fig. 362 ; backward in the chest and sacrum, forward in the loins and neek. The vertebrew which rest on the
base of the broad sacral wodge gradually deerease in size to the third cervieal. In regard to breadth, they deerease to the fourth dorsal, then inerease to the first dorsal, and again decrease to the second cervical. A soft elastic cushion of 'intervertebral' substance lies between the bodies of the vertebre. The distribution and libration of the trunk, with the superadded weight of the head and arms, are favoured by these gentle eurves, and the shoek in leaping is broken and diffused by the numerous elastic intervertebral joints. The expansion of the cranium behind, and the shortening of the face in front, give a globe-like form to the skull, which is poised by a pair of eondyles, advanced to near the middle of its base upon the cups of the atlas ; so that there is but a slight tendeney to ineline forward when the balancing action of the muscles ceases, as when the head nods during sleep in an upright posture. The free or 'true' vertebre are c 7, d 12, L 5 . The metapophysis becomes distinet in the eleventh and welldeveloped in the twelfth dorsal, in which the anapophyses are recognisable, and the diapophyses reduced to tubercles without an articular facet. The neural spines inerease in length and
 inclination 'saerad' (downward in Man, backward in brutes) from the fourth to the twelfth dorsal, and in length and direction 'dorsad' from the fourth dorsal to the last cervieal: they all have tuberous terminations.

The dorsal series of twelve vertebræ, with all their elements, constitute the ' thorax' in anthropotomy, fig. 363 , the parts of the much developed hamal arehes, not anchylosed like those of the neural arches with the centrum, being reekoned as distinet bones. The pleurapophyses are termed 'eoste ' or ribs, the hamapophyses ' costal eartilages' being rarely ossified: as many of the heemal spines as may be ossified are called 'sternum.' The first and largest, which longest retains its individuality, is the 'manubrium,' fig. $364, b 1$; it receives the eartilages of the first pair, and part of those of the second pair of ribs. The four suceceding 'sternebers,'
ib. e, s, s, coalesce to form the 'gladiolus' or 'body' of the stcrnum : the sixth piece, which commonly remains distinct, is the 'xiphoid appendage, x.' The parts of the sternum are usually developed each from a single centre, as at $b, 1,2,3,4$: but occasionally, and usually the lower ones, are developed from a pair of centres, $c, 1,3,4$, as in the broader brcast-bone of the Gorilla and Orang: a fissure or foramen may persist as an anomaly, fig. $364, d, s$: but the union of the pairs transversely usually precedes that in a longitudinal direction. In fig. 364, a reprcsents the primordial cartilages of the dorsal hæmapophyses and spincs; ib., b and c, varietics in the ossific nuclei. Oceasionally a pair of tuber-
 cles, ib. * d^{*}, indicate episternal rudiments. ${ }^{1}$ The second to the seventh pairs of costal cartilages articulate with the sternal body: the second between it and the manubrium : the seventh between it and the xiphoid appendage: the first to the manubrium exclusively. The ribs which thus join the sternum are called ' true;' the fiveremaining pairs'false,' and of these the last two are ' floating' ribs. The proportions of the dorsal pleurapophyses, or bony ribs, and their degrees of curvature, are shown in fig. 363 , in their position after deep expiration. In caeh is distinguished the
 ' head,' fig. 365, c, the ' neek,' f, the 'tuberele,' g, and the 'shaft,' the part of the eurve marked h being ealled the 'angle:' d is the 'stermal,' or rather hamapophysial end to which the shaft usually slightly expands. The first and last three rils have a single articular surface on the head: in the rest it is divided into two facets. The tubereular articular surface is wanting in the last two pairs. When the pleurapophyses
of the last cervical or first lumbar vertebre happen to be elongated and free, they are added to the numbers of 'pairs of ribs' in anthropotomical computation.

As a rule, the eoaleseed pleurapophyses make long'transverse processes' in the lumbar vertebre; in the first of which, as compared with the last dorsal, the centrum is much increased in size, and the neural spine in extent. The metapophysial tubereles are also enlarged, but do not project so freely, by reason of the extension of the articular surfaces of the anterior zygapophyses upon the inner sides of their base. The anapophysial tubereles are still distinet. The second lumbar vertebra ehiefly differs from the first by a slight increase in the size of the eentrum and in the length of the diapophysis. The anterior zygapophyses are larger and look more directly inwards. Both metapophysial and anapoplysial tuberelcs are distinct. The backward production of the postcrior zygapophyses oceasioning the deep posterior emargination of the neural areh is a charaeteristic distinetion of the Human lumbar vertebræ. Both metapophysial and anapophysial tubereles continue distinet on the third lumbar vertebra. The body of the fourth lumbar vertebra, though mueh broader, is not longer than that of its homologue, the third lumbar, in the Chimpanzee. It likewise shows a marked diminution in the antero-posterior extent of the neural areh, oceasioned prineipally by a diminished length and inereased breadth of the posterior zygapophysis. The anapophysial tubereles are distinetly developed. The fifth lumbar vertebra is eharacterized not only by its superior size, but by the great transverse expansion of the hinder part of the neural areh concomitant upon the superior development and outward expansion of the posterior zygapopliyses. The diapophyses and neural spine are shortened: the anapophyses appear like a part of the uper border of the base of the diapophysis pinched up and produced baekwards. The metapophysial tubereles are separated by a groove from the anterior zygapophyses.

The sacrum, fig. 366, consists of five anchylosed vertebrac. They differ from those of the Gorilla by their greater breadth and by their anterior concavity both lengthwise and transversely. The anterior nervous foramina, b, are relatively much larger: the spinous processes are shorter and thicker. The eoalesced pleurapophyses, p, b, of the two anterior saerals ehiefly form the saeroiliac joint. The neural arel of the last two sacral vertebra, d, c, is ineomplete.

The first coccygeal vertcbra, ib. c, c, is less flattened and is
shorter than in the Chimpanzee: the neurapophyses, b, are longer, the diapophyses, c, are shorter: the terminal coaleseed vertebre, c, d, are redueed to their 'eentrums.' Each of the three upper

sacral vertebre are developed from five primary nuclei, one, fig. 367, a, for the eentrum, a pair for the neurapophyses, and a second pair, b, for the pleurapophyses: the accessory ossifications form, as epiphyses, the articular surfaces of the centrums. In the fourth and fifth sacrals the transverse processes are exogenously developed.

The spines of the six lower eervicals are short and bifurcate. As a rule, the vertebrarterial canal is completed in the seventh
 as in the other cervicals.

In the atlas there is a tuleerele from the hypapophysis representing the body, and a rough surface on the neural arch in place of a spinc. The vertebral artery perforates the transwerse process lengthwise, and afterwards grooves the neural arch behind the produced angles of the anterior zygapophysis. The body is longer and decper in proportion to its breadth than in the Gorilla. The surface for the odontoid is more nearly circular and better defined. The cavities for the condyles are relatively larger, deeper, with their margins more producel. The
arterial foramina are relatively larger and the posterior zygapophyses are relatively much larger than in the Chimpanzee and Gorilla.

These differenees chiefly relate to the more secure articulation and support of the vertically sustained head in the IIuman speeies, and to the larger size of the cerebral organ in part nourished by the vertebral arterics. The development of the zygapophyses gives a greater antero-posterior extent to those parts of the atlas, and the transverse processes are thieker in proportion to their length.

The foregoing observations on individual vertebre are drawn from an examination of the vertebre of a male Australian.
b, Skull. Taking the lowest form of Human skull that has eome under my observation, figs. $368-370$, the difference is great and abrupt from that of the highest Ape, in the superior eapacity of the cranium and small size of the face. On a comparison of a front view, fig. 368, with fig. 358, the cranial dome

forms the background for all the parts of the skull above the zygomata. The frame of the orbits is not produced elear of the dome, so as to project beyond it. The malars and contiguous parts of the maxillaries have, relatively, much less depth. The nasals are arched transversely. The bony nostril is larger and ligher in position, rising to between the orbits. The alveolar border is arched transversely, and the curve is not interrupted by excessive expansion of the socket of any single tooth. On comparing the side views, fig. 369, with fig. 357, the larger cranium of the savage is still more conspicuous; the expansion is not only upward and lateral, but backward and downward, bringing the

[^132]floor of the eavity to the level of the lower teeth, when the mandibular ramus rests on a horizontal plane. The supranasal ridge is not so produeed as in the Gorilla. The zygomatie areh is shorter and more slender; the mandible shows both the angle and the ' mentum,' instead of being rounded off at both ends as in the Gorilla. But the most important differenees are brought out in the base-views, figs. 370 and 359. In the lowest as in the highest Human raee, the foramen magnum is plaeed nearer the eentre of the base of the skull, the anterior end of the eondyles reaehing the transverse line whieh equally biseets the base. The eondyles are relatively larger. The mastoids are developed into proeesses of the size and form whieh gave rise to the name. The zygomatie arehes are in the anterior half of this view of the skull, but are opposite the middle third in the Gorilla. The stylo-hyals are anelyylosed, and are supported anteriorly by a ridge from the tympanie ealled the 'vaginal process.' The eustachian proeess of the petrosal is shorter. A short styliform proeess is developed from the lower and outer angle of the alisphenoid. The glenoid eavity for the mandibular eondyle is deeper, and is formed behind by the tympanie. There is also a low postglenoid prominence. The bony palate is mueh shorter, but is proportionally deeper and broader, and the teeth are arranged in a full semielliptic eontour without any natural interspaee, the erowns being of equal length. In the Gorilla the alveoli of the molars and eanine of one side are in a straight line, parallel with those of the other side.

As a general rule the form of the Human eranium, seen from above, fig. 371 , is a full oval, with the small end forward, and the largest diameter aeross the 'parietal eminences,' fig. 375, c. The bones seen in fig. 371 are the superoccipital, o, the parietals, p , and the frontal, F ; the sutures are the 'lambdoid,' c, the 'sagittal,' b, and ' eoronal,' a.

In fig. 372,0 marks the expanded and outwardly eonvex superoeeipital, artieulated by the ' lambdoid' suture, c, with the parietal, and by the ' mast-
 occipital' suture with the mastoid: g marks the poster-inferior angle of the parictal, r , which mites by the 'mast-occipital' suture with the mastoid: this angle
is impressed on the inner side by the lateral sinus; e is the 'squamous' and a the 'coronal' suture. The frontal, F, is joined by the 'cxternal angular process,' i, to the malar, which, with the alisphenoid, divides the orbital from the temporal fossa.

The alisphenoid, s, and coarticulated portion of parietal, f, divide by a broader tract the frontal, F , from the temporal, T , as compared with the Australian. In more intellectual races the cranial cavity is relatively larger, especially loftier and wider. The fore-parts of the upper and lower jaws, concomitantly with earlicr weaning, arc less produced, and the contour descends more vertically from the longer and more prominent nasals. The ascending ramus of the mandible, к, is loftier. The malar, t, is less protube-
rant, and the mastoid, m, more so.
The vertical longitudinal section, fig. 373, of a well-formed Europcan skull, best exemplifies, in comparison with fig. 395, the characteristic proportion of the human cranial cavity. The basioccipital, 1 , coalesces with the basisphenoid, 5 , and this with the presphenoid, such base of the cranium rising asit adrances. The clicf part of the foramen magnum is formed by the exoccipitals, 2 ; the plane of the foramen looks downward, with a slight inclination forward. The superoccipital, 3 , is expanded and bulged outward by the cerebellum and posterior cercbral lobes. The petrosal, perforated by the foramen auditorium internum, is 16 ; between this and the alisphenoid, 6 , is the squamosal ; they contribute but small proportions to the cranial walls, which are chiefly due to the expanded neural spines called 'parietal,' 7 , and 'frontal,' 11 , with the above-mentioned superoccipital, $3: 14$ is between the 'orbitosphenoid ' ('lesser ala of the sphenoid,' in anthropotony) and the coalesced 'prefrontals'(' perpendicular plate of the cthmoid' with the ' crista galli,' ib.). The rhinencephalic fossa is shallow, ill-defined, relatively small, and floored by the 'cribriform plates.' In the nasal cavity the inferior 'turbinal,' d, and the ' middle turbinal,' c,
are shown. The bony palate arehed both lengthwise and transversely is formed by the palatines, 20, maxillaries, 21, and small confluent premaxillaries, 22, supporting the incisor teeth. The pterygoid appendage is marked 25.

The' hyoid bone,' fig. 374 , consists of a 'body' (basi-hyal), two 'lesser cornua' (stunted cerato-hyals), and two 'greater cornua' (thyro-hyals). The body, $\mathrm{B}, 41$, is compressed antero-posteriorly, curved and extended transversely, with a prominent tubercle from the fore part, answering to that which supports the 'glosso-lyyal,' fig. 305, $y k$, in the horse; it is not expanded and exeavated behind, as in Λ pes. The cerato-hyals, 40, are reduced to mere pisifirm nodules of bone projecting from the line of union of the basi- and thyro-hyals. The ligaments which pass from the 'lesser cornua' to the 'styloid processes' represent the rest of the ' cerato-hyals' with the ' epihyals,' in primitive sclerous tisue. The greater cornua, 46, are attached to the body by an expanded end ; a layer of ear-
 tilage intervenes to a late perionl; the opposite end is slightly expandel aud sometimes bear an

[^133]epiphysis: they are joined by ligament to the thyroid eartilage; on whieh aeeount, although homologous with a pair of the 'ceratobranchials' of fishes and batrachians, they are termed ' thyro-hyals.'

The Human skull preseuts varieties related to sex, age, and race. Those of sex are exemplified in the smaller size of the female skull, the more delicate proportions of the facial bones, the minor prominence of the malam, mentum, and angles of the jaw.

In the skull of the child at birth, fig. 375, the jaws, through the non-developement of the teeth and their soekets, are relatively smaller than in the adult; but the facial angle, owing to the rapid growth of the brain, is, perhaps, nearer to the Greek ideal, at the
 period when the deciduous teeth are in place: both the cerebral cavity and the orbits are then relatively greater. The bones of the face are shorter vertically, through the non-developement of the ethmoidal and maxillary sinuses; the regular convexity of the forchead is not broken by the prominences of the frontal simuses. The sutures of the eranium are more linear, less dentated, and more numerous, throngh the non-coaleseence of the elements of the adult cranial bones. The angle is more open between the ascending and lorizontal ramus of the mandible: the mentum is vertieal or recedes.

In the adult, fig. 371, the vertical extent of the jaws is increased by the growth of the teeth and their sockets, while the whole face is expranded by the developement of the maxillary
 siunses and olfactory earity, through the full growth of the nasal and turbinal bones and of the ethmoidal sinuses. The palatine arch has extended backward, and the posterior nares have beeome more vertical. The ascending mandibular ramus forms ahmost a right angle with the liorizontal one or 'body' of the bone.
In extreme acre. fig. 376 , the teeth are lost, the alveoli become absorbed, and the jaws are redneed in rertical extent to infantile proportions. The mandibular angle asain beromes more open ; but the chin projects and is brought nearer to the nose when the
mouth is shut. Some of the ordinary cranial sutures of the adult beeome obliterated.

The observed range of ethnic variety in the eonfiguration of the Human skull and proportions of its parts is mueh more limited than in domesticated breeds of lower Mammals, e. g. the canine races. There is no asteologieal or dental difference of specific value. Assuming the skull of the Australian, figs. 368-370, ${ }^{1}$ to be the lowest known form, the extent of variation will be exemplified by comparing the fignres given with corresponding ones of the Europeau skull, figs. 389-391. Besides the increased capacity of craniun concomitant with inereased size of the intellectual organ in the educated Man, the orbital rim is more sharply defined, though thimed and less protuberant; the malars are less prominent ; the nasals more prominent and longer : the alveolar parts of both jaws are more vertical anteriorly, and their entire extent is less, owing to the relatively smaller size and less complex implantation of the molar series of teeth; the ascending ramus of the mandible is deeper, and the angle less everted or squared. The profile views, figs. 369 and 390 , show, in the Australian, the greater longitudinal and less vertical extent of the face, the produeed jaws and receding forehead, the deep depression between the superorbital ridge and the shorter nasals: the base views, figs. 370 and 391 , whilst exlibiting the same position of eondyles and great foramen in relation to the erect posture, alike differentiating both extremes of Humanity from the nearest allied Ape, fig. 3.59, show the vacnities resulting from the stronger zygomatic arehes and the narrower intertemporal part of the cramim in the Xustralim. The vertical longitudinal section, fig. 396, also shows, an compared with fig. 373 , the thicker eramial walls of the Asstralian and the ahesene of frontal sinuses. But, whilst the characters brought out by this comparison are pretty constant in the Sustralian race, they are far from being so in the European: and this difference depends on the eomparatively miform low intelligence and sameness in the mode of life of the savage as compared with the state of civilized man. The cranimm of the Anstralian may vary somerrhat in the degree of compression, of shelving of the roof from the mid-line of the vertex, of the convexity of the arch from before backward : and in the presence or alsence of the suture between alisphenoid and parietal: but besides the narrow cranimm, with its contracted and retreating forehead and the prognathic jaws common to the Mrlanian races, the Australian skull is characterized by the thick

[^134]and prominent superorbital ridge, which is continued across the glabella and overhangs the deep-set, small, and slightly prominent nasals: another well-marked characteristic is seen in the large proportional size of the molars, premolars and canines, but more especially of $m 1$ and $m 9$, and in the almost constaut distinction of the two external fangs of these tceth, in both jaws. In most skulls the vertex is raised, and the sides of the calvarium slope away from the sagittal elevation. The sutures are less dentated. The malar bones are small, but moderately prominent and rugged. The alisphenoid is narrow, and the squanosal is unusially closely approximated to the frontal, if it does not directly articulate therewith. The frontal sinusës are seldom developed. ${ }^{1}$ Between the cxtremes brought out by the above comparison lie subjcets for ethnological notice of cranial diversity, seeningly inexhaustible, of which the following are selected examples.

In the diminutivc Boselisman race of South Africa, by some reckoned amongst the lowest of the aborigines of that continent, the cranium, figs. 377-379, is flatter at the vertex and relatively broader at the parietal protuberances than in the Anstralian race, and the forehead, though low and narrow, is more prominent. A larger proportion of the alisphenoid joins the parietal. The border of the orbit is thick and relieved, but the superorbital ridge is not carried so strongly across the glabella as in the Australian race, and the origin of the nasals is less sunk: the nasals are narrower and flatter and the malar protuberances are more regularly convex and prominent. (The prognathic charater of the jaws is affected by the absorption of the alveoli due to age, in the specimen figured. $)^{2}$

The cranium of the Hottentot ${ }^{3}$ resembles that of the Boschis-

[^135]man, in the eontraeted but almost vertieal forehead, continued, with a very slight prominence of the glabella, to the narrow flattened nasals, and in gencral shape: the malar bones are equally prominent, and the facial parts of the maxillaries are similarly dcpressed, but the superorbital ridges are less thickened and less produced. The alisphenoid joins the parietal on both sides of the head. The molars are small or average-sized. The upper border of the squamosals is on a level with the fronto-malar suturc. The superoceipital region rises immediately from the hinder margin of the foramen magnum.

In a Negro from the Gold Coast, Africa, ${ }^{1}$ the eranium is large at the parietal protuberanees, though narrow at the forehcad. The nasal bones are broad and flat, but are continued from the same vertical line as the glabella. The alisphenoids articulate largely with the parietals. The jaws are produced. The molars are not larger than in the White races. The cranial walls are thick in most West-Coast Negroes. The uneducated Afriean, like the unedueated European, has a minor cranial capacity than

the educated African or European, but this hecomes a racecharacter only when, as in the Australians and Tasmanians. all are sunk in barbarism, or none risen above that oldest known state of man.

In the skull of a Greenlander, fige. $380-3 \times 2,^{2}$ the cranimm presents an elongate form, with the sides sloping from a median sagittal eminence. The parictal protuberances are feebly developed. The glabellis is not very prominent, scareely produced above the root of the nose: the superorbital ridge is thin and well defined. The nasals are prominent: the upper jaw is pro-

[^136]duced; but the chief eharaeteristic of the skull is presented by the large and prominent cheek-bones, the lower border of which terminates a plane extending from the ectorbital process downward, outward, and forward. The zygomata are long and strong. The lower jaw is large, with a well-marked chin. These characters are repeated, with slight modifications, in the Esquimaux, but with varying proportions of length to breadth in the cranium. Aniong the Laplanders, with similar characters of zygomata and jaws, and the sloping of the calvarium from the sagittal line, the cranium is short, averaging 6.90 inches, with a breadth of 5.78 inches. But the so-ealled 'pyramidal type,' as exemplified in fig. 380, and in most races inhabiting high northern latitudes, and extending southward in Asia, is associated with both long (dolichocephalic) and short (brachyeephalie) crania. Blumenbarthis 'Mongolian' eharacters are, in the main, those of Pritchard's ' pyramidal type.' Where much miformity of manner of life and of degree of mental power prevails, as, e.g., in the Lapps and the Esquimaux, a certain eonstaney of eranial character is assoeiated therewith: where difference of work and of social grade creeps in, then cranial characters beeome inconstant. This is, now, manifested instructively by extended comparison of the
 skulls of the wide-spread Polynesian peoples. Prognathism is still the most constant feature in them, eoneomitant probably with late weaning of the infant. It is a conspicuous character in the skull of the native of Tahiti, fig. $383,{ }^{1}$ in whieh the foreheal is narrow and sloping: the parietal protuberanees moderately developed and the cranium of moderate length; it is narrower and flatter at the sides than in the White raees generally. The masil boues are prominent. Of the varieties exhibited by the aborigines of the two American continents, the works of Dr. Aloton ${ }^{2}$ give ample evidence.

In the skull of a Mincusi Indian, from Guiana, figs. $384,385,{ }^{3}$ the cianimn is symmetrically formed, natrow at the forehead, expanded at the parietal besses, with the broad and rather low nasals coming off in a line with the glabella; the upper jaw is produced, but the zygonata and the mandible have European chatacters.

The cramium of a Peruvian of the modern or Inca race is short, broad, and high, especially behind, owing to the habit of carrying the infant with the back of the head resting upon a flat loward, the pressure usually producing a slight unsymmetrical distortion of the oecipital part of the skull. The forehead is narrow and receding. The glabella slightly prominent. In the older race the cranium was singularly and artificially distorted to the form, e.g., shown in figs. 387 and $358 ;^{1}$ in which, with a sudden slope and slight

convexity of the fromal, there is an amular constriction of the cranium behind the cormal suture: the flattening, emstrietion, and elongation having been produced lis ligature at that part during infancy. The nasal bones are large, moderately prominent, and eontinued forward from the same sloping line with the glabella. The jaws are much producenl, but the chin is well dereloped. Notwithstanding the deformity and the low character imparted artificially to this skull, the cranial carity is as eapacious

[^137]as in other American races: the brain was as large, but was differently placed. The transverse line equally biseeting the lower surface of the skull here crosses the middle, instead of the forepart, of the foramen magnum.

In the Indians of the Columbia River, ealled 'Flat-heads,' the cranium is deformed by the applieation of flattened boards to the frontal and superoceipital regions, oceasioning a singularly depressed, broad or side-bulging, subelongate figure. But they resemble most other Indians in the large and almost flattened nasals being continued forward in a line with the glabella. The upper jaw is produced, and the chin moderately prominent.

The skull of the Patagonian agrees in general shape with that of the modern Peruvian, the occiput presenting the same height, breadth, and slight unsymmetricad flattening, but it is distinguished by its superior size, obviously belonging to a larger race of men. The frontal sinuses are well developed. The nasal bones are narrow, but prominent. The malars are large and prominent. The upper jaw is moderately produced. In a Fuegian I found the cranium subelongate, moderately expanded at the parietal bosses, with a narrow and protuberant superoceipital; the forchead narrow and low. The glabella was prominent, and the nasals produced. 'The malars were moderately prominent ; the jaws prognathic ; the ehin well developed. The base of the skull presented paroceipital protuberances, large styliform processes of the sphenoid, and small but distinet eustachian proeesses of the petrosal. Traces of the maxillo-premaxillary suture remained on the palate. The molar teeth were of moderate size, worn on the inner border in the upper jaw and on the outer border in the lower jaw.

In the Indians of the Pampas the head is generally rounded, nearly ellipsoid, contracted in length and but little compressed laterally, with a forehead moderately prominent and not falling back. In the Chiquitos the same elharacter is exaggerated and the head is nearly circular, while in the Moxos it is more oblong: this last form is very nearly that of the Guarani, or Paraguay Indians. The heads of the Caribs, as well of the Antilles as of Terra Firma, are naturally rounded. The skulls of the individuals of the continental Caribs are orate, riewed from above: the oceiput is not flatened as in the Pernvian and Californian Indians, but is moderately prominent, rounded and rather narrow. The foreltead is narrow and slopes with a gentle curve directly from the interorbital space, which is more prominent than the supraciliary ridges and has no median vertical impression. The alisphenoid presents a margin of half an inch in
length to join the parietal on both sides of the head. Thic cheekbones and lower border of the orbit are moderately prominent: the nasal bones are continued with a very slight depression from the glabellar prominenee: the superior maxillary bones are produeed: the lower border of the malar proeess of the maxillary bone is slightly concave. The lower border of the orbit is a little more concave than the upper one: the spheno-orbital fissure is widely open anteriorly. The cranium of the Maeusi Indian, fig. $38 t$, is more oblong and ellipsoid, viewed from above: the forehead is broader, the parietal region narrower, or at least not broader, than it is in the shorter erania of the Carib tribe. The frontal sinuses cause the superorbital ridges to project beyond the interorbital space: the malar bones are equally prominent: the outer angle of the malar processes of the maxillary bones overhangs the coneave line leading thence to the alveolar processes. The general character of the facial part of the skull resembles that of the Patagonian Indian, but the prominent convex occiput and general form of the cranium approach nearer to the Carib form. The Carib, Guianian, and Columbian skulls all agree in the roundness or convexity of the occipital region, and differ in this respect, as well as their more symmetrical figure, from the skulls of the Peruvians, Chilians, and Patagonians. All the American skulls manifest the same inferiority in the size of the true molar teetl as compared with the skulls of the Australians: the incisors, canines, and premolars, or hicuspides, are not smaller than in the Black races.

In the average skull of the Chinese the craniun presents the moderate or medium proportions of length, height, and breadth. The sagittal region is not unusually elerated. The plane of the glabella is slightly affected by the frontal sinuses, and the large and prominent masals are continued therefrom with at very slight depression. The malars are large and slightly prominent. The upper jaw is not produced. The chin is well teveloped. The paroccipital tubercles are well marked. The chief distinction which such skull presents from the average form of those of European races is in the size and prominence of the malar bones.

Most well-formed skulls of educated Whites present the characteristics ascribed by Blumenbach to his Caucasian race. The contour of the cranium, as well as that of the face, is oval: the forcheal is moderately rertical, high, and broad: the nasal bones are prominent and well developed: the malars are vertical, and the orbital boundaries are neatly defined. The upper jaw is not produced: the lower jaw has the chin well marked.

The range of varicty is, however, considerable. From an old and well-filled European graveyard may be selected specimens of 'klinoeephalic' (slope- or saddle-skull), 'conocephatie' (coneskull), 'hrachycephalie' (short-skull), 'doliehocephalie' (long-

skull), 'platyeephalic' (flat-skull), 'leptoeephalie' (slim-skull), and other forms of eranium equally worthy of penta- or hexasyllabie Greek epithets. There are varicties in the degree of projection of the supranasal and superorbital ridge, but never attaining that exhibited as a eonstant and speeific charaeter in the Gorilla, fig. 395. There are varieties in the sutures, in the time and degree of their obliteration,' and in their interealated 'wormian' bones, \&e. \&ce.

[^138]Cxı', Bd. ii p. 1.48:-' Durch seitliche Synostose der Scleitel- und Stirn-beine, d. h. Verknöeherung des seitlichen unteren Theiles der Kranzaht, wird eine quere Verengerung des Schädels benlingt.
${ }^{\text {b }}$ Figured in Lucae, Tafel VIII.

The progressive superiority of the cranial owe the farial division of the skull is best illustrated in the Mammalian chas: ; but, to show the full gradational extent of diversity, two examples, in this retrospective summary, are borrowed from lower vertebrate classe.

In the cold-blooded (rocodile, fig. 392, the cavity for the brain, in a skull three feet long, will scarcely contain a man's thumb. Amost all the skull is made up of the instruments for gratifying an insatiable propensity to
 slay and devour ; it is the material symbol of the lowest animal 1ansion.

In the Bird, fig. 393, the brain-case has expanded vertically and laterally, but is confined to the back part of the sknll. In the small
 singing-birds, with shorter beaks, the proportion of the cranial cavity becomes much greater.

In the Door, fig. 394, the brain-case, with more capacity, begins to adrance firther forward.
In the Gorilla, fig. 395, the calracities of the cranium and face are about equal. In Man, fig. 39a, the (ranial area vastly surpasises that of the face.

1 difference in this rc-

Dog. spect is noticeable between the savage and civilised races of mankind ; but it is immaterial as compared with the contrant in this reapect presented by the lowest form of the human head, fig. 396 , and the highest of the brute species. Such as it is, however, the more contracted cramium is commonly accompanied by more produced premaxillaries and thicker walls of the cranial cavity, as is exemplified in the negro or Papuan skull.
the parts namad of the coronal suture caneed or combtioned ('bedingt') the tramsverse contraction of the cranial cavity is not stated. If the mechanical idea prevailed that obliteration of a suture prevented the meviously distinct bones being pulled apart, so as to allow, or stimulate, disproportionate growth at the margins of the stretched bones, then we should have expected that the clongation of the ctintal bux would have been prevented in the direction at right angles to the obliterated suture, 1 roducing contraction in the longitudinal instead of in the transverse diaection

If a line be drawn from the occipital condyle along the floor of the nostrils, and be intersected by a sccond touching the most prominent parts of the forehead and upper jaw, the intercepted angle gives, in a general way, the proportions of the cranial cavity and the grade of intelligence; it is called the 'facial

angle. ${ }^{11}$ In the Dog this angle is 20°; in the Gorilla it is 40°, but the prominent superorbital ridge occasions some exaggcration; in the Australian it is 85°; in the educated White it averages 95°. The ancient Greck artists adopted, in their beau ideal of the beautiful and intellectual, an angle of 100.
C. Bones of the Limbs.--The Human clavielc, fig. 183, 58, is more slender in proportion to its length, and its curves are always better marked than in the great Apes: the tubercle for the conoid ligament is usually more developed. The peculiarities of the Human scapula, as brought out by the same comparisons, are its great breadth in proportion to its length, the more transversc direction of the spine and acromion, and the disproportionate extent of the subspinal as compared with the supraspinal tract. The npper angle is less rounded; the cxtent of the upper border between that angle and the superscapular notch is relatively greater, and is morc nearly straight ; the notch itself is smaller and deeper. The smooth triangular surface near the origin of the spine, upon which the trapezius muscle glides, is rclatively greater. The surface for the teres minor muscle, on the outer side of the bone, near the lower border, is broader; as is that for the teres major, nearer the lower angle. The deep part of the subscapular bed, being parallel with the attachment of

[^139]the spine of the scapula, is situated nearer the upper border than in the Gorilla or Chimpanzee. The surface for the upper origin of the serratus magnus is relatively less than in the Gorilla. The long narrow surface between the obtuse lower boundary of the subscapular fossa and the lower border of the scapula is flat, or is less concave than in cither the Gorilla or Chimpanzee.

The humerus of the male Australian, ib. 53, is more slender than that of the average-sized male European; both show the inferior developement of the condyloid processes as compared with the Gorilla; and the same difference in relation to muscular attachments is exemplified by the lower tuberosities at the upper end of the bonc. The intercondyloid perforation is occasionally seen in the Human lrumerus. The characteristics of the Human radius, ib.54, are its greater relative shortness to the humerus (seldom noted in anthropotomical descriptions of the bone); its more slender and less bent shaft; the better definition and greater depth of the grooves for the three tendons acting on the thumb at the back part of the distal expansion, and the more produced styloid process; whilst the tuberosity above it for the attachment of the supinator longus is much less developed than in cither the Gorilla or Chimpanzee. The chief distinctions presented, in the same comparison, by the ulna, ib. 55, are its minor length compared with the humerus; its greater relative slenderness; the less proportional expansion of the proximal end ; the somewhat minor production of the coronoid process; and the greater straightness of the shaft, especially on the side view.

In the Gorilla the hand is an instrument of great power of grasp, capable of easily sustaining the weight of the body suspended by the fingers: the kength and strength of the whole pectoral limb accord with the mechanical adjustments of the hand as a hook, and as a cruteh in moving along the ground. In Man the framework of the hand, ib. 56, 57, bespeaks an organ of varicd and delicate prehension; and the form and proportions of the whole upper limb relate to the free motions and complex functions of the instrument. In Man the length of the three bones of the thumb, i, nearly equals one third the length of the humerus: in the Gorilla it is little more than a fifth of that length. The metacarpal of the index digit in the Gorilla is twice the length of that of the pollex: in Man it is little more than one fourth larger. The shafts of the proximal and middle phalanges of the fingers are less expanded than in the Gorilla; their distal ends are broader than the shaft instead of being narrower:
the terminal portions of the ungual phalauges are longer, broader, and flatter than in the Gorilla, considerably so in relation to the size of the whole hand,' having reference to sustaining the developed surfaee for a refined sense of touch.

The ilium, fig. 367, $A, 62$, ischium, ib. 64 , and pubis, ib. 63 , eoalescing, the two latter at the sixth year, and both with the ilimm at about the twenty-fifth ycar, have been deseribed, aceording to the usage of authropotomy in such instances, as a single bone, muder the designation of ' os innominatum.' The Human characteristics are strongly marked in this part of the skeleton. ${ }^{2}$ The ilium is broader than it is long, and is more concave anteriorly, fig. 398, 4 , than in the Gorilla; it is also more concave posteriorly, fig. 397, especially in the vertieal direction, in which it is slightly convex in the Chimpanzee. The sacro-iliac symplysis, fig. $398,2,3, n$, b, is subquadrate, instead of being long and narrow as in the Chimpanzee. The 'crest,' a, b, c, is much thieker and much more curved; and both angles or 'spines,' but especially the posterior one, b, are more produced. These modifieations, and espeeially the developement of the 'external labrum,' fig. 397, c, relate eliefly to the needful increased surface of attachment for the large muscles which sustain the trunk upright upon the hinder, now beeome the lower, limbs. The anterior border of the innominatum, figs. 397, 398, n, e, f, especially that part formed by the ilium, a, u, d, is much shorter and thicker, and the 'anterior inferior spine,' d, is better developed. The acetabulum, fig. 397, 4, is turned more toward the baek of the os innominatum. The great isehiatic notch, m, is shorter, but much deejer; the spine of the isehinm, l, is more producel; the lesser ischiatic notch, k, is deeper, more concave, but of the same lengtl. The tubcrosity of the ischium, i, is convex, and is contimued upon the outer part of the bone to near the acctabulnm; in the Gorilla and Chimpanzee it is more flattened, is carried further down from the acetabulum, and its outer margin is prodnced or evertal. The pubis, q, s, is shorter and much thicker than in the Chimpanzee. The symphysial bomulary of the obturator foramen, o, is mueh narrower and less curved. The oblique groove, t, beneath the pubic boundary of the foramen in Man is not present in either the Chimplanzee or Oraug-utan. The cotyloid noteh, 5, is broader, and the sym$p^{\text {hy }}$ sis pubis, fig. 398, g, is much shorter than in the Anthropoid apes.

The backward developement of the ilium, b, n, for the ectogluteus, and the ant. inf.-spine. d, for the rectus femoris, relate to

[^140]the important slare taken by both museles in maintaning the erect position.

With the outer surface of the ilium turned to the observer, as in fig. 397, is xeen the sane surface of both ixchium and pubis, together with the acetabulums; but, in the Gorilla, the twist of the innominatum is such as to present only the outer margin of the ischium, with a side view of the acetabulum; and, in the Chimpanzee, the greater twist brings the inner surface of the pubis into view and almost excluder the acetabulum.

The sacro-iliae surface is divided into a'syndesmotic,' fig. 398, 1, 7 , and
 a'synchondrosal,' ib. $/ 1,2$, part : the latter is more eapecially termed the 'articular,' and sometimes, from its shape, the 'auricular' part; it is united by ' fibro-cartilage " to the first and second, and a small part of the third, saeral vertebre. The coneavity, 4 , is the 'internal iliae forsa.' The ridge, 5, transmit-, like a buttress, the weight sustained by the articular surface, 2 , to the back wall of the acetabulum : the ridge. 6. thence continucd to the spine of the pubis, f, is termed 'ilin-pectincal.'
The human pelyiv, formed by the sacrum, coecrx. and oxsil imominata, offers

Iuternal view of the os innominatum.
characters of sex and raee. The male pelvis is shown in fig. 183, 62, 63, 64 : the female pelvis in fig. 399. In the latter the sacrum is relatively wider, and, anteriorly, it is less coneave transversely above, a, more coneave vertically below, b. The ilia are broader and shorter, with more eapacious fossex : the ' obturator foramen 'is triangular ; the isehial tuberosities are wider apart, and the sym-
 physis pubis less decp. Anthropotomists call the part which is above the linea iliopectinea, o, f, and promontory of the sacrum, a, the ' false pelvis;' that beneath, the 'true pelvis.' Of this the 'brim,' or 'superior eircumfercnce' e, f, b, incloses the 'inlet'; the 'inferior eircumference,' bounded by the isehial tuberosities, pubic symphysis, and tip of the eoceyx, incloses the 'outlet' of the 'true pelvis.' The diameter from the sacral promontory, a, to the pubie symplysis, b, is called the ' conjugate' or ' antero-posterior' one; that between the ilia taken at e, f, or half way between the sacro-iliae joint and the pectineal eminence, is the 'transverse' diameter ; the 'oblique' diametcr is between the point of the brim nearest the pectineal eminence, c, and the sacro-iliac joint of the opposite side, d. Of the pelvic outlet two diameters are noted-the ' antero-posterior from the tip of the coceyx to the lower part of the pubie symphysis, and the 'transverse' taken between posterior parts of the ischial tuberosities. The following may be regarded as the normal extent of the above diameters in the two sexes:-

* PRMM.	MAI.E.		FEMAIE.	
	In.	Linces.	In.	Lines.
Transverse	4	6	5	1
Oblique	4	6	5	0
Anteroposterior	4	0	4	5
" OUTlers.				
'Transverse	3	3	4	5
Antero-posterior	3	4	4	2

In Man alone are the boundaries of the superior outlet on one plane: the section through the ilium, in fig. 400, shows this to be due to the direction of the body of the pubis, whieh is on the same
plane with that of the eotylo-sacral traet of the ilium. In this section, $a a^{\prime}$ is the line of fulcrum falling in the transverse vertieal plane of the trunk; $c c^{\prime}$ is the line of weight passing through the centre of the sacro-iliae joint; $b b^{\prime}$ is the line of power, or pubic projection, giving attachment to the extensor muscles of the thigh; $d d^{\prime}$ is the line of sacral projection ; $e f$ gives the ' eotylo-sacral

eurve;' $a^{\prime} b^{\prime}$ is the pubie arm of the lever; $a^{\prime} c^{\prime}$ is the cotylosaeral arm; $a^{\prime} d^{\prime}$ gives the length of the gluteal arm ; $c^{\prime} d^{\prime}$ that of the posterior spinal arm. In the diagram, fig. 401, the lines $a e, e c$, mark the angle of inclination of the pelvis, or the 'pelvivertebral angle ;' $f g d$ gives the inferior angle of inelination of the pelvis, which is about 10° with the horizon, $g d$. The two lines of the superior and inferior planes, when prolonged anteriorly, cut cach other at c, and include an angle of about 50°, $e c f$. The 'sacro-vertebral angle' is shown at $a e i$, which is about 117° in the male and 130° in the female. The angle $a b k$,
YoL. If.
taken through the long dianeter of the pubic symphysis, is the complementary angle of the sacro-vertebral one in the female, owing to the general parallelism of the pubic with the sacral wall of the 'true pelvis.' The 'axis of the brim' is the line $l \mathrm{~m}$, drawn from the centre of the superior plane at right angles thereto. The 'axis of the inferior outlet,' $n p$, is drawn at right angles to the centre of the inferior plane. The axis of the pelvic cavity, lor p, is an irregular parabolic curve, passing from the fixed axis of the brim and moveable forward, through the flexibility of the coccyx at its inferior extremity, with the moveable axis of the inferior outlet, with which it coincides below. ${ }^{1}$

The observed range of variety in the Human pelvis is restricted to some slight difference in the breadth and curve of the sacrum, in the contour of the iliac crest (fig. 397, a, c, b), in the interspace between the ant.-supcrior, a, and ant.-inferior, d, spines, ${ }^{2}$ and in proportions that modify the shape of the upper aperture of the 'true pelvis,' whereby it might be approximately defined as 'oval,' 'oblong,' 'round,' or even approaching to 'quadrate.' According to my experience, these are not characteristic of race, nor uniformly concomitant with cranial varicties, as, e. g. the 'round' pelvis with the 'brachyce, halic,' the 'oblong' with the 'dolichocephalic,' or the 'square' with the 'pyramidal' form of skull. ${ }^{3}$ Vrolik ${ }^{4}$ has noted a more vertical direction of the ilia, and the proximity of the highest part of the crest to the posterior superior spinc, in the pelvis of a Negro: I have noted the smaller and narrower iliac bones of an Australian female as compared with an European ; ${ }^{5}$ but the size accorded with a general dwarfishness of stature, and the difference of proportion was too slight to affect the characteristic human configuration of the bone. Save in regard to Europeans, the requisite number of observations of the pelvis in the same races or tribes of mankind is yet a desideratum.

In the typical Mammalian foot the digits decrease from the middle to the two extremes of the scries of five toes; and in the modifications of this type, as traced throngh the gradations (p. 308, fig. 193), the imermost, i, is the first to disappear. In Man it is the seat of excessive devclopement, and receives the name of 'hallux,' or ' great toe;' it retains, however, its characteristic inferior number of phalanges. The tendons of a powerful muscle, which in the Orangs and Climpanzees are inserted into the three middle tocs, are blended in Man into one, and this is inserted into the hallux, upon which the force of the muscle now called 'flexor longus hallueis' is exclusively concentratcd.

[^141]2 xliv. p. 839 (Polynesian).
${ }^{3}$ cris.
4 EYH:
${ }^{5}$ xhiv. P. 806.

The arrangement of other museles, in subordination to the peculiar developement of this toe, makes it the ehief fulerum when the weight of the body is raised by the power acting upon the heel, the whole foot of Man exemplifying the lever of the second kind. The strength and backward production of the heel-bone relate to the augmentation of the power. The tarsal and metatarsal bones are coadjusted so as to form arches both lengthwise and across, and receive the superincumbent weight from the tibia on the summit of a bony vault, which has the advantage of a certain elasticity combined with adequate strength. In proportion to the trunk, the pelvie limbs, fig. 183, 65-68, are longer than in any other animal; they even exceed those of the Kangaroo, fig. 211, and are peculiar for the superior length of the femur, fig. 183, 65, and for the eapacity of this bone to be brought, when the leg is extended, into the same line with the tibia, ib. 66. The inner condyle of the femur is longer than the outer one, so that the shaft inelines a little outward to its upper end, and joins a neek longer than in other animals, and set on at a very open angle. The weight of the body, received by the round heads of the thighbones, is thus transferred to a broader base, and its support in the upright posture facilitated. The pelvis is modified so as to receive and sustain better the abdominal viscera, and to give increased attachment to the museles, especially the 'glutei,' which, comparatively small in other Mammals, are in Man vastly developed, to balance the trunk upon the legs, and reciprocally to move these upon the trunk. In comparison with that of the Apes the Human femur is distinguished by its greater length, both absolute and relative to the trunk, by the more angular and less cylindrical shape of the shaft ; by its forward bend, and the buttress-like developement of the 'linea aspera;' by the greater proportional expanse of the distal end, especially at and above the inncr condyle, and by the greater backward production of both condyles, espeeially of the inner one. Only in the Chimpanzee and Gorilla is the 'eervix femoris' rclatively as long as in Man; but it stands out at a different angle, and the femora are parallel, fig. 340, 65 , not eonverging to the knee-joints, through the double obliquity of 'neck' and 'shaft' which claraeterises the human fcmur', fig. 183, 65. The great trochanter does not rise so high as the hoad of the bone in Man : the small trochanter is more promincnt and circumscribed. The terminal expansion of the shaft is chicfly toward the imner or tibial side. The major part of the rotular surface is on the outer condyle.

After the femur, the tibia, 66, is the longest bone of the skeleton
in Man : in the Gorilla it is the shortest of all the long bones of the limbs: the Human tibia also differs from that of the Gorilla in the more equable diameter of the shaft and more parallel contour of the outcr and inner sides, with a considerable reduction of the interosseous space between it and the fibula. The crest descends in Man near the middle of the anterior surface of the shaft, with a slightly sigmoid or wavy course. The lower articular surface is uniformly concave from before backward, and is continued at a less open angle and to a greater extent upon the articular surface of the inner mallcolus, the articulation with the astragalus being deeper and firmer than in the Gorilla and other apes. The outer or fibular malleolus descends in Man lower and more vertically than the inner malleolus, interposing a greater obstacle to lateral inflections of the foot upon the leg than in the Gorilla. The foot is shorter in proportion to the leg, in Man, than in any Quadrumane, and is so articulated that the sole is directed downward: the tarsus is longer and narrower. The entocuneiform presents a flat, reniform surface, anteriorly, to the base of the hallux. The four outer toes are very slender compared with the innermost; and their proximal and middle phalanges are very feeble compared with those of the Gorilla : all the five toes have the same direction, forward. ${ }^{1}$

The osseous texture of the Human bones is remarkable for its delicacy and finish: it is exemplified in fig. 402 by longitudinal sections of parts of the three chief bones of the pelvic limb. In the section of the upper end of the femur, a, the outer, compact tissue, a, is extremely thin upon the head of the bone, begins to gain thickness at its under part, and at the corresponding part of the great trochanter, and increases until it forms the wall of the medullary cavity. In the cancellous or reticular tissue forming the substance of the head and neck, a tendency to a radiating disposition, diverging from the under part of the neck, and favourable to strength, may be discerned in the principal laminæ. In the head of the tibia, \mathbf{b}, the compact tissue is also very thin, where it encloses the reticular structure occupying the proximal end, and becomes thicker as that structure is absorbed. In both the tibia and fibula is shown the line indicative of the union of the upper 'epiphysis' with the 'shaft:' and in the femur there is a similar indication of the epiphysial condition of the great trochanter.

The more constant sesamoid bones of the Human skeleton,

[^142]which have an artieular faeet playing upon a joint, are the ' patella,' fig. 183, 66', the pair beneath the metatarso-phalangial joint of the great toe, and the pair at the eorresponding part of the thumb. Of those playing on surfaces of bone, there is one in the tendon of the peroneus longus which glides on the groove of

Sections of A femur, B tibia, and fibula.
the euboid; one in the tendon of the tibialis anticus opposite the smooth facet on the entocuneiform ; one in the tendon of the tibialis posticus opposite the inner side of the astragalus; and one (fabella) in the outcr head of the gastrocnemius behind the outer condyle of the femur. The os penis, common in Quadrumana, is never developed in Man.
D. Relations to Archetype.-Finally, in regard to the skeleton of Bimana, there remain a few obscrvations on its relations to the general vertebrate archetype (vol. i. fig. 21), from which it departs so widely.

The skull shows the following extreme modifications. In the oeeipital segment the hemal arch is detached and displaced, as in all Vertebrates above fish; its pleurapophysis (scapula, fig. 403, $p l, 51)$ has exchanged the long and slender for the broad and flat form; the hæmapophysis (coracoid, \boldsymbol{n}_{2}) is rudimental, and coalesces with 51: the diverging appendage, 53-57, of this arch becomes the 'pectoral limb.' The neurapophyses (exoccipitals, 2) coalesce with
the newral spine (superoccipital, 3), and next with the centrum (basioccipital). This afterwards coalesces with the centrum (basisphenoid, $5, c$) of the parietal segment. With this centrum also the

neurapophyses, called ' alisphenoids,' n, the centrum of the frontal vertebra, called 'presphenoid,' and its neurapophyses (orbitosphenoids, 10), become anchylosed. The neural spine (parietal, 7) retains its primitive distinctness, but is enormously expanded, and is bifid, in relation to the vast sizc of the brain in Man. The parapophysis (mastoid, fig. 404, c) becomes confluent with the otic capsule (petrosal), the tympanic, d, squamosal, a, and with the pleurapophysis, called 'stylo-hyal,' fig. 403, 38, of the hæmal (hyoidian) arch. The hæmapophysis is ligamentous, save at its junction with the hæmal spine when it forms the ossicle called 'lesser cornu of the hyoid bone,' ib. 40, the spine itself being the basi-hyal, 41. The whole of this inverted arch is much reduced in size, its functions being limited to those of the tongue and larynx, in regard to taste, speech, and deglutition. The neurapophyses (orbitosphenoids, 10) becoming confluent with the centrum (presphenoid, 9) of the frontal vertebra, and the latter coalcscing with that of the parietal vertebra, the compound bone called 'sphenoid' in Anthropotomy results, which combines the centrums and neurapophyses of two cranial vertebre, together with a diverging appendage (pterygoid) of the maxillary arch.

The knowledge of the cssential nature or 'general homology' of such a compound bone gives a clue to the phenomena of its developement from so many separate points, which neither em-
bryology nor teleology conld have afforded. As the centrum, 5, becomes confluent with 1, a still more complex whole results, which has accordingly been described as a single bone, under the namc of 'os spheno-occipitale' in some anthropotomies. Such a bone has not fewer than twelve distinct centres of ossification, corresponding with as many distinct bones in the cold-blooded animals that depart less from the vertebrate archetype. The spinc of the frontal vertebra (frontal bone) is much expanded and bifid, fig. 405, d, d, like the parietal bone; but the two halves more frequently coalesce into a single bone, with which the parapophysis (postfrontal, b)
 is connate. Much of the hæmal arch is consumed by the rapidlygrowing ' ossicles of the ear,' and the proper pleurapophysis (tympanic bone, fig. 404, d) is reduced to the function of supporting the ear-drum, b; and becomes anchylosed to the squamosal, a, and mastoid, c. The hæmapophysis, fig. 403, $29, h s$, is modified to form the dentigerous lower jaw, but articulates, as in other Mammals, with a diverging appendage (squamosal, 27), of the antccedent hæmal arch, now interposed between it and its proper pleurapophysis; the two hamapophyses, originally separate, as in fig. 405, become conflucnt at their distal ends, forming the symphysis mandibulæ.

The centrum of the first or nasal vertcbra, like that of the last vertebra in Birds, is shaped like a ploughshare, and is called ' vomer,' fig. 403, 13; the neurapophyses have been subject to similar compression, and are reduced to a pair of vertical plates, which coalcsce together, ib. 14, and with parts of the olfactory capsules (upper and middle turbinals), forming the compound bone called 'ethmoid.' The prefrontals assume this conflucnce and conccaled position even in some fishes-Xiphias, e. g.-and repeat the character in all Mammalia and in most Birds; but they become partially exposed in the Ostrich and Batrachia. The spine of the nasal vertebra (nasal bones, ib. 15) is nsually bifid, like those of the two succeeding segments; but it is muclı less expanded. The hæmal arch, called 'maxillary,' is formed by the pleurapophyses (palatines, 20) and by the hrmapophyses (maxillaries, ${ }^{21}$), with which the halves of the bifid hæmal spine (premaxillaries, 22) are partly comnate, and become completely
confluent. Each moiety, or premaxillary, is reduced to the size required for the lodgment of two vertical incisors. As the canines in Man do not exceed the adjoining teeth in length, and the premolars are reduced to two in number, the alveolar extent of the maxillary is short, and the whole upper jaw is very slightly prominent.

Of the diverging appendages of the maxillary arch, the more constant one, called 'pterygoid,' 24 , articulates with the palatine, but coalesces with the sphenoid; the second pair, formed by the malar, 26 , and squamosal, 27 , has becn subject to a greater degree of modification: this appendage still performs the function assigned to it in Lizards and Birds, where it has its typical, ray-like figure, of connecting the maxillary with the tympanic, or one rib with the next ; but the second division of the appendage (squamosal), which began to expand in the lower Mammalia, and to strengthen, without actually forming part of, the walls of the brain-casc, as in fig. 140, 27, now attains its maximum of devclopement, and forms an integral constituent of the cranial parietes, filling up a very large cavity between the neural arches of the occipital and parietal segments. It coalesces, moreover, with the tympanic, mastoid, and petrosal, and forms, with the subsequently anchylosed stylo-hyal, a compound bone called 'temporal' in human anatomy. Embryology shows, empirically, the facts of developement: the key to the complex beginning of this 'cranial bone' is given by the discovery of the general pattern on which the skulls of the vertebrate animals have been constructed. In relation to that pattern, or to the archetype vertebrate skeleton, the Human temporal bone includes two pleurapophyses, 38 and 28 , a parapopliysis, 8 , part of a diverging appendage, 27 , and a sense-capsule, 16.

In the Human cmbryo the cartilaginous follows the fibrous stage of the brain-case in all the neurapophyses, viz. : exoccipitals, alisphenoids, orbitosphcnoids, prefrontals. The latter already show their lateral confluence, closing the cranium anterior to the multiperforate part for the divisions of the olfactory nerve, called 'cribriform plate of the ethmoid,' and forming the 'crista galli' above, and the 'lamiria perpendicularis' bclow, that platc; in connection with which are the ' turbinal' capsules, or supporters of the 'senseorgan,' which are also cartilaginous. The chondrified bases of the alisphenoids descend into the basisphenoid. The exoccipital cartilage ascends into the lower half of the superoccipital. The cartilaginous capsule of the ear-organ also sends a thin plate to
the superoccipital, and a thicker process behind whicl becomes the basis of the mastoid. All the above cartilaginous parts are more or less continuous or confluent, and when separate from the unchondrified extensions of the brain-capsule have been, illogically, termed 'primordial cranium' (Primordialschädel). But the actual embryonal or primordial skull is originally wholly membranous, and at the stage above described includes parts unchondrified, as well as those showing the intermediate histological conversion into cartilage. The bones, ossification of which begins in membrane, are the basioccipital, vomer, upper half of superoccipital, parietals, frontals, nasals, lacrymals, malars, squamosals, palatines, pterygoids. A pair of cartilaginous buds from the prefrontals form the picrs of the yet unclosed anterior hæmal, or ' maxillary,' arch. A pair of cylindrical cartilages, called 'Meckel's,' are developed in the blastemal basis of the tympano-mandibular arch. The body and the stylo-hyal parts of the cornua of the hyoid are gristly before they ossify : much of the cerato-hyal parts of this thin hæmal arch retain their primitive fibrous condition. The capsule of the essential parts of the organ of vision is in the same 'sclerous ' predicament in Man and Mammals: that of the organ of hearing becomes cartilaginous before it ossifies: the perfection of this organ in the well-brained Mammals calls for accessory parts, which show their true nature by their rapid growth. ${ }^{1}$ The true comprehension of the developemental phenomena of the Human and Mammalian sknll is afforded by that of its vertebral archetype: the artificial nature of the classification of the ossificd parts into 'primordial skull-bones' and 'lid-bones' ('Deckknochen') is hereby plainly manifested: it is akin to that which divides them into 'eight bones of the cranium' and 'fourtecn bones of the face.'

The first seven segments of the trunk consist each of ' centrum,' ' neurapophyses,' fig. 403, n, and 'pleurapophyses,' $p l$, the ultimate confluence of which forms the bone called 'cervical vertebra:' the centrum of the first of these coalesces with that of the second, and forms the ' odontoid process:' its place in the 'atlas' is taken by a 'hypaphophysis.' The pleurapophyses of the scventh cervical are occasionally elongated as 'ribs,' fig. 185, A, b. In the seven segments which succeed the cervicals, the pleurapophyses, $p l$, are clongated, and retain their freedom; and after the first they are shifted to the interspace between their own centrum and the

[^143]next in advance (or above). The hæmapophyses, h, are gristly and interposed betwcen the pleurapophyses and the hrmal spines, the conversion of which into the 'sternum' has been already explained. The fact of this short and slender bone in Man being ossified from a longitudinal series of centres (fig. 364, b) is learnt from embryology, the reason from general homology. The hæmal spine here repeats the variability of its homotype, the neural one, being sometimes entire, sometimes bifid (ib. c, d). In the three succeeding segments the pleurapophyses become shorter and the hæmapophyses are attached by thcir attenuated ends each to that in advance. In the next two segments the still shorter pleurapophyses resume the exclusive articulation with their proper centrum and terminate freely. The centrum and neurapophyses of each of the segments, with free and clongate pleurapophyses, constitute by their coalescence the 'dorsal vertcbre,' which are 'twelve' in number. Each of the five succecding segments is represented by the centrum, neural arch, and short confluent pleurapophyses, forming the 'lumbar vertebras:' the hæmapoplyses of these segments are represented by the 'inscriptiones tendineæ musculi recti,' h^{\prime}, which are the homologues of the gristly or bony 'abdominal ribs' of reptiles. The constitution of the Human 'os sacrum' has ahready been given. Part of a sacral pleurapophysis expands to form the 'ilium,' fig. 403, 62, pl. Two hæmapophyses called ' ischium,' 63 , and pubis, 61 , coalesce with 62 to constitute the 'innominatum :' the inverted arch, supporting the appendage which becomes developed into 'pelvic linb,' is completed by the ischio-pubic symphysis.

TABLE I.-SYNONYMS OF THE BONES OF THE HEAD, ACCORDING TO THEIR GENERAL HOMOLOGIES. [To face page 588 , Vor. II.

	owers.		
	Basiosimpuat:	${ }_{6}^{12}$	
	Exxcecipita		
	Superocipl		
	Earo		
	Palupher		
	Nibpl		
	,		
	Entonswemid		
	Ortioceplemos	14	
	Frotud		Frontal priscipal (in Ashte and repciles); fronta), ou frontal unique (fin binis and mammals].: Frontal posteriear (In fshes anil reptiles); borde exterse ou postéricur de l'nrondo pourci-
15	Postront		
	Vanes	16	
	retr		
			Ethmobie (in flshes); frontal nutérieur (in tailless batruchians); nasal (in ophldian samazios, birds, aud nuammals).
		13	Rocher (fin fishes, hirls, and mammals)
	Oto		
		ii	mammana).
			Mfualhaire superieur Pterygoilen interne (ir fohes) (in oplidinant).
		${ }_{3}$	
	Estogt	$!$	 urdib aci monotreme's.
			Ln caise (in ophidiams nad o in erooodlles): roc tympanique (fa lizaria); on carré (in birib") ; casse, ou pytie tympanigue du terpporal (in mammals).
	Hepry	${ }_{3}^{26}$	
$3{ }^{3}$			
31			Anguare
			reter
			Boas 0 percule Internapercule Osuelet itylolde (in
		38	Grad plice laturale
		9.40	
			ebelonians ${ }^{23}$, in hinde and summals). Os lingual (In fighen and buib'r; cartilage qui soutient la languo (in batrachinns'); 08 partienller de la lingue (in ehaioninns't).
\%	Drandiotit	50,54	
4			 gramile corne and (iorno moyerid
43		${ }_{6}{ }^{42}$	
			partlenliers dens le Hp-mont ale Tomoplate (In ebalonian s^{4}). Scapolaird" (in Eahes); col de I'omoplate (in proteun) ; l'autro partie, b, do l'omoplate (in ovrant)
32		48	coide (in mammak).
		${ }_{6}$	
		${ }_{\text {a }}^{5}$	Cubital (in fishos) ; raline (in reptiles, birchs, ind mammala). Rosdial (in finhes) ; cubltas
	Metcacara	as	¢,
			Clevicule acromiale do I'omoplate" (in cheloninns"); alerieale (In other reptilos, biris, and Maramiala).
		211919	
			Lačymal : fronta) \qquad

Table III－－Synonyms of the elemeats of tile typical vertebra．

OWEN．${ }^{1}$	GEOFFROY．${ }^{\text {a }}$	CARUS．＊	MULLER．${ }^{3}$	CUVIER．${ }^{6}$	SOEMMERRING．${ }^{7}$
Autogenous Elements． Centrum（кévтpov，centre）				Corps de vertelbre ．．．．．．．．．．．．	Corpus vertebræ．
Neurapopbysis（vevjov，nerve，aud áтóфvaıs，a process of bone）．	Périal．	Deckplatten and Grundplatten ．．	Oberer Wirbelbogen	Partie aunulaire，ou lames ver－ tébrales．	Arcus posterior vertebræ，seu ra－ dices arcus posterioris．
Pleurapophysis（ $\pi \lambda \in v \rho a ̀$ ，a rib，and $\dot{\alpha} \pi$ ó $\phi \cup \sigma!\varsigma)$ ．	Paraal	Ruickentheil and Ober－sternal－theil des Urwirbelbogens．		Côtes vertébrales．．．．．．．．．．．．．．．	Processus transversus vertebræ cervicalis．Costa，seu pars ver－ tebralis，seu ossea，costæ．
Hæmapophysis；by syncope for bæmato－apophysis（from Gr．aipa， blood，and $\dot{\alpha} \pi \dot{\phi} \phi v(\varsigma)$ ．	Cataal．	Unter－sternal－theil des Urwirbel－ bogens．	Unterer Wirbelbogen	Côtes sternales（in thorax）； côtes abdominales，on carti－ lages ventraux（in abdomen）； os ployé en chevron（in tail）．	Cartilago costæ seu pars sternalis costæ；（in the abdomen）in－ scriptiones tendineæ musculi recti．
Neural spine．．．．．．．．．．．．．．．．．．．．．．．．．	Pórial（in fishes）； epial（in other vertebrates）．	（Its base is the）Oberer Tertiar－ wirbel，（its apex is the）Oberer Dorufortsatz．	Oberer Dornfortsatz．．	Apophyse épineuse supérieure．．	Processus spinosus vertebræ．
Hæmal spiue Exogenous Parts．	Paraal（in fishes）； cataal（in other vertebrates）．	Stemal－wirbel 玉örper ．．．．．．．．．．	Unterer Dornfortsatz	Apophyse épineuse inférieure ．．	Ossa sterni et processus ensiformis； （in the abdomen）linea alba．
Parapophysis（ $\pi \alpha \rho \dot{\alpha}$ ，across，and $\dot{\alpha} \pi \cup \phi \nu \sigma$ еs）．	Paraal（in the tail of fishes）．	Querfortsatz ．．．．．．．．．．．．．．．．．．	Unterer Querfortsatz	Apophyse transverse ．．．．．．．．．	Radix prior seu antica processus transversi vertebræ．
Diapophysis（ $\delta \iota a ̀$ ，across，and ámó $\phi \cup \sigma$ ¢s）	Paranl（in reptiles and mammais）．	Qucriortsatz ．．．．．．．．．	Oberer Querfortsatz．．	Apopbyse transverse ．．．．．．．．．	Radix postica processus transversi vertebræ，（and）processus trans－ versus．
7ygnpoplysis（ら̌vòs，junction，and ало́申иのเร）．		Seitlicher Tertiar－wirbel ．．．．．．．．．	Gelenk－fortsatz．．．．．．	Apophyse articulaire	Processus obliquas vertebræ．
An：tpeqhysis（à $\dot{\boldsymbol{a}}$, upward or back－ w：rd，and $\dot{\alpha} \pi \dot{\sigma} \phi \mathbf{\phi} \sigma$ เs）．				Prolongement postéricur d＇apo－ physe trausverse；seconde apo－ physe articulaire；apophyse styloïle．	
Metajoplyyis（ μ evì，between，and а́ло́фибгя）．				Apopliyse articulaire prolongcée en uue pointe．	Processus accessorius processui transverso et articulari superiori
Hypapophysis（inó，below，and àmó－ $\phi \cup \sigma(\varsigma)$ ．				Apophyse épineuse inférieure ．．	iuterpositus．

Milller（Joliannes），Vergleichende Anatomie der Myxinoiden：Abhand，Akad．der German zootomists correspond with those of Johu Muller． De Corporis Humani Fabricâ，Svo． 1794.

W O R K S

REFERRED TO BY ROMAN NUMERALS AND DOT IN THE SECOND YOUUMF.
(Those referred to by Roman Numerals without Dot are in the First Volume.)

I• Becquerel and Breschet. Recherches sur la Chaleur animale au moyen des appareils thermo-électriques, in Archives du Muséum, t. i.
II. Martin. Description des effets du Sommeil sur la Chaleur du corps lımain, in Journal de Physique, 1773 , t. ii.
III. Brown-SEquard. Experimental Researches (on the Normal Degree of the Temperature of Man).
IV. Martins. Sur la Température des Oiseaux palmipèdes du Nord de l'Europe, in Mémoires de l'Académie des Sciences et Lettres de Montpellier, 1856, t. iii.
V. Chossat. Influence du Systeme nerveux sur la Chaleur animale. 8ro. 1820.
VI. Budae. De l'Influence de la Moëlle épiaière sur la Chalcur de la Tête, in Comptes Rendus de l'Acudémie des Sciences. 1853.
VII. Owen. Art. Aves, Cyclopædia of Anatomy, vol. i. 1836.
VIII. Nitzsch. Osteographische Beiträge zur Naturgeschichte d. Vögel. 8vo. 1811.
IX. Vigors. Observations on the Natural Affinities that connect the Orders and Families of Birds. Transactions of the Linnæan Society, vol. xir. 1827.
X. Offen. On the Megatherium, Philosophical Transactions, 1851.

XI•. Owen. On the Anatomy of the Southern Apteryx (Apteryx australis), Transactions of the Zoological Society, vol. ii. 1838, and vol. iii. 1842.
XII: Owen. On the Osteology of the Great Awk (Alca impennis), Transactions of the Zoological Society, vol. v. 1864, and Cuvier, Leçons d'Anatomie Comparée.
XIII. Blythe, in Orr's edition of Cuvier's Animal Kingdom. 8ro. 1840.
XIV. Eyton. Osteologia Avium. 4to. 1861-4.
XV. Owen. On the Archeopteryx, Philosophical Transactions, 1863.
XVI. Owen. On Dinornis, Transactions of the Zoological Society of London, 1839-1864.
XVII. Ower. Palæontology. 8ro. 2nd ed. 1861.
XVIII. Owen. On Notornis, Transactions of the Zoological Society, rol. iii. 1848.

XIX: Owen. On the Affinities of Gastornis parisiensis. Quarterly Jourual of the Geological Society. 1856.
XX. Ower. Catalogue of the Physiological Series in the Museum of the Royal College of Surgeons.
XXI. Owen. On the Anatomy of the Flamingo (Phxonicopterus), Proceedings of the Zoological Society, vol. ii. 1835.
XXII. Owen. On the Anatomy of the Gannet (Sula), Proceedings of the Zoological Society, vol. i. 1833.
XXIII-. Owen. On the Anatomy of the Red-backed Pelican (Pelecanus rufus), Proceedings of the Zoological Society, vol. iii. 1836.
XXIV. Owen. Memoir on the Apteryx, Proceedings of the Zoological Society, vol. x. 1842 ; and
Yarreil, Wm., On the Xiphoid Bone, \&c., of the Cormorant.
XXV. Owen, R. On the Anatomy of the Hornbill (Buceros cavatus), Transactions of the Zoological Society, vol. i. 1836.
XXVI. Owen, R. On the Dodo, Transactions of the Zoological Society, vol. iii.
XXVII. Strickland and Meliflee. The Dodo and its Kindred. 4to. 1848.
XXVIII. Yarrell, Wm. On the Structure of the Beak and its Muscles in Loxia curvirostra, Zoological Journal, vol. iv.
XXIX. Mayer. Analekten für Vergleichende Anatomie. 4to. 1839.
XXX. Müller, J. Physiologie des Gesicht-Sinnes, 8 vo. 1826; and

Bishop. Art. Voice, in Cyclopædia of Auatomy, vol. iv. (CCCXX. rol. i.).
XXXI. Owes, R. On the Olfactory and Trigeminal Nerves of the Vulture, Turkey, and Goose, Proceedings of the Zoological Society, Part v. 1837.
XXXII•. Audubon, J. J. Ornithological Biography. 8vo. 5 vols. 1831-1839.
XXXIII. Edwards, G. A Natural History of Uncommon Birds, \&c. 4to. 17431751.

XXXIV•. Crampton, Sir P. Description of an Organ by which the eyes of Birds are accommodated to the different distances of objects, Annals of Philosophy, 1813. 8vo.
XXXV•. Valentiv. Fortgesetze Untersuchungen über die Flimmerbewegung, in Repertorium d'Anatomie; and
Purkinje. Commentatio Physiologica de Phenomeno motus vibratorii continui. 4to. 1835.
XXXVI. Geoffrov St.-Hisatre, Ét. Système Dentaire des Mammifères et des Oiseaux. 8vo. 1824.
XXXVII•. Nıtzsch, in Meckel's Archiv für Physiologie, 1826.
XXXVIII. Newton, Alfred. On the supposed Gular Pouch of the Male Bustard, in the 'Ibis', April 1862.
XXXIX. Lund. De Genere Euphones. Hafn. 1829.
XLi. Pérault. Mémoires de l'Académie Royale des Sciences, Paris, t. iii.
XLI. Lavtr. Mémoire sur les Vaisseaux Lymphatiques des Oiseaux, Annales des Sciences Nat., vol. iii. 1825.
XLII. Panizza. Osservazione Antropo-zootomico-fisiologiche. Fol. 1830.
XLIII. Macartney. Art. Birds, in Rees' Cyelopedia.

XLIV: Owen. Catalogue of thc Osteology, Royal College of Surgeons; and Barkow. Untersuchungen über das Schlagadersystem d. Vögel, Meckel's Archiv für Physiologie. 1828.
XLV. Rarney. Memoir on the Minute Structure of the Lungs, and on the Minute Anatomy of the Lung of the Bird, Medico-Chirurgical Transactions, vols. xxii. and xxiii.
XLVI. Yarrele, Wm. On the Organs of Voice in Birds, Transactions of the Linnæan Society, vol. xvi.; and
Mecker. Vergleich. Anatomie.
XLVII. Yarrell, Wm. Observations on the Tracheæ of Birds, Transactions of the Linnæan Society, vol. xv.
XLVIII. Yarrell, Wm. On a new species of Wild Swan, \&c., in Transactions of the Linnæan Society, vol. xvi.
XLIX•. Mücler, J. Ueber Compensation der physischen Kräfte am menschlichen Stimmorgane; mit Bemerkungen über die Stimme der Säugethiere, der Vögel und der Amphibien, 8 ro . 1835. Vergleichende Anatomic der Stimmorgane bei Vögeln, Berlin. Akad. 1845.
L: Geoffroy St.-Hilaire. Mémoire sur les Appareils sexuels et urinaires de l'Ornithorhynque, in Mémoires du Muséum, t. xv.; and Composition des Appareils génitaux, urinaires et intestinaux dans l'Autruche, etc., in Mémoires du Muséum, t. xx.
LI. Cuvier, F. Sur le Développement des Plımes, in Mémoires du Muséum, t. xiii.
LII. Yarrele, W. On the Laws that regulate the Changes of Plumage in Birds, Transactions of the Zoological Society, vol. i.
LIII. Jageer, Gustar. Das Os humeroscapulare der Vögel, Sitzungsberichte der Mathem.-naturwissensch. Classe, Kaiserl. Akad. der Wissensch. in Wien. 2tes Heft. 1857.
LIV. Nitzsch, C. L. System der Ptcrylographic. 4to. 1840.
LV. Owen. John Hunter's Observations on Animal Development, edited, and his Illustrations of that Process in the Bird described. Fol. 1841.
LVI. Gocad, John, F.R.S. On the Brush Turkey (Talegalla Lathami), and On the Habits and Characters of Leipoa ocellata, Proceedings of the Zoological Society, vol. viii.
LVII'. Goum, John, F.R.S. On the 'Run' or Playing-house constructed by the Satin-bird (Ptilonorhynchus holosericens), \&c., of Australia, Proceedings of the Zoological Society, rol. riii.
LY'III. Gould, John, F.R.S. The Birds of Australia. 7 vols. fol. 1840-48.
LIX:. Scuwann. De necessitate Aeris Atmospherici ad crolutionem Pulli in Ovo incubito. 4to. 1834.
LX. Soemmeriang, S. M. De Sectione Oculorum.

ILXI. Sappey. Recherches sur l'Appareil respiratoire des Oiseaux. 4to. 1847.
LXII. Owfa, R. On Thylacotherium and Phascolotherium, Transactions of the Geological Society, 2nd series, vol. vi. 1839.
LSIII. Owey, R. Description of the Foetal Membranes and Placenta of the Elephant, Philosophical Transactions, 1857.
LXIT: Owen, R. On the Characters, Principles of Division, and Primary Groups of the Class Mammalia, Proceedings of the Linnæan Society, February and April, 1857. 'Rede's Lecture' on the same suhject. 8vo. 1858.
LXV. Eschmicht and Reinhardt. Om Nordhraleu. 4to. 1861.
LXVI. Paley. Natural Theology. 10th ed. 8ro. 1805.
LXVII., Mëlmar, J. Ueber awei verschiedene Typen in dem Bau der erectilen männlichen Geschlechtsorgane bei den straussartigen \ögeln. 4to. 1838.
LXVIII. Ownen, R. Hunterian Lectures on the Nervous System, in Medical Times, 1840.
LXIX. Vroulk. Art. Quadrumana, Cyclopædia of Anatomy, vol. iv.

LXX: Owen. On the Structure of the Brain in Marsupial Auimals, Philosophical Transactions, 1837.
LXXI. Turner, H. N. On the Evidences of Affinity afforded by the Skull in the Ungulate Mammalia. Ann. and Mag. of Nat. History, Dec. 1850, ser. 2, vol. iii.
LXXII. Milne-Enwards, Alf. Irecherches sur la Famille des Cherrotains, in Annales des Sciences, 5 th ser. vol. ii. 1864.
LXXIII. Pander and D'Alton. Die Vergleichende Osteologie. Fol. 1821-7.
LXXIV. Owen, R. Outlines of a Classification of the Marsupialia, Zoological Transactions, vol. ii. 1839.
LXXV. Owes, R. On the Generation of the Marsupial Animals, with a description of the Impregnated Uterus of the Kangaroo, Philosophical Transactions, 1834 ; and on the Osteology of the Marsupialia, Zoological Transactions, Part 1, vol. ii. 1841; Part 2, vol. iii. 1845.
LXXVI. Owew, R. On the Mammary Glands of the Omithorlynchus paradoxus, Philosophical Transactions, 1832, p. 517.
LXXVII. Owes, R. On the Ova of the Omithorhynchus paradoxus, Philosophical Transactions, 1834.
LXXYIII. Owes, I. On the Young of the Omithorhynchus paraloxus, Zoological Transactions, vol. i. 1834.
LXXIX. Owme, R. Art. Monotremata, Cyclopedia of Anatomy, rol. iii. $18+1$.

LXXX: Owen, h. Art. Marsupialia, Cyclopædia of Anatomy, vol. iii. 1841.
LXXXI. Mechel. Omithonhyzchi parddoxi Descriptio Anatomica. Fol. 1826.

LXXXII: Owen, R. Anatomy of Capromys Fournieri, Proceedings of the Committee of Science of the Zoological Society of London. 8ro. 1832.
LXXXIII. Owes, h . On some Outline-drawings and Photographs of the Skull of the Zygomaturus trilobus, Macl., Nototherium, Owen, Quarterly Journal of the Geological Society, vol. xғ. 1858.
LXXXIV. Peters. Naturw. Reise nach Mosambique: Säugthiere. 4to.
LXXXV. Peters. Ueber das normale Vorkommen yon nur sechs Halswirbeln bei Cholvepus Hoffmanni, Monatsbericht der Königl. Akad. der Wissenschaften zu Berlin, Dec. 1864.
LXXXVI. Owex. On the Cervical and Lumbar Vertebre of the Mole (Talpa europra, L.), Transactions of the British Association, 18.58.
LXXXVII• Mirain, Ed. Ueber einen eigenthümlichen Bau des Gehörorganes bei den Nagern. 8ro. 1840.
LXXXVIII: Yarreil, Wm. On the Osteology of the Chlamyphorus truncatus, in the Zoological Journal, vol. iii. 1830.
LXXXIX. Onen. On the Glyptodon. Transactions of the Geological Society, 2nd ser. vol. vi., and Catalogue of the Fossil Mammalia in the Royal College of Surgeons. 4to. 1845.
XC. Owen, R. Description of the Skeleton of the Mylodon. 4to. 1842.

XCI Oten, R. Memoir on the Megatherium. 4to. 1860.
XCII. Owen, R. Cataloguc of Fossil Organic Remains (Mammalia and Ares) in the Museum of the Ruyal College of Surgeons of England. 4to. 1845.
XCIII. Macleat, W. S. History and Description of the Skeleton of a New Sperm-whale, \&c. 8ro. Sydney: 1851.
XCIV. Mrandt, J. F. Symbolice Sirenologice. 4to. 18 ± 6.
XCV. Owras, R. Fossil Mammalia of the Voyage of the Beagle. 4 to. 1840.
XCVI. Cobrord, T. S. Art. Ruminantic, Cyclopredia of Anatomy, Supplement, 1859.
XCVII. Owis, R. Memoir on the Anatomy of the Nubian Giraffe, Zool. Trans., rol. ii.
CxyIII. Stannius, II. Beiträge zur Kenntniss der Amerikanischen Manati. 4 to. 1845.
XCIX: Owew, I. On Indian Cetacea, Transactions of the Zoological Society, vol. v. (1866).
C. Rapp, W. v. Die Cetaceen zoologisch-anatumisch dargestellt. 8ro. 1837.

CI: Murray, A. On the genus Galago, Edinb. New Philosophical Journal. New ser., Oct. 1859.
CII. OTEEN, R. Monograph on the Aye-aye (Chuiromys madugascaricnsis, Cur.). 4to. 1863.
CIII. OWer, R. Osteological Contributions to the Natural History of the Orangs (Pithecus) and Chimpanzees (Troglodytes), Transactions of Zoological Socicty, vols. ii., iii., and (Troglodytes Gorilla) rols. iv. and v. Parts I.-YIII.

CIV• De Blainvilue, II. D. Ostéographie, \&c. 4to. and fol. (plates). 1841.
('V. Wood, Jno. Art. Pelvis, Cyelopedia of A natomy, Supplement.
CVI-. Weber, MI. J. Die Lehre ron dem Ur- und Lacen-formen der Schaidel und Becken des Menschen. 1830.
CTII. Trourik, W. Platen behoorende tot de Beschowing van het Verschel der Hekkens in onderscheidene Volkstammen. 1826.
CVIII. Breschet. Recherches sur differentes Pièces du Squelette des Animaux Vertébrés, etc., in Anaales des Sciences Naturelles. 2e série, t. x. (Koologie).
CIX• Mlortox, Dr. Crania Americana. 1839.
CX. Owew, R. Memoir on the Gorilla (Troglodytes Gorilla, S.). 4to. 1885.

CXI: Rokitanski. Lehrluch der Pathologische Anatomie.
CXII: Zawarymiv, Th. Ueber die Aufbewahrung von Blutkrystallen mittelst Aether, in Kais. Akad. der Wissenschaften in Wien, Sitzungsberichte, 8 vo. Nr. IV. p. 14.
CXIII. Tscherrnofe, MI. Ueber die Abhängigkeit des Glykogengehaltes der Leber von der Ernälhrung, in Kis. Akad. der Wissenschaften in Wien, Nr. MI. pp. 64-6̄.
CXIV. Törö́k, Aurel. Beiträge zur Fenntaiss der ersten Anlagen der Sinnesorgane und der primären Schädelformation bei den TBatrachicrn, in Kais. Akad. der Wissenschaften in Wien, Ib. Nr. XXIX. pp. 206 bis 207 .
CXV. Stricker, S. Ueher den Bau und das Leben der capillaren Blutgefässe, in Kais. Akad. der Wissensehaften in Wien, Ib. Nr. XXII., pp. 164165. Ueber die Histologie der Gehirnentzündung, in Kais. Akad. der Wissenschaften in Wien, Sitzungsberichte, 8vo. Nr. XXVI. pp. 186-187.
CXVI. HyRTL, J. Ueber einen freien Körper im Herzheutel, in Kais. Akad. der Wissenschaften in Wien, $I b$. Nr. IX. p. 48.
CXVII. Hyrti, J. Ein Pancreas accessorium und Pancreas divisum, in Kais. Akad. der Wissenschaften in Wien, Ib. Nr. XXI. p. 148.
CXVIII: Hyrtl, J. Eine quere Schleimhautfalte in der Kehlkopfhöhle, in Kais. Akad. der Wissenschaften in Wien, Ib. Nr. XXI. p. 148.
CXIX. Goethe. Zur Naturwissenschaft überhaupt, hesonders zur Morphologie. 4 ©dc. M. Kupf. 8vo. 1817-23.
CXX. Hartwig, G. Gott in der Natur, oder die Einheit der Schöpfung. Mit Abbild. 8vo. 1864.
CXXI. Rudolphr, K. A. Zur Anthropologic u. allgem. Naturgesch. 8vo. 1812.

CXXII: Buffon et Daubenton. Iistoire naturelle générale et particulière. 14 vols. 4to. 1766.
CXXIII. Hutchinson. Art. Thorax, Cyclopædia of Anatomy, vol. iv.
CXXIV. L'Herminier. Recherches sur l'Appareil sternal des Oiseaux. Mémoires de la Soc. Linn. de Paris, tom. iii. 1827.
CXXV: Blanchard, Em. Ostélogie des Oiseaux. Annales des Sciences Nat., sér. iv. tom. ix. 1859.

A LIST OF WORKS ON
 MEDICINE, SURGERY $A N D$

GENERAL SCIENCE,

PUBLISHED BY

LONGMANS, GREEN \& CO.,

39, PATERNOSTER ROW, LONDON.

Hedical and Suxaical outorks.

ASHBY NOTES ON PHYSIOLOGY FOR THE USE OF STUDENTS PREPARING FOR EXAMINATION. By HENRY ASHBY, M.D. Lond., F.R.C.P., Physician to the General Hospital for Sick Children, Manchester ; formerly Demonstrator of Physiology, Liverpool School of Medicine. Fifth Edition, thoroughly revised. With $\mathbf{I} 34$ Illustrations. Fcap. 8vo, price ${ }_{5}$ s.

ASHBY AND WRIGHT. THE DISEASES OF CHILD. REN, MEDICAL AND SURGICAL. By IIENRY ASHBY', M.D. Lond., F.R.C.P., Physician to the General Hospital for Sick Children, Manchesier; Lecturer and Examiner in Discases of Children in the Victoria University; and G. A. Wrigitt, B.A., M.B. Oxon., F.R.C.S. Eng., Assistant Surgeon to the Manchester Royal Infirmary and Surgeon to the Children's Hospital. With 138 Illustrations. $8 v o$, price $21 s$.

BARKER. A SHORT MANUAL OF SURGICAL OPERATIONS, HAVING SPECIAL REFERENCE TO MANY OF THE NEWER PROCEDURES. By ARTIIUR E. J. BARKER, F.R.C.S., Surgeon to University College Hospital, Teacher of Practical Surgery at University College, Professor of Surgery and Pathology at the Royal College of Surgeons of England. With 6r Woodcuts in the Text. Crown 8 vo , price $12 \varepsilon .6 \mathrm{~d}$.

BENNETT.-WORKS by WILLIAM H. BENNETT, F.R.C.S., Surgeon to St. George's Hospital; Member of the Board of Ewaminers, Royal College of Surgeans of England.
CLINICAL LECTURES ON VARICOSE VEINS OF THE Lower EXtremities. With 3 Plates. 8vo. 6s.
ON VARICOCELE: A PRACTICAL TREATISE. With 4 Tabres and a Diagram. 8vo. 5s.

BENTLEY A TEXT-BOOK OF ORGANIC MATERIA MEDICA. Comprising a Description of the Vegetable and Animal Drugs of the British Pharmacopoia, with some others in common use. Arranged Systematically anci Especially Designed for Students. By ROBERT BENTLEY, M.R.C.S. Eng, F.L.S., Fellow of Ki g's College, London; Honorary Member of the Pharmaceutical Society of Great Britain, \&c. \&.c. ; one of the three Editors of the "British Pharmacopreia," 1885. With 62 Illustrations on Wood. Crown 8vo, price 7s. 6 d .

COATS. A MANUAL OF PATHOLOGY By JOSEPH COATS, M.D., Pathologist to the Western Infirmary and the Sick Children's Hospitnl, Glasgow; Lecturer on Pathology in the Western Infirmary ; Examiner in Pathology in the University of Glasgow; formerly Pathologist to the Royal Infirmary, and President of the Pathological and Clinical Society of Glasgow. Second Edition. Revised and mostly Re-written. With 364 Ilustrations. 8vo, price $3^{\text {rs. }} 6 \mathrm{~d}$.

COOKE.-WORKS by THO.MAS COOKE, F.R.C.S. Eng., B.A., B.Sc.: M.D Paris, Senior Assistant Surgeon to the Westurinster Hospital, and Lecturer at the School of Anatomy, Physiology, and Surgery.
TABLETS OF ANATOMY. Being a Synopsis of Demonstrations given in the Westminster Hospital Medical School in the years $187 \mathrm{I}-75$. Eighth Thousand, being a selection of the Tablets believed to be most useful to Students generally. Post 4to, price 7 s . $6 d$.

APHORISMS IN APPLIED ANATOMY AND OPERATIVE SURGERY Including 100 Typical wizit voce Questions on Surface Marking, \&c. Crown 8vo, 3s. ód.

DICKINSON.-WORKS by W. HOWSHIP DICKINSON; M.D. Cantab., F.R.C.P., Physician to, and Lecturer on Mediciue at, St. George's Hospital; Consulting Physician to the Hospital for Sick Chillden: Corresponding Menter of the Acudeny of M1 dicine of Nezu York.
ON RENAL AND URINARY AFFECTIONS. Complete in Three Parts, 8 vo , with 12 Plates and 122 Woodeuts, Price $£ 345$. 6 d. cloth.
> ** ${ }^{*}$ The Parts can also be had separately, each complete in itself, as follows :I'art I.-Diabetes, price mos. $6 d$. sewed, $12 s$. cloth. ,, II.—Albuninuria, price $£ \mathrm{I}$ sewed, $£ \mathrm{I}$ is. cloth. ," III-Miscellancous Affections of the Kidneys and Urine, price $£ \mathrm{I}$ Ios. sewed, fillis. 6 d . cloth.

THE TONGUE AS AN INDICATION OF DISEASE; being the Lumleian Lectures delivered at the Royal College of Physicians in March, 1888. 8vo, price 7r. 6d.

ERICHSEN.-WORKS by JOHN ERIC ERICHSEN, F.R.S., LL.D. (Edin.), Hon. M. Ch. and F.R.C.S. (Irelana), Surgeon E.rtraovdinary to H.N. the Queen; President of University College, London; Follerv and Ex-President of the Royal College of Surgeons of Englaml; Emeritus Professor of Surgery in University College; Con-sulting-Surgeon to University College Hospital, and to many other. Medical Charities.
THE SCIENCE AND ART OF SURGERY; A TREATISE, ON SURGICAL INJURIES, DISEASES, AND OPERATIONS. The Ninth Edition, Edited by Professor BECK, M.S. \& M.B. (Lond.), F.R.C.S., Surgeon to University College Ilospital, \&c. Illustrated by 1025 Engravings on Wood. 2 Vols. 8vo, price 48 s.
ON CONCUSSION OF THE SPINE, NERVOUS SHOCKS, and other Obscure Injuries of the Nervons System in their Clinical and Medico-Legal Aspects. New and Revised Edition. Crown 8ro, ros. 6 r .

GAIRDNER and COATS. ON THE DISEASES CLASSIFIED by the REGISTRAR-GENERAL as TABES MESENTERICA. LECTURES TO PRACTITIONERS. By W. T. GAIRDNER, M.D., LL.D. On the PATHOLOGY of PHTHISIS PULMONALIS. By JOSEPIt COATS, M.D. With 28 Illustrations. 8vo, price $\mathbf{1 2 s}$. fod.

GARROD.-WORKS by Sir ALFRED BARING GARROD, M.D., F.R.S., ©oc.; Physician Exturardinary to H.M. the Quen: Consulting Physician to Kingg's College Hospital; Late Itice-President of the Royal Callege of Physicians.
A TREATISE ON GOUT AND RHEUMATIC GOUT (RHEUMATOID ARTHRITIS). Thirl Edition, thoroughly revised and enlarged; with 6 Plates, comprising 21 Figures (14 Coloured), and 27 Illustrations engraved on Wood. 8vo, price 21 s .
THE ESSENTIALS OF MATERIA MEDICA AND THERAPEUTICS. The Thirteenth Edition, ravised and edited, under the supervision of the Author, by NESTOR TIRARD, M.D. Lond., F.R.C.I., Professor of Materia Medica and Therapentics in King's College, London, \&c. Crown 8vo, price 12 s .6 d.

GARROD. AN INTRODUCTION TO THE USE OF THE LARYNGOSCOPE. By ARCHIBALD (i. GARROD, M.A., M.B. Oxon., M.R.C.P. With Illustrations. 8vo, price 3 s. 6%.

GRAY ANATOMI, DESCRIPTIVE AND SURGICAL. By HENRY GRAY, F.R.S., late Lecturer on Anatomy at St. George's Hospital. The Twelfth Edition, re-edited by T. PICKERING PICK, Surgeon to St. George's Hospital ; Member of the Court of Examiners, Royal College of Surgeons of England. With 615 large Woodcut Illustrations, a large proportion of which are Colourecl, the Arteries being coloured red, the Veins blue, and the Nerves yellow. The attachments of the muscles to the bones, in the section on Osteology, are also shown in coloured outline. Koyal 8 vo , price 36 .

HALLIBURTON. A TEXT-BOOK OF CHEMICAL PHYSIOLOGY AND PATHOLOGY. By W. D. Halliburton, M.D., B.Sc., M.R.C.P., Professor of Physiology at King's College, London; Lecturer on Physiology at the London School of Medicine for Women; late Assistant Professor of Physiology at University College, London. With 104 Illustrations. 8vo, 28 s.

HASSALL.-WORKS by ARTHUR HILL HASSALL, M.D. London. SAN REMIO CLIMATICALLY AND MEDICALLY CONSIDERED. New Edition, with 30 Illustrations. Crown 8vo, price 5 s. THE INHALATION TREATMENT OF DISEASES OF THE ORGANS OF RESPIRATION, INCLUDING CONSUMPTION. With numerous Illustrations. Crown 8vo, price $\mathbf{I} 2 \mathrm{~s} .6 \mathrm{~d}$.

HERON. EVIDENCES OF THE COMMUNICABILITY OF CONSUMPTION. By G. A. fieron, M.d. (Glas.), F.R.C.P., Physician to the City of London Hospital for Diseases of the Chest. 8vo, 7s. 6 d .

HEWITT ON SEVERE VOMITING DURING PREGNANCY:

 a Collection and Analysis of Cases, with Remarks on Treatment. By GRAILY HEWITT, M.D. Lond., F.I.C.P., F.R.S. Ed., Emeritus Professor of Obstetric Medicine, Utiversity College ; Consulting Obstetric Physician to University College Hospital, \&c., \&c. 8vo, 6 s.HOLMES. A SYSTEM OF SURGERY, Theoretical and Practical. Edited by TIMOTHY HOLMES, M.A.; and J. W. HULKE, F.R.S., Surgeon to the Middlesex Hospital. Third Edition, in Three Volumes, with Coloured Plates and numerous Illustrations. 3 Vols., royal 8vo, price $£ 44^{s}$.

LITTLE. ON IN-KNEE DISTORTION (Genu Valgum): Its Varieties and Treatment with and without Surgical Operation. By W. J. LITTLE, M.D., F.R.C.P. ; Author of "The Deformities of the Human Frame," \&c. Assisted by MUIRHEAD LITTLE, M.R.C.S., L.R.C.I. With 40 Woodcut Illustrations. 8vo, price 7 s .6 d .

LIVEING.-WORKS by ROBERT LIVEING, M.A. Eo M.D. Cantab., F.R.C.P. Lont., Evc., Physicinn to the Departwent for Diseases of the Skin at the Middlesex Hospital, \&c.
HANDBOOK ON DISEASES OF THE SKIN. With especial reference to Diagnosis and Treatment. Fifth Edition, revised and enlarged. Fcap. 8vo, price 5^{5}.
NOTES ON THE TREATMENT OF SKIN DISEASES. Sixth Edition. 18mo, price 3 s.
ELEPHANTIASIS GRECORUM, OR TRUE LEPROSY; Being the Goulstonian Lectures for 1873 . Cr. 8 vo , 4 s. $6 d$.

LONGMORE．－WORKS by Surgeon－General Sir T．LONGMORE， C．B．，F．R．C．S．，Honorary Surgeon to H．M．Queen Victoria；Professor of Military Surgery in the Army Medical School．
THE ILLUSTRATED OPTICAL MLANUAL；or，HAND－ BOOK OF INSTRUCTIONS FOR THE GUIDANCE OF SURGEONS IN TESTING QUALITY AND RANGE OF VISION，and in Distinguishing and Dealing with Optical Defects in general．Illustrated loy 74 Drawings and Diagrams by Inspector－General Dr．Macdonald，R．N．，F．R．S．，C．B．Fourth Edition． 8vo，price 145 ．
GUNSHOT INJURIES．Their History，Characteristic Features，Com－ plications，and General Treatment ；with Stalistics concerning them as they are met with in Warfare．With 58 Illustrations．8vo，price 3 Is .6 d ．
RICHARD WISEMAN，SURGEON AND SERGEANT－SUR－ GEON TO CHARLES II．A Biographical Study．With Portrait． 8vo．

MITCHELL．DISSOLUTION AND EVOLUTION AND THE SCIENCE OF MEDICINE：An Attempt to Coordinate the neces－ sary Facts of Pathology and to establish the First Principles of Treatment． By C．PITFIELD MITCHELL，M．R．C．S． 8 vo ，price 16 s．

MURCHISON．－WORKS by CHARLES MURCHISON，M．D．， LL．D．，F．R．S．，Esc．，Felloze of the Royal College of Pkysicians；late Physician and Lecturer on the Principes and Practice of Medicine，St．Thomas＇s Hospital．
A TREATISE ON THE CONTINUED FEVERS OF GREAT BRITAIN．Third Edition，Edited by W．CAYLEY，M．D．，F．R．C．P． With 6 Coloured Plates and Lithographs， 19 Diagrams and 20 Woodcut Illus－ trations．8vo，price 25 ．

CLINICAL LECTURES ON DISEASES OF THE LIVER， JAUNDICE，AND ABDOMINAL DROPSY；Including the Croon－ ian Lectures on Functional Derangements of the Liver，delivered at the Royal College of Physicians in 1874．New Edition，Revised by T．LAUDER BRUNTON，M．D．8vo，price 24 ．

NEWMAN，ON THE DISEASES OF THE KIDNEY AMENABLE TO SURGICAL TREATAENT．Lectures to Practitioners．By DAVID NEWMAN，M．D．，Surgeon to the Western Infirmary Out－Door Department ；Pathologist and Lecturer on Pathology at the Glasgow Royal Infirmary；Examiner in Pathology in the University of Glasgow；Vice－President Glasgow Pathological and Clinical Society．8vo． price 16 ．

OWEN. A MANUAL OF ANATONY FOR SENIOR STUDENTS. By EDAlund OWEn, M.B., F.R.S.C., Surgeon to St. Mary's Hospital, London, and co-Lecturer on Surgery, late Lecturer on Anatomy in its Medical School. With 210 Illustrations. Crown 8vo, price 12 s . $6 d$.

PAGET.-WORKS by Sir 7 AMES PAGET, Bart., F.R.S., D.C.L. Oxom., LL.D. Cantab., \&-c., Sergeant-Surgeon to the Quecn, Surgean to the Prince of Wales, Consulting Surgeon to St. Bavtholomerw's Hospital.

LECTURES ON SURGICAL PATHOLOGY, Delivered at the Royal College of Surgeons of England Fourth Edition, re-edited by the AUTHOK and W. TURNER, M.B. 8ro, with 13 I Woodcuts. price 25 s.
(LINICAL LECTURES AND ESSAYS. Edited by F. HOWARD MARSH, Assistant-Surgeon to St. Bartholomew's Hospital. Second Edition, revised. $8 v o$, price \mathbf{I}_{5}.

S'TUDIES OF OLD CASE-BOOKS. sro, ss. 6π.

POOLE. COOKERY FOR 'IHE DIABETIC. By W. H. and Mrs. POOLE. With Preface by Dr. PAVy. Fcap. 8vo. 2s. 6 d .

QUAIN. QUAIN'S (JONES) ELEMENTS OF ANATOMY. The Tenth Edition. Edited by EDWARD ALBERT SCHÄFER, F.R.S., Professor of Physiology and Histology in University College, London; and GEORGE DANCER THANE, Professor of Anatomy in University College, London. (In three volumes.)

Vol. I., I'ar't I. EMBRYOLOGY. By Professor SCHÄFER. Iltustrated by 200 lingraviigs, many of which are coloured. Royal 8vo, 9s. [Ready.

Vol. I., labli if. GENERAL ANATOMY OR HISTOLOGY. By Professor SCHÄFER. Illustrated by nearly 500 Engravings, many of which are coloured. Royal 8vo, 12s. $6 d$.
[Ready.
Vol. II., Part I. GSTEOLOGY. By Professor Thane. Illustrated by 168 Engravings. Royal 8ro, 9s. [Keady.

Vol. if., Part II. MyOLOGY, ANGEIOLOGY. By Professor THANE. [Shortly.

Vol. III., Part I. NERVOUS SYSIEM AND SENSE ORGANS.
[Early in 1892.
Vol.. $1 H$ I., J'ari II. SPLANCHN゙OLOGY. [In Summer of 1892.

QUAIN. A DICTIONARY OF MEDICINE; Including General Pathology, General Therapeutics, Hygiene, and the Diseases peculiar to Women and Children. By Various Writers. Edited by Sir RICHIARD QUAIN, Bart., M.D., F.R.S., Physician Extraordinary to H.M. the Queen, Fellow of the Royal College of Physicians, Consulting Physician to the Hospital for Consumption, Brompton. Seventeenth Thousand ; pp. 1, 836 , with 138 Illustrations engraved on wood. I Vol. medium 8vo, price 31 s .6 d . cloth. To be had also in Two Volumes, price 34 s. cloth.

RICHARDSON. THE ASCLEPIAD. A Book of Original Research in the Scicnce, Art, and Literature of Medicine. By DENJAMIN WARD RICHARDSON, M.D., F.R.S. Published Quarterly, price 2s. 6d. Volumes for $1884,1885,1886,1887,1888 \& 1889$, $8 v o$, price $12 s$. 6%. each.

SALTER. DENTAL PATHOLOGY AND SURGERY. By S. JAMES A. SALTER, M.B., F.R.S., Examiner in Dental surgery at the Royal College of Surgeons; Dental Surgeon to Guy's Hospital. With $\mathbf{I} 33$ Illustrations. 8vo, price Is.s.

SEMPLE. ELEMENTS OF MATERIA MEDICA AND THERAPEUTICS. With numerous Illustrations. By C. E. ARMAND SEMPLE, B. A., M.B. Camb., L.S.A., M.R.C.P. Lond. ; Member of the Court of Examiners, and late Seuior Examiner in Arts at Apothecaries' Hall, \&c.
[$1 n$ the press.

SISLEY EPIDEMIC INFLUENZA. Notes on its Origin and Method of Spread. By RICHARD SISLEY, M.D. Royal 8vo, $7 \mathrm{~s} .6 d$.

SMITH (H. F.). THE HANDBOOK FOR MIDWIVES. By Henky fly smith, B.A., M.B. Oxon., M.R.C.S. Second Edition, thoroughly revised. With 4 I Woodcuts. Crown 8vo, price 5 s.

STEEL.-WORKS by JOHN HENRY STEEL, F.R.C.V.S., F.Z.S., A.V.D., Projessor of Veterinary Science and Principal of Bombay Veterinary Colle ${ }^{\text {e }}$.

A TREATISE ON THE DISEASES OF THE DOG; being a Manual of Canine Pathology. Especially adapted for the use of Veterinary lractitioners and students. 88 Illustrations 8 vo , Ios. $6 d$.
A TREATISE ON THE DISEASES OF THE OX; being a Manual of Buvine Pathology specially adapted for the use of Veterinary Practitioners and Students. 2 Plates and 117 Woodcuts. 8vo, 15 s.
A TREATISE ON THE DISEASES OF THE SHEEP; being a Manual of Ovine Pathology for the use of Veterinary Practitioners and Students. With Coloured Plate, and 99 Woodcuts. 8vo, I2s.

"STONEHENGE." THE DOG IN HEALTH AND DISEASE.

 By "sTONEHENGE." With 84 Wood Engravings. Square Crown 8vo, 7s. $6 d$.WALLER. AN IN'IRODUCTION TO HUMAN PHYSIOLOGY. By AUGUSTUS D. Waller, M. D., Lecturer on Physiology at St. Mary's Hospital Medical School, Jondon; late External Examiner at the Victorian University, With 292 Illustrations. 8vo, i8s.

WEST. - WORKS by CHARLES WEST, M.D., \&ंc., Founder of and formerly Physician to the Hospital for Sick Children.

LECTURES ON THE DISEASES OF INFANCY AND CHILDHOOD. Seventh Edition, revised and enlarged. 8vo, 18 s.

THE MOTHER'S MANUAL OF CHILDREN'S DISEASES. Fcp. 8vo, 2s. 6d.

WILKS AND MOXON. LECTURES ON PATHOLOGICAL ANATOMY. By SAMUEL, WILKS, M.D., F.R.S., Consulting Physician to, and formerly Lecturer on Medicine and Pathology at, Guy's Hospital, and the late WALTER MOXON, M.D., F.R.C.P., Physician to, and some time Lecturer on Pathology at, Guy's Hospital. Third Edition, thoroughly Revised. By SAMUEL WILIS, M.D., LL.D., F.R.S. 8vo, i8s.

WILLIAMS. PULAIONARY CONSUMPTION: ITS ETIOLOGY, PATHOLOGY, AND TREATMEN']' With an Analysis of 1,000 Cases to Exemplify its Duration and Modes of Arrest. By C. J. B. Williams, M.D., LL.D., F.R.S., F.R.C.P., Senior Consulting Physician to the Hospital for Consumption, Brompton; and CHARLES theodore williams, M.A., M.D. Oxon., F.R.C.P., Senior Physician to the Hospital for Consumption, Brompton. Second Edition, Enlarged and Re-written by Dr. C. THEODORE WILLIAMS. With 4 Coloured Plates and io Woodicuts. 8vo, $16 s$.

YOUATT.-WORKS by WILLIAM YOUATT.

THE HORSE. Revised and Enlarged by W. WATSON, M.R.C.V.S. Woodcuts. 8vo, 7s. 6d.

THE DOG. Revised and Enlarged. Woodcuts. 8vo, 6s

General Scisutific oidorks.

ARNOTT THE ELEMIENTS OF PHYSICS OR NATURAL PHILOSOPHY. By NEIL AkNOTT, M.D. Edited by A. BAIN, LL.D. and A. S. TAyLOR, M.D., F.R.S. Woodcuts. Crown 8ro, 12s. $6 d$.

BENNETT AND MURRAY A HANDBOOK OF CRYPTOGAMIC BOTANY. Dy A. W. BENNETT, M.A., B.Sc., F.L.S., and GEORGE R. MILNE MURRAY, F.L.S. With 378 Illustrations. 8vo, price I6s.

CLERKE. THE SYSTEM OF THE STARS. By AGNES M. CLERKE, Author of "A History of Astronomy durng the Nineteenth Century." With 6 Ilates and Numerous Illustrations. 8vo, $21 s$.

CLODD. THE STORY OF CREAIION. A I'lain Account of Evolution. By EDWARD CLODD, Author of "The Childhood of the World," \&c. With 77 Illustrations. Crown 8vo, 3s. 6d.

CROOKES. SELECT METHODS IN CHEMICAL ANALYSIS
(chiefly Inorganic). By W. CROOKES, F.R.S., V.P.C.S., Editor of "The Chemical News." Second Edition, re-writtcn and greatly enlarged. Illustrated with 37 Woodcuts. 8vo, price 245 .

CULLEY A HANDBOOK OF PRACTICAL TELEGRAPHY.

 By R. S. CULLEY, M.I.C.E., late Engineer-in-Chief of Telegraphs to the Post Office. Eighth Edition, completely revised. With 135 Woodcuts and ${ }_{17}$ Plates, 8 vo, 16 s.EARL. THE ELEMENTS OF LABORATORY WORK. A Course of Natural Science for Schools. By A. G. Earl, M.A., F.C.S., late Scholar of Christ College, Cambridge; Science Master at Tonbridge School. With 57 Diagrams and numerous Exercises and Questions. Crown 8vo, price 4s. $6 d$.

FORBES. A COURSE OF LECTURES ON ELECTRICITY Delivered before the Society of Arts. By GEORGE FORBES, M.A., F.R.S. (L. \& E.) With I_{7} Illustrations. Crown $8 \mathrm{vo}, 5 \mathrm{5}$.

GALLOWAY. THE FUNDAMENTAL PRINCIPLES OF CHEMISTRY PRACTICALLY TAUGHT BY A NEW METHOD. By RObert Galloway, M.k.I.A., F.C.S., Honorary Member of the Chemical Society of the Lehigh University, U.S. ; Author of "A Treatise on Fuel, Scientific and Practical," \&c. Crown 8vo, 6s. 6d.

GANOT ELEMEN'ARY TREATISE ON PHYSICS;

Experimental and Applied, for the use of Colleges and Schools. Translated and edited from Ganor's Elénents de Physique (with the Author's sanction) by E. ATKINSON, Ph.D., F.C.S., Professor of Experimental Science, Staff College, Sandhurst. Twelfth Edition, revised and enlarged, with 5 Coloured I'lates and 923 Woodcuts. Large crown 8vo, price 15 .

NATURAL PHILOSOPHY FOR GENERAL READERS AND YOUNG PERSONS; Being a Course of Physics divested of Mathematical Formulx, and expressed in the language of daily life. Translated from Ganor's Cours de Physique (with the Author's sanction) by E. ATKINSON, Ph.D., F.C.S. Seventh Edition, carefully revised; with 37 pages of New Matter, 7 Plates, 569 Woodcuts, and an Appendix of Questions. Crown 8vo, price $7 s .6 d$.

GIBSON. A TEXT-BOOK OF ELEMIENTARY BIOLOGY By R. J. HARVEY GIbSON, M.A., F.R.S.E., Lecturer on Botany in University Collcge, Liverpool. With 192 Illustrations. Crown 8vo, price 6 .

GOODEVE.-WORKS by T. M. GOODEVE, M.A., Barrister-atLaws; Professor of Meckanics at the Normal Schoot of Science and the Royal School of Mines.

PRINCIPLES OF NECHANICS. New Edition, re.written and cnlarged. With 253 Woodcuts and numerous Examples. Crown 8vo, 6s.

THE ELEMENTS OF MECHANISAL. New Edition, re-written and enlarged. With 342 Woodcuts. Crown 8vo, 6 s.

A MANUAL OF MECHANICS: an Eicmentary Text-Book for Students of Applied Mechanics. With 138 Illustrations and Diagrams, and 141 Examples taken from the Science Department Examination Papcrs, with Answers. Fcp. 8vo, 2s. 6d.

HELMHOLTZ.-WORKS by HERMANN L. F HELMHOLTZ, M.D., Professor of Physics in the University of Berlin.

ON THE SENSATIONS OF TONE AS A PHYSIOLOGICAL BASIS FOR THE THEORY OF MUSIC. Second English Edition ; with numerous additional Notes, and a new Additional Appendix, bringing down information to 1885, and specially adapted to the use of Musical Students. By Alexander J. ELLIS, B.A., F.R.S., F.S.A., \&c., formerly Scholar of Trinity College, Cambridge. With 68 Figures engraved on Wood, and 42 Passages in Musical Notes. Royal 8vo, price $28 s$.

I'OPULAR LECTURES ON SCIENTIFIC SUBJECTS. With 68 Woodcuts. 2 Vols. crown 8vo, 15 s., or separately, 7 s. 6d. each.

HERSCHEL. OU'TLINES OF ASTRONOMY. By Sir JOHN F W. HERSCHEL, Bart., K.H., \&c, Member of the Institute of France. Twelfth Edition, with 9 Plates, and numerous Diagrams. Square crown 8vo, price 125.

HUDSON AND GOSSE. THE ROTIFERA OR WHEEL ANIMALCULES.' By C. T. HUDSON, LL.D., and P. H. GOSSE, F.R.S. With 30 Coloured and 4 Uncoloured Plates. In 6 Parts. 4 to, price 10s. 6d. each ; Supplement, 12s. 6d. Completc in Two Volumes, with Supplement, 4 to, $£ 44$.
*** The I'lates in the Supplement contain figures of almost all the Foreign Species, as well as of the British Species, that have been discovered since the original publication of Vols. I. and II.

IRVING. PHYSIC.\L AND CHENICAL STUDIES IN ROCKMETAMORPHISM, based on the Thesis written for the D.Sc. Degree in the University of London, 1888. liy the Rev. A. IRVING, D.Sc. Lond., Senior Science Master at Wellington College. $8 \mathrm{vo}, 5$.

JORDAN. 'THE OCEAN: A Treatise on Ocean Currents and Tides and their Causes. By WILLIAM LEIGIITON JORDAN, F.R.G S. 8vo, 21 s .

KOLBE. A SHORT TEXT-BOOK OF INORGANIC CHEMISTRY. By Dr. HERMANN KOLBE, Professor of Chemistry in the University of Leipzig. Translated and Edited by T. S. HUMPIDGE, Ph.D., B. Sc. (Lond.), Professor of Chemistry and Physics in the University College of Wales, Aberystwyth. With a Coloured Table of Spectra and 66 Woodcuts. Sccond Edition. Crown 8vo, price 7s. 6 d.

LADD.-WORKS by GEEORGE T LADD, Professor of Philosoply in Tale University,
ELENENTS OF PHYSIOLOGICAL PSYCHOLOGY: A TREATISE OF THE ACTIVITIES AND NATURE OF THE MIND FROM THE PHYSICAL AND EXPERIMENTAL POINT OF VIEW. With H_{3} Illustrations. 8vo, price 2 rs . OUTLINES OF PHYSIOLOGICAL PSYCHOLOGY. With numerous Illustrations. 8ro. i2s.

LARDEN. ELECTRICITY FOR PUBLIC SCHOOLS AND COLLEGES. With numerous Qucstions and Examples with Answers, and 214 Illustrations and Diagrams. By W. LARIEEN, M.A. Crown 8 vo, $6 s$.

LINDLEY AND MOORE. THE TREASURY OF BOTANY, OR POPULAR DICTIONARY OF THE VEGETABLE KINGDOM : with which is incorporated a Glossary of Botanical Terms. Edited by J. LiNDiey, M.D., F.R.S., and T. MOORE, F.L.S. With 20 Steel Plates, and numerous Woodcuts. 2 Parts, fcp. 8vo, price $12 s$.

LOUDON. AN ENCYCLOPÆDIA OF PLANTS. By J. C. LOUDON. Comprising the Specific Character, Description, Culture, History, Application in the Arts, and every other desirable particular respecting all the plants indigenous to, cultivated in, or introduced into, Britain. Cor rected by Mrs. LOUDON. $8 v o$, with above 12,000 Woodcuts, price 425 .

MARTIN. NAVIGATION AND NAUTICAL ASTRONOMY. Compiled by Staff-Commander W. R. MARTIN, R.N., Instructor in Surveying, Navigation, and Compass Adjustment ; Lecturer on Meteorology at the Royal Naval College, Greenwich. Sanctioned for use in the Royal Navy by the L.ords Commissioners of the Admiralty. Royal 8vo, 18 .

MENDELÉEFF, THE PRINCIPLES OF CHEMISTRY By

 D. MENDELEEFF. Professor of Chemistry in the University of St. Petersburg. Translated by GEORGE KAMENSKY, A.R.S.M. of the Imperial Mint, St. Petersburg, and Edited by A. J. GREENAWAY, F.I.C., Sub Editor of the Journal of the Chemical Society. 2 Vols. 8vo.MEYER. OUTLINES OF THEORETICAL CHEMISTRY. By LOTHAR MEYER, Professor of Chemistry in the University of Tübingen. Translated by Professors P. PHILLIPS BEDSON, D.Sc., and W. CAKLETON WILLIAMS, B.Sc. [In preparation.

MILLER.-WORKS by WILLIAM ALLEN MILLER, M.D., D.C.L., LL.D., late Profersor of Chemistry in Ring's College, London.
THE ELEMENTS OF CHEMISTRY, Theoretical and Practical.
Part I. CHEMICAL PHYSICS. Sixth Edition, revised by HER. BERT McLEOD, F.C.S. With 274 Woodcuts 8vo, price $16 s$.
Part II. INORGANIC CHEMISTRY. Sixth Edition, revised throughout, with Additions by C. E. GROVES; Fellow of the Chemical Societies of London, Paris, and Berlin. With 376 Woodcuts. 8 vo , price 24 .
Part iif. ORGANIC CHEMISTRY, or the Chemistry of Carbon Compounds. Hydrocarbons, Alcohols, Ethers, Aldehides and Paraffinoid Acids. Fitth Edition, revised and in great part re-written, by H. E. ARMSTRONG, F.R.S., and C. E. GKOVES, F.C.S. 8vo, price 3is. 6 a.

MITCHELL. MANUAL OF PRACTICAL ASSAYING. By JOHN MITCFIELL, F.C.S. Sixth Edition. Edited by W. CROOKES, F.R.S. With 20I Woodcuts. 8vo, price $31 s$. $6 d$.

MORGAN. ANIMAL BIOLOGY. An Elementary Text Book. By C. LLOYD MORGAN, Professor of Animal Biology and Geology in University College, Bristol. With numerous Illustrations. Crown 8vo, $8 s .6 d$.

ODLING. A COURSE OF PRACTICAL CHEMISTRY, Arranged for the use of Medical Students, with express reference to the Three Months' Summer Practice. By WlLLIAM ODLING, M.A., F.R.S. Fifth Edition, with 7 I Woodcuts. Crown 8 vo , price 6 s.

OLIVER. ASTRONOMY FOR AMATEURS: A PRACTICAL MANUAL OF TELESCOPIC RESEARCH IN ALL LATITUDES ADAPTED TO THE POWERS OF MODERATE INSTRUMENTS. Edited by JOHN A. WESTWOOD OLIVER, with the assistance of T. W. BACKHOUSE, F.R.A.S.; S. W. BURNHAM, M.A., F.R.A.S. : J. RAND CAPRON, F.R.A.S.; W. F. DENNING, F.R.A.S.; T. GWYN ELGER, F.R.A.S. ; W. S. FRANKS, F.R.A.S.; J. E. GORE, M.R.I.A., F.R.A.S.; SIR IIOWARD GRUBB, F.R.S., F.R.A.S.; E. W. MAUNDER, F.R.A.S.; and others. Illustrated. Crown $8 \mathrm{vo}, 7 \mathrm{~s} .6 \mathrm{~d}$.

OSTWALD. SOLUTIONS. By W. OSTWALD, Professor of Chemistry in the University of Leipzig. Being the Fourth Book, with some additions, of the Second Edition of Ostwald's 'Lehrbuch der Allgemeinen Chemie." Translated by M. M. PATTISON MUIR, Professor of Gonville and Caius College, Cambridge. 8 vo, ios. $6 d$.

PAYEN. INDUSTRIAL CHEMISTRY; A Manual for use in Technical Colleges or Schools, also for Manufacturers and others, based on a Translation of Stuhmann and Engler's German Edition of Payen's Précis d Chimie Industrielle. Edited and supplemented with Chapters on the Chemistry of the Metals, \&c., by B. H. PAUL, Ph.D. With 698 Woodcuts. Medium 8 vo , price $4^{2 s}$.

REYNOLDS. EXPERIMENTAL CHEMISTRY for Junior Studente. By J. EMERSON REYNOLDS, M.D., F.R.S., Professor of Chemistry, Univ. of Dublin. Fcp. 8vo, with numerous Woodcuts.

Part I.--Introductory, price is. $6 d$.
Part II.-Non-Metals, with all Appendix on Systematic Testing for Acids, price 2s. $6 d$.
part III. -Metals and Allied Bodies, price 3s. 6 d .
Part IV.-Chemistry of Carbon Compounds, price 4 s.

PROCTOR.-WORKS by RICHARD A. PROCTOR.

LIGHT SCIENCE FOR LEISURE HOURS; Familiar Essays on Scientific Subjects, Natural Phenomena, \&c. 3 Vols. crown 8 vo , 5 s. each.
THE ORBS AROUND US; a Series of Essays on the Moon and Planets, Meteors, and Comets. With Chart and Diagrams, crown 8vo, 5 .
OTHER WORLDS THAN OURS; The Plurality of Worlds Studied under the Light of Recent Scientific Researches. With I4 Illustrations, crown $8 \mathrm{vo}, 5$.
THE MOON ; her Motions, Aspects, Scenery, and Physical Condition. With Plates, Charts, Woodcuts, and Lunar Photographs, crown 8vo, 5 s.
UNIVERSE OF STARS; Presenting Researches into and New Views respecting the Constitution of the Heavens. With 22 Charts and 22 Diagrams, 8 vo . Ios. 6 d .

LARGER STAR ATLAS for the Library. in 12 Circular Maps, with Introduction and 2 Index Pages. Folio, 15^{s}, or Maps only, $12 s .6 \mathrm{~d}$.
NEW STAR ATLAS for the Library, the School, and the Observatory, in 12 Circular Maps (with 2 Index Plates). Crown 8vo, 5 s.
THE STUDENT'S ATLAS. In 12 Circular Maps on a Uniform Projection and I Scale, with 2 Index Maps. Intended as a vade-mecum for the Student of History, Travel, Geography, Geology, and Political Economy. With a letter-press Introduction illustrated by several cuts. 5s.
OLD AND NEW ASTRO. NOMY. In 12 Parts. Price $2 s$ s. $6 d$. each; supplementary section, is. (in course of publication); comriste, 36s. cloth. [Nearly ready.

STUDIES OF VENUS-TRANSITS; an Investigation of the Circumstances of the Transits of Venus in 1874 and 1882 . With 7 Diagrams and 10 Plates. 8vo, 5 .

ELEMENTARY PHYSICAL geography. With 33 Maps and Woodcuts. Fcp. 8vo, Is. $6 d$.

LESSONS IN ELEMENTARY ASTRONOMY; with Hints for Young Telescopists. With 47 Woodcuts. Fcp. 8vo, is. 6 d .

FIRST STEPS IN GEOMETRY: a Series of Hints for the Solution of Geometrical Problems; with Notes on Euclid, useful Working Propositions, and many Examples. Fcp. 8vo, $3 s .6 d$.
EASY LESSONS IN THE DIFFERENTIAL CALCULUS : indicating from the Outset the Utility of the Processes called Differentiation and Integration. Fcp. 8ro, $2 s .6 d$.

THE STARS IN THEIR SEAsONS. An Easy Guide to a Knowledge of the Star Groups, in 12 Large Maps. Imperial 8 vo, 5 .

STAR PRIMER. Showing the Starry Sky Week by Week, in 24 Hourly Maps. Crown 4to, 2s. $6 d$.

THE SEASONS PICTURED IN 48 SUN VIEWS OF THE EARTH, and 24 Zodiacal Maps, \&c. Demy 4 to, 5 s.
ROUGH WAYS MADE SMOOTH. Familiar Essays on Scientific Subjects. Crown 8vo, 5 s.

HOW TO PLAY WHIST: WITH THE LAWS AND ETIQUETTE OF WHIST. Crown $8 \mathrm{vo}, 3 \mathrm{~s} .6 d$.

HOME WHIST : an Easy Guide to Correct Play. 16 mo , is.
[Continued.

PROCTOR.-WORKS by RICHARD A. PROCTOR-contimued.
OUR PLACE AMONG INFI- PLEASANT WAYS IN NITIES. A Series of Essays contrasting our Little Abode in Space and Time with the Infinities around us. Crown 8vo, 5 s.
STRENGTH AND HAPPINESS. Crown 8vo, 5 s.
STRENGTH: How to get Strong and keep Strong, with Chapters on Rowing and Swimming, Fat, Age, and the Waist. With 9 IIlustrations. Crown 8vo, 2s.
THE EXPANSE OF HEAVEN. Essays on the Wonders of the Firmament. Crown 8vo, 5 s.
THE GREAT PYRAMID, OBSERVATORY, TOMB, AND TEMPLE. With Illustrations. Crown 8vo, 5:.

SCIENCE. Crown 8vo, 5 s.

MYTHS AND MARVELS OF ASTRONOMY. Crown 8vo, 5 s.
CHANCE AND LUCK; a Dis. cussion of the Laws of Luck, Coincidences, Wagers, Lotteries, and the Fallacies of Gambling, \&c. Crown 8vo, 2s. hoards, 2s. $6 d^{\prime}$, cloth.

NATURE STUDIES. By Grant Allen, A. Willon, T. Foster, E. Clodo, and R. A. Proctor. Crown 8vo, 5 s.

LEISURE READINGS, ByE. Clodd, A. Wilson, T. Foster, A. C. Runyard, and R. A. Proctor. Crown 8 vo , 5 s.

SCOTT WEATHER CHARTS AND STORA WARNINGS. By ROBERT II. SCOTT, M.A., F.R.S. With numerous Illustrations. Crown 8vo, 6 .

SLINGO AND BROOKER. ELECTRICAL ENGINEERING FOR ELECTRIC LIGHT ARTISANS AND STUDENTS. (Embracing those branches prescribed in the Syllabus issued by the City and Guilds Technical Institute.) By W. Slingo, Principal of the Telegraphists' School of Science, \&c., \&c., and A. Brooker, Instructor on Electrical Engineering at the Telegraphists' School of Science. With 307 Illustrations. Crown 8vo, price ios. $6 d$.

SMITH. GRAPHICS ; OR, THE ART OF CALCULAAIION BY DRAWING LINES, applied to Mathematics, Theoretical Mechanics and Engineering, including the Kinetics and Dynamics of Machinery, and the Statics of Machines, Bridges, Roofs, and other Engineering Structures. by Robert in. Smith, Professor of Civil and Mechanical Engineering, Mason Science College, Birmingham.

Part I. Text, with separate Atlas of Plates-Arithmetic, Algebra, Trigononetry, Vector, and Locor Addition, Machine Kinematics, and Statics of Flat and Solid Structures. Svo, 15 s.

THORPE. A DICTIONARY OF APPLIED CHEMISTRY.

By T. E. Thorpe, B.Sc. (Vict.), Ph.D., F.R.S.. Treas. C.S., Professor of Chemistry in the Royal College of Science, London. Assisted by Eminent Contributors. 3 vols., $£ 2$ 2s. each.
[Lols. I. and II. noze ready.

TYNDALL.-WORKS by JOHN TYNDALL, F.R.S., soc.
FRAGMENTS OF SCIENCE. 2 Vols. Crown 8 vo , 16 s.
HEAT A MODE OF MOTION. Crown 8vo, 12 s .
SOUND. With 204 Woodcuts. Crown 8 vo , ios. $6 d$.
RESEARCHES ON DIAMAGNETISM AND MAGNE-CRYSTALLIC ACTION, including the question of Diamagnetic Polarity. Crown 8vo, 125.
ESSAYS ON THE FLOATING-MATTER OF THE AIR in relation to Putrefaction and Infection. With 24 Woodcuts. Crown 8vo, 7s. $6 d$.
LECTURES ON LIGHT, delivered in America in 1872 and 1873. With 57 Diagrams. Crown 8vo, 5 s.
LESSONS IN ELECTRICITY AT THE ROYAL INSTITUTION, 1875-76. With 58 Woodcuts. Crown $8 \mathrm{vo}, 2 s .6 d$.
NOTES OF A COURSE OF SEVEN LECTURES ON ELECTRICAL PHENOMENA AND THEORIES, delivered at the Royal Institution. Crown 8vo, is. sewed, is. 6 d . cloth.
NOTES OF A COURSE OF NINE LECTURES ON LIGHT, delivered at the Royal Institution. Crown 8vo, is. sewed, is. 6 d . cloth.
FARADAY AS A DISCOVERER. Fcp. $8 \mathrm{vo}, 3^{s, 6 d}$.

WATTS' DICTIONARY OF CHEMISTRY Revised and entirely Re-written by H. FORSTER MORLEY, M.A., D.Sc., Fellow of, and lately Assistant-Professor of Chemistry in, University College, Londen ; and M. M. PATTISON MUIR, M.A., F.R.S.E., Fellow, and Prælector in Chemistry, of Gonville and Caius College, Camlridge. Assisted by Eminent Contributors. To be Published in 4 Vols. 8vo. Vols. I. II. 42s. each.
[Noze ready.
WEBB. CELESTIAL OBJECTS FOR COMIMON TELESCOPES. By the Rev. T. W. Wcbl, M.A. Fourth Edition, adapted to the Present State of Sidereal Science ; Map, Plate, Woodcuts. Crown 8vo, price 9s.

WILLIAMS. MANUAL OF TELEGRAPHY. By w. williams, Superintending Indian Government Telegraphs. With 93 Woodcuts. 8vo, 10s. $6 d$.

WRIGHT OPTICAL PROJECTION : A Treatise on the Use of the Lantern in Exhibition and Scientific Demonstation. By LEWIS WRIGHT, Author of "Light : a Course of Experimental Optics." With 232 Illustrations. Crown 8vo, 6 .

ORIENTAÇÕES PARA O USO

Esta é uma cópia digital de um documento (ou parte dele) que pertence a um dos acervos que fazem parte da Biblioteca Digital de Obras Raras e Especiais da USP. Trata-se de uma referência a um documento original. Neste sentido, procuramos manter a integridade e a autenticidade da fonte, não realizando alterações no ambiente digital - com exceção de ajustes de cor, contraste e definição.

1. Você apenas deve utilizar esta obra para fins não comerciais. Os livros, textos e imagens que publicamos na Biblioteca Digital de Obras Raras e Especiais da USP são de domínio público, no entanto, é proibido o uso comercial das nossas imagens.
2. Atribuição. Quando utilizar este documento em outro contexto, você deve dar crédito ao autor (ou autores), à Biblioteca Digital de Obras Raras e Especiais da USP e ao acervo original, da forma como aparece na ficha catalográfica (metadados) do repositório digital. Pedimos que você não republique este conteúdo na rede mundial de computadores (internet) sem a nossa expressa autorização.
3. Direitos do autor. No Brasil, os direitos do autor são regulados pela Lei n. ${ }^{\circ} 9.610$, de 19 de Fevereiro de 1998. Os direitos do autor estão também respaldados na Convenção de Berna, de 1971. Sabemos das dificuldades existentes para a verificação se uma obra realmente encontra-se em domínio público. Neste sentido, se você acreditar que algum documento publicado na Biblioteca Digital de Obras Raras e Especiais da USP esteja violando direitos autorais de tradução, versão, exibição, reprodução ou quaisquer outros, solicitamos que nos informe imediatamente (dtsibi@usp.br).

[^0]: 1v: p. 37%
 2 As in the "biceps flexor cubiti' of the man so experimented on, in $\mathrm{I} \cdot \mathrm{p} .402$.
 ' xery, p. 144 . See also 1 l .

[^1]: ${ }^{1}$ nir： 100° or 101° Fahr．as against 97° Faht：（ 39.5 ，as against 37 or 30 Cent．） xatv．p．145．See also p．16，for a similar illustration of loss of heat throust starvation in ducks． $\stackrel{1}{2}$ バ。

[^2]: ${ }^{1}$ ccoxivili.

[^3]: ${ }^{1}$ P'roceri, Illig. ; Platysterna, Nitzsch; Struthionida, Vín,

[^4]: ${ }^{1}$ xvir. pp, 5 and $324 . \quad 2 \mathrm{xy} . \quad{ }^{3}$ chit. and xyir: 1 . 549 ,
 'xyi.

[^5]: ${ }^{1}$ vir, p, 270. and x, f1. 52, fige 50, 51 .

[^6]: ${ }^{1} \mathrm{x} \cdot \mathrm{p}$. 51, fig. 48. $h, h, \quad{ }^{2}$ ※it.

[^7]: ${ }^{1} \mathrm{xx}$, i. p, 54, no. 254.

[^8]: - The value of these and other sternal characters in Paloontology may be estimated by reference to my "British Fossil Mammals and Birds,'p. 549 (Lithernis), aud p.
 236 (Culobates).

[^9]: ' xlaw' p. 238, no. $1280 . \quad$ "Ib. 1. 264, no. 1366.

[^10]:

[^11]: ${ }^{1}$ xiv. pl. 4, fig. 5.

[^12]: ${ }^{1}$ Sue the Table in vir: p. 273.
 ${ }^{2}$ Nus 1835 and 1837, Osteol. Surics, Mus. Coll, Chir.

[^13]: ${ }^{1}$ xlefe. vol. i. p. 2e7. Nc. 1386

[^14]: ${ }^{2}$ xw p. 45, pl. iii. fig. 6.

[^15]: 1 mit. vol. i. p. 208.

[^16]: 3x. $\quad 2$ xv. p. 45, ple, i. and iii,

[^17]: 1 eccixx and xxit.

[^18]: ${ }^{1}$ xvic vol. iv. pl. 21, fig 2.
 ${ }^{3}$ Ib. vol. iii. p. 850.
 ${ }^{4}$ Ib. fig. 1, 5'.
 ${ }^{2}$ Ib. vol. iii. pl. 52, fig. 4.

[^19]: ${ }^{1}$ xvi. vol. iii. pl. 52, fig. 4.
 ${ }^{2}$ First indicated as such in xvi'. vol. iii. p. 351 (January, 1848); see also xlif. p. 303, no. 1601.
 ${ }^{3}$ xity \cdot p. 259.
 VOL. II.
 E

[^20]: ${ }^{1}$ Bustard, xvmi: vol. iii. p. 352, pl. 52, fig. 9, 8'. ${ }^{2}$ Ib. p. 352.
 ${ }^{3}$ Ib. p. 352, pl. 52, fig. 1, 8, 12; cxl. pl. 1, fig. 1, 8, 12. In the memoir above cited this skull is described as belonging probably to D. Casuarinus, ib. p. 376; it is, however, of D. didiformis, since gencrically separated as Aphornis.

[^21]:
 ${ }^{3}$ xrirr: vol, iii pl. $39,14$.

[^22]: ${ }^{1}$ xur: vol. iii. [1. 39, fig. 2, 20.

[^23]: ${ }^{1}$ xvi. tom. iii. pl. 39, figs. 8, 9 , and xxiv'.

[^24]: ${ }^{1}$ Xv1. vol. iii. p. 356 , pl. 53, fig. $9, f . \quad{ }^{2} \mathrm{Ib}$. fig. $10, g$.
 ${ }^{3}$ Compare ib. pl. 39, figs. $7,8,9, a$, and pl. 53 , figs. $8,9, h$.
 ${ }^{4}$ Ib. vol. iii. p. $35 . \quad{ }_{5}^{5}$ xxili .

[^25]: ${ }^{1}$ xri: vol iii. pl. 53, fig. 1. $\quad{ }^{2} \mathrm{Ib}$. firss. 1 and τ, w.
 ${ }^{3}$ VII. P. 277.

[^26]: ${ }^{1}$ xvi', vol. iii. pl. 52, fig. 3, 38.

[^27]: ${ }^{1}$ xvi. p. 52, pl. 1, fig. 5, 14.

[^28]: ${ }^{1}$ xliv. p. 219, no. 1137. Sce also, no. 1373, Ostrich. ${ }^{2}$ Ib. no. 1108.

[^29]: ' xv' p. 3?, pl. 2, fig. 1.

[^30]: ${ }^{1}$ In Dinornis maximus the femur is 16 inches in length, and $6 \frac{1}{2}$ inches across the distal ond.

[^31]: ' See zix'. p. 204, pl. 3, for the illustration and application of the characters of the tibia in the determination of the affinities of birds indicated by that bone fossil.

[^32]: ${ }^{1}$ xvi. vol. iii. part iv. (1846), pp. 321, 322; xilv'. p. 274, \&c.

[^33]: ${ }^{1}$ xXvi: ${ }^{2}$ xXvH pl. 11. ${ }^{3}$ xvi. vol. iii. r. 307.

[^34]: ${ }^{1}$ xxiv. vol. iii. p. 280 , pls. 32 and 33.

[^35]: ${ }^{1}$ xi. vol. ii. pl. 52 ; vol. iii. pl. 36 , p. 987.

[^36]: ${ }^{1}$ 21. vol. iii. pl. 32, h, p. 287.

[^37]: ${ }^{1}$ xxvis: p. 459.

[^38]: ${ }^{1}$ mLximi. p. $400 . \quad{ }^{2}$ x1. vol. iii. P. 289, pls. 31, 32, p.

[^39]: ${ }^{1}$ XII ${ }^{\circ}$ tom. i. p. 502.
 ${ }^{2}$ xlvi- th. iii. p. 361.

[^40]: ${ }^{1}$ xI. vol. iii. p. 290, pl. 32, A ${ }^{2}$ Ib. pl. 32, 3. ${ }^{3}$ Ib. pl. 32, c. ${ }^{4}$ Ib. pl. 32, D.

[^41]: ${ }^{1}$ xixis. p. 12.
 ${ }^{2}$ x1. vol. iii. pl. 32, E. $\quad{ }^{3}$ Ib.pls. 32, 35, F.
 ${ }^{4}$ Ib. pl. 35, G.

[^42]: ' x1. vol. iii. pls. 31, 32, k.
 \therefore Ib. pls. $32,35, \mathrm{~L}$

[^43]: ${ }^{2} \mathrm{xI}$. vol. iii. pls. $32,35,0$.
 ${ }^{2}$ Ib. pl. 35, ए.
 ${ }^{3}$ Ib. pl. 35, Q.
 ${ }^{4}$ Ib. pls. 31, 32, R.

[^44]: ${ }^{1} \mathrm{xl} \cdot$ vol. iii. pl. 35, s. $\quad{ }^{2} \mathrm{Ib} . \mathrm{pls} .3 \mathbf{1}, 32,35,1 . \quad{ }^{3} \mathrm{Ib} . \mathrm{pls} .31,32,35,2$.
 ${ }^{4}$ Ib. pls. $32,35,3,4,5,6$.

[^45]:

[^46]: ${ }^{1} \mathrm{xr}$. vol. iii. pls. 32, 3 ,, 8.
 ${ }^{2}$ This is ossified in most Birds. ${ }^{3}$ Ib. pl. 35, 9.
 ${ }^{4}$ Ib. pl. 35, 10.
 ${ }^{5}$ Ib. pl. 35, 11.
 ${ }^{6}$ Ib. pls. 32, 35, 12.

[^47]: ${ }^{1}$ COIV. p. 428. The prineipal data requisite for estimating by dynamics the amount of the force employed by birds during flight arc bricfly stated by Mr. Bishop to be :-'1 st, tbe area of the horizontal scetion of the body of the bird : 2nd, the area of the wings whilst they are lowered: 3rd, the area of the wings whilst they are raised: 4th, the veloeity with which the bird is driven through the air: 5 th, the velocity witb which the wings are lowered: 6th, the velocity with which the wings are raised: 7 th, the respeetive durations of the elevation and depression of the wings: 8th, the weight of the whole bird: 9th, the weight of an equal volume of air: 10th, the resistance of the air due to the figure and veloeity of the bird: llth, the ratio of the resistance which the air opposes to the wings during their elevation and depression: 12th, the ratio of the resistanee of the air to the time of an elevation of the wings and to that of a depression.' Ib. p. 425.

[^48]: ${ }^{2}$ LIV' p. 104. ${ }^{2}$ xx. vol. iii. p. 239, preps. nos. $1902-1906$.
 ${ }^{3}$ Ib. 1r ps. 1400 (Eagle), 1401 (Ostrich).

[^49]: ${ }^{1}$ xxari. p. 34.

[^50]: ${ }^{1}$ xxaif. vol. ii. p. 34 ; wol. v. p. 34 j.
 2 Vol. i. p. 208.

[^51]: ${ }^{1}$ xxaive p. 170.

[^52]: ${ }^{1}$ vil". p. 304.

[^53]: - The Parisian Academicians, who took their description of this part from the Ostrich, first applied to it the name of Marsupium or Bourse. xl.

[^54]: 1 The Cormorant devours, in captivity, six or cight pounds of fish daily; what may be the amount in its state of wild activity !
 ${ }^{2} \mathrm{xxavi}$.

[^55]: ${ }^{1}$ Dr. Salter proposes the name of 'Cerato-glossal' for this muscle. cexl'. p. 1140.

[^56]: ${ }^{1}$ For these structures in Birds, see xxxvir: p. 613.

[^57]: 1 When writing the article Aves for the 'Cyclopedia of Anatomy,' in 1855, I hat not disseeted a male Bustard, and introduced the old figure from " Elwards's Nat. Hist. vol, ii. tab. 73 (1747),' fig. 54, with the current story of the sub-gular water-ponch, which Edwards derived from the anatomist Donglas. In 1848 I had the desired opportunity and made the preparation, No. $7-2$, , described in the Physiological Catalogue of the IIunterian Colleetion.' The supposed gular pouch is a large cervieal air-eell, fig. 54, a, eapable of inflation and singnlarly swelling out the neck in the amorous male Bustard. Sce xxxyir.

[^58]: ${ }^{1} \mathrm{xClv}$ " p .124.

[^59]: 1 SXXIX.

[^60]: ${ }^{1}$ Thus we find in Parrots, where the gizzard is remarkably small, that a crop is present. A like receptacle exists also in the Flamingo, in which the gizzard is suall but strong.

[^61]: 'In fig. 78, the intestines are not represented according to their natural arrangement.

[^62]: ${ }^{1} \mathrm{xr}$.
 ${ }^{2}$ In the Popigjay (Picus viridis. Linn.) we have found two small cocca, so closely athering to the intestine as easily to be overlooked.

[^63]: ${ }^{1}$ The indigestible parts of the prey of the Owl do not pass into the intestine, but are regularly cast or regurgitated from the stomach; the length of the ceuca cannot, therefore, be accuunted for on Macartuey's supposition of their being receivers of those parts.

[^64]: ${ }^{1}$ Number of times the weight of the liver in that of the body:-
 Cathartes atrutus, 47; Chelonia caretha, 47 :
 Syrnium nebulosum, 56 ; Rana Cattsbiana, 55:
 Tantalus loculutor, 64; Coluber guttatus, 64:
 Meleagris gallopavo, 70 ; Alligator lucius, 73:
 and see other examples, in ccxiv. p. 113.

[^65]: ${ }^{1}$ The French Academicians (xc• 2de partie, pp. 99-109) saw this in some of their Bustards: but in the male dissected by me the hepatic lobes were equal, and both were long.

[^66]: ' xL:

[^67]: ' From Lauth's Monograph, Annales des Sciences Nat. t. jii. pls. 23 and 25.

[^68]: ${ }^{1}$ Home Clift, in vir' p. $3: 31$.

[^69]: I Barkow, xliy., has established the accuracy of this observation of Macartney's (xumi.), having found this singular anastomosis of the occipital with the vertebral artery in all the birds which he injected.

[^70]: ${ }^{1}$ Barkow deseribes the internal maxillary artery as wanting in birds, and its place being supplied by branches of both the externall and internatratotids and the facial artery, all of which sometimes unite to form the maxillary plexus of vessels, which is very conspicuous in the Goose and Duck. xlif:.

[^71]: ${ }^{1}$ xluif.

[^72]: ${ }^{1}$ ccesvili. p. 277.

[^73]: ${ }^{1}$ xx. vol. ii. p. 103 (1834). $\quad{ }^{2}$ xLIX.

[^74]: ${ }^{1}$ xlix.

[^75]: ${ }^{1}$ cxXII. P. 92.

[^76]: ${ }^{1}$ Of so much consequence are the quill-feathers to the Falcons, that when any of them are broken the flight is injured and the faleoners find it necessary to repair them; for this purpose they are always provided with perfect pinion and tail feathers regularly numbered.

[^77]: ${ }^{1} \mathbf{x x}$ vol. hii p. 311. ${ }^{2}$ LIV.

[^78]: ${ }^{1}$ xxvif. and Pbil. Trans. 1802.

[^79]: ${ }^{1}$ cccvili. p. 63.

[^80]: ${ }^{1}$ LIVI. and mivire.

[^81]: ${ }^{1}$ Lvii. and LviIf.
 ${ }^{2}$ It is possible that the old propensity of the Maypie, Jackdaw, and some others of our Conirostrals, to which the Australian Bower-Birds are allied, to pilfer glitering objects, may be the remnant of a similar instinet which the inerease of human population has scared out of them : the conditions of cultivation reducing the birds to the constructions whieh are cssential to the continuance of the species.

[^82]: ${ }^{2} \mathrm{xx}$. vol. y. p. xx. Ib. pl. lxix. fig. 7. $\quad{ }^{2}$ Ib. p. xx.

[^83]: ${ }^{1}$ The mucons layer, f, is shown reflected from the vascular area, g.
 ${ }^{2}$ xx. vol. v. p. xxi。 ${ }^{3}$ xx. p. xxiv. ${ }^{1}$ Ib. ${ }^{5}$ Lxix.

[^84]: ${ }^{1}$ In xx. pl. Inx. fig. 3, embryo of the Goose at the thirtieth hour of incubation, the open state of the acoustic sae is erroncously described as 'meatus:' but the sae becomes closed, and the tympanum and its passage are later developements.

[^85]: ${ }^{1}$ xx. vol. V. 1). Nxivi.

[^86]: : Three of the figures here referred to by Ilunter are engraved in $x x$, vol. v. pl. lxxvi. figs. 16, 17, 18. ${ }^{2}$ Ib. p. xxvii. ${ }^{3}$ vir. p. 265.

[^87]: ${ }^{1}$ Mamma, a teat. The Monotremes have mammary glands without teats. The foctal Cetacea show tufts of hair on the muzzle.

[^88]: ${ }^{1}$ púpos, once; фúw, I gencrate; àsoús, touth.
 ² $\delta i s$, twice; $\phi u ́ \omega$, and ỏouús.

[^89]: ${ }^{1}$ LXVIII: and Litiv:

 ${ }^{3}$ xVII: p. 338.
 ${ }^{4} \lambda / \sigma \sigma \sigma s$, smooth ; є́ $\gamma \kappa \epsilon ́ \phi a \lambda o s$, brain.

[^90]: Beitrige zur Zoologic und vergleichenden Anatomic, 4to, 1820, zweite Abtheiling, p. 70 , tab. vii. b Icones cerebri Siniartum, fol. 1821, p. 14, fig. iii. 2.
 'Treviranus, Zeitschrift für Physiolocie, Pul. ii. s. 25, Taf. iv. a Nienwe Verhamdlungen der erste Klasse vom het Köningl. Nedrandsche Institut. Amsterdam, 1849. Fullerian Lectures, Royal Institution (March 18, 1861), reported, with copies of diagrams, in Athenæum,' Narclı 23rd, 1861, p. 395.

[^91]:

[^92]: ${ }^{1}$ CLI. t. V. $1^{\text {t. }}$ i, P. 193.

[^93]: ${ }^{1}$ xviri, 1 p x .520.

[^94]: ${ }^{1}$ Besides the annular jacenta there is a subeircular villous patch at each pole of

[^95]: the chorionic bag, by which it derived additional attachment to the uterus, in the Elephant. Lxill: p. 347, pl. xri.
 ${ }^{1}$ From $\pi \epsilon \rho \iota \sigma \sigma o \delta \alpha \kappa к \cup \lambda o s, ~ q u i ~ d i g i t o s ~ h a b e t ~ i m p a r e s ~ n u m e r o ; ~ a n d ~ a ̆ p t i o s, ~ p a r, ~$ Sákтu入os, digitus.
 ${ }^{2}$ Lexif. p. 398.

[^96]: ' Some carly tertiary extinct forms (Pliolophus, Coryphodon, Lophiodon) offered cxcertions to this rule.

[^97]: ${ }^{3}$ LXXI'. p. 399. ${ }^{2}$ CCxxxvi. vol. ii. p. 135; and lxxif.

[^98]: - The fact of the homologons bones being determinable in the pelvie limb, as in other parts of the skeleton, of Mammals, does not make the grasping organ of the Ape, fig. 176 the less a 'hand,' nor does it prove the lacerating organ of the Lion, fig. 175, to be no 'paw,' nor the swimming organ of the Seal, fig. 17.2, to be no - fin.' l'rof. Huxley, however, by pointing out those homologies between Man and the Ape, under colour of a new element in the question, probably persuaded the 'working men 'for whom, as 'Government Professor' ' in the Sehool of Seience, he seleeted such subject of instruction, that it was an important argument in favour of their Ape-origin. So speciously indeed was this old elementary faet in zootomy set forth, that the propounder suceeeded in deceiving some non-anatomical authors into a belief that he hal really made a discovery. See Crawfrrd, Antiquity of Man,' 8 ro. 1863 : "Prof. Iluxley has very satisfactorily shown that the designation of "quadrumane," or four-handed, is ineorrectly applied to the family of monkeys. Their feet are real feet, although prehensile ones; but the upper limbs are truc hands,' \&ec., p. 18 ; also Lrerl, Antiquity of Man,' 8 vo. 1863, p. 476 et seq.: whom I would refer to Cuvier, -Leçons d'Anatomic Comparée,' 8 vo. 1805, tom. i. p. 376, 'Des os du coude-pied.'

[^99]: ${ }^{1}$ cexculi. pls. xi. and xii. $\quad{ }^{2}$ Ib. p. $151 . \quad{ }^{3}$ Burmeister, MS.

[^100]: ' xuiv. p. 556, no. 3338, in which the petrosal is instructively distinct from all the surrounding vertebral elements composing the otocrane.

[^101]: ${ }^{1}$ xliv. p. 556, nos, $3388,3345$.

[^102]: 1 1xvix P. 375.

[^103]: ${ }^{1}$ As 15 to 20.
 ${ }^{2}$ As 10 to 14.
 ${ }^{3}$ Lexxin'. p. 170, pl. vii.

[^104]: ${ }^{1}$ A bristle is represented passing through this aperture in fig. 220.
 ${ }^{2}$ xvir. pp. 341, 353, figs. 113, 119, 173.

[^105]: ${ }^{1}$ In the other species of Phatangista, and in the Petaurus taguanoides and macrurns, the internal condyle of the humerus is perforated. In a Thylacine I found it perforated; and in one Ursine Dasyure in the left humcrus, but not in the right.

[^106]: ${ }^{1}$ It would be instructive to examine the skeleton of the rare Charopus, with reference to this structure.

[^107]: 1 'Bulletin des Sciences Medicaies' of Férussac, 1827, No. 77, p. 112, and the 'Aunales d'Anat. et de Physiologie,' 1859, p. 240.

[^108]: ${ }^{1}$ See the abstract of a paper on the allatomy of the Dasyurus, Proc. Zool. Soc. January, 1835.

[^109]: ' LXXY'.

[^110]: ${ }^{1}$ xcr. Pl. iii. figs. 4 and $5 . \quad{ }^{2}$ Ib. Pl. ix. ${ }^{3} \mathrm{Ib}$. I'ls, ii. and viii.

[^111]: ${ }^{1}$ xer. p. 53, pl. xxi.

[^112]: 1 XC .

[^113]: ${ }^{1}$ xlif. Note, vol. ii. p. 452.

[^114]: 1 Xliv. vol, ii. p. 440 , no. 2437.

[^115]: ${ }^{1}$ xliv., vol. ii. p. 440. In Fin-Whales the anchylosis is noted in certain vertebre of no. 2444 , p. 441.
 ${ }^{2}$ xcrili . p. 8. xcxx•, p. 72 , taf. 4 and 5.

[^116]: ${ }^{1}$ xvili : p. 526, figs. 220, 225.

[^117]: ${ }^{1}$ xi.tr no. 2483.

[^118]: ${ }^{1}$ The bones deseribed and figured in cli. t. v. p. 236, pl. xxvi., figs. 24 and 25 , were not seen in situ by Cavier, but are described as pelvie bones, on the authority of M. Delalande, the Articulator. The discoverers of the rudimental hind limbs, and authors of Lxv^{\prime}, observed the pelvie bones of the whale in situ (p. 151, tal. in.).

[^119]: ${ }^{1}$ xLIV. p. 524, no. 3097.
 ${ }^{2}$ xcr. p. 35, pls. v. vi. vii.

[^120]: ${ }^{1} \mathrm{xcv} \cdot$ pl. viii. fig. $1, b$.

[^121]: ${ }^{1}$ xcir: p. 218 , no. 925 , A., figured in xcv• pl. vi. fig. 2, also in xcvi, fig. 344.

[^122]: ${ }^{1}$ xcvir. p. 235.

[^123]: ' xLIV. p. 605, nos. 3672 and 3673.

[^124]: ${ }^{1}$ xCH' p. 260, no. $1162 . \quad{ }^{2}$ Ib. rol. ii. p. 628, no. 3852.

[^125]: ${ }^{1}$ cxl. p. 31, fig. $5 . \quad{ }^{2}$ LXXIY p. 581, no. 3498.

[^126]: ${ }^{1}$ cli. tom. IN. p. 18.

[^127]: 1 The extinct genus Galecynus of the Euingen miocene indicates the transition from Fiverra to Canis, civ: 1. 5.5.

[^128]: ${ }^{1}$ Sec cr', p. 8, pl. xi. figs. 6, 7. The extension of the cercbellum over more or less of the corchrimm is the primary and more constant character of the group called, from the secondary character of convolutions, 'Gyrencephala.' The smooth brain of the small Monkey (Midas rufimanus) is figured in Lxiv to illustrate such primary character. To be consistent, Mr, Murray would have to remove the Marmosets as well as the Galagos to the Insectivora; c1. 1pp. 9 and 10.

[^129]: ${ }^{1}$ CIV'. pl. vi. (Cebus, Douroucouli, Chamek.)
 ${ }^{2}$ These relics of the orbito-temporal vacuity were first noticed as such by Prof. Filippi.

[^130]: 1 The tarsal bones figured as those of Chiromys in Crv. 'Lemurs,' pl. v., belong to the Otolicnus crassicaudatus, $\mathrm{C11}:$ p. 35.

[^131]: ' It may be noted that the hair eovering the arm and fore-arm has a direction corresponding with that of the medullary arteries of the brachial and antibuachial bones.

[^132]: ${ }^{1}$ Vol. II. p. 823, no. 5304.

[^133]: YO1. II.
 00

[^134]: 1 xLIV. ค. 823, 110. ふ30t

[^135]: ' Minor characters, such as the suborbital depression, supra-mastoid ridge, \&e., are cited in xliv. pp. 805-830.
 ${ }^{2}$ xL.IV. no. $5357 . \quad{ }^{3}$ Ib. no. 5359.

[^136]: ${ }^{1}$ xliv. 111). 5:364.
 ${ }^{2}$ Ib. no. 2479.

[^137]: 1 NIV. P. 84

[^138]: ${ }^{1}$ Rokitanski ${ }^{\text {a }}$ appears first to have conceived, in relation to the skull of a young person in which the lower ends, for rather now than an inch, of the coronal suture were obliterated, ${ }^{\text {b }}$ that it was the calse of a transverse contraction of the cranium at that part.

 What this skull actually shows is the coincidence of partial contluence of parietals and frontals with a least trinsverse diameter at the temporal fossa, a highl and rather short cranium, with a general inferior eapacity of the brain-case. But the relation of cause and effect in this instance is not reasoned out by the great patholosist. The ultimate or adult size of the cercbrum is due to juserent, or inherited, capacity of brain-developement, with the accident of such culture, or of the absence thereof, through which that developement might be inflaenced. The growth of the brain governs the capacicy of the craniun, and, in a general way, is anterior in the order of the phenomena: it influences its bony case. moreover, not by mechanical expansion, but by exciting the modelling action of the ahsorbents in co-operation with the atterial depositors of the bony matter. The coronal, sagrittal, and lambdoid sutures are, as a rule, and in the cranium in question, too intricately interwoven to admit of any forcible drawing asunder. On what facts it is assumed that the obliteration of

[^139]: ${ }^{1}$ For illustration of other 'angles,' e.g. the 'palato-facial' and 'basi-facial,' reference may be made to cII : and $\mathrm{cx} \cdot \mathrm{p}$. $21, \mathrm{pls} . \mathrm{x}$. xi. and xii.

[^140]: ${ }^{1}$ cur: vol. v. pul. 10.
 ${ }^{2} \mathrm{Ib}$, vol. v. pl. 6.

[^141]: ${ }^{1}$ cv. pp. 133-135.

[^142]: - For the details of a comparison of the limb-bones of Man with those of the Apes, see cIII: rol. v. p. 1, pls. i,-xiil.

[^143]: ${ }^{1}$ The precocious developement of the ear-organ and its complex appendages in Mammals sorely perplex the devotees of developemental phenomena: the superadded bones of the ear-drum, growing straightway to full size, and appropriating much of the blastema of the pleurapophysial or tympanic part of the læmal arch, have been veritable ' will-o'-the-wisps' to hunters of homologies on embryologieal ground.

