UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIENCIAS E LETRAS

BOLETIM N.º 246

QUÍMICA N.º 4

SIMÃO MATHIAS

CONTRIBUIÇÃO AO ESTUDO DA POLARIZAÇÃO DIELÉTRICA DE MERCAPTANAS

SÃO PAULO 1957

CONTRIBUIÇÃO AO ESTUDO DA POLARIZAÇÃO DIELÉTRICA DE MERCAPTANAS

O presente trabalho contém os resultados preliminares de um plano de pesquisa iniciado há alguns anos no laboratório de Físicoquímica da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo. Êste plano consiste no estudo da polarização dielétrica de compostos orgânicos do enxôfre.

Os trabalhos sôbre o momento dipolar de substâncias químicas, especialmente orgânicas, acumulados nos últimos trinta anos, constituem uma contribuição impressionante e de valor fundamental no que se refere ao conhecimento da estrutura íntima das moléculas. O crescente interêsse por êste território é manifestado pelas numerosas publicações sôbre o assunto, que aparecem continuamente nas principais revistas físico-químicas e pelos vários e excelentes livros que apareceram nos últimos anos sôbre a teoria da polarização elétrica e suas aplicações na Química.

Pouco, entretanto, se tem feito a êste respeito acêrca dos compostos orgânicos do enxôtre. O presente trabalho representa uma pequena contribuição a êste assunto e versa sôbre o momento dipolar de mercaptanas no estado líquido e, em alguns casos, em solução benzênica.

Após algumas considerações de caráter geral sôbre a polarização dielétrica de líquidos polares, vem descrita a parte experimental do trabalho, que consistiu na preparação e purificação das substâncias estudadas e nas determinações das propriedades físicas utilizadas no cálculo do momento dipolar. Vem, em seguida, uma discussão dos resultados experimentais obtidos, na qual se analisam as estruturas moleculares das substâncias estudadas. O autor agradece vivamente a preciosa colaboração de seu Assistente, Eurico de Carvalho Filho e, em particular, a do engenheiro Paulo Taques Bittencourt, Assistente da Escola Politécnica da Universidade de São Paulo, no estudo e montagem do aparelho destinado à medida da constante dielétrica. Agradece ainda a seus Assistentes, Renato G. Cecchini e Mario R. Krausz, que colaboraram em várias fases dos trabalhos experimentais e aos técnicos Jaime Bizarro e Willy G. Klein, que cuidaram de numerosos detalhes na instalação da aparelhagem usada,

O autor deseja ainda agradecer à Fundação Rockefeller pelas valiosas doações que tem concedido a êste laboratório, doações essas que têm permitido a continuação dos trabalhos experimentais de pesquisa.

ÍNDICE

Ι.	Cor	nsiderações gerais sôbre a polarização dielétrica	
	đe	líquidos polares	9
п.	Par	te experimental	
	1.	Preparação e purificação das substâncias	15
	2.	Determinação da temperatura de ebulição e do	
		grau de pureza	29
	3.	Determinação da constante dielétrica	
		a) Descrição da aparelhagem usada	32
		b) Sensibilidade do aparelho e calibração da	
		cela dielétrica	39
		c) Técnica da medida da constante dielétrica.	45
		d) Medidas de contrôle	47
	4.	Determinação da densidade e do índice de re-	
		fração	48
	5.	Medidas de temperatura e pressão	49
III.	Dis	cussão	
	1.	Mercaptanas alifáticas normais	51
	2.	Mercaptanas isômeras propílicas e butílicas	66
	3.	Etilenomercaptana e dietilenosulfeto-dimercaptana	70
	4.	Mercaptanas cíclicas	75
IV.	Sun	nário	83
	Sur	nmary	84

I

CONSIDERAÇÕES GERAIS SÔBRE A POLARIZAÇÃO DIELÉTRICA DE LÍQUIDOS POLARES

A teoria das moléculas polares desenvolvida por DEBVE¹ em 1912 e por êle posteriormente ampliada, aplica-se de maneira satisfatória no caso de substâncias polares no estado gasoso sob pressão reduzida. Aplica-se também, com certas restrições, no caso de substâncias polares em solução diluída em solventes não polares. A teoria de Debye não leva em conta, de maneira apropriada, as interações causadas pelos dipolos permanentes parcialmente orientados por um campo elétrico. Compreende-se, assim, o seu insucesso no caso de substâncias polares no estado líquido.

As primeiras tentativas no sentido de se obter uma expressão aplicável a líquidos polares devem-se a VAN ARKEL e SNOEK² e a COHEN HENRIQUEZ³. Éstes Autores sugeriram equações semi-empíricas, segundo as quais o momento dipolar calculado concordava razoàvelmente com os valores determinados no estado gasoso.

Um grande progresso na teoria da constante dielétrica de líquidos polares resultou do trabalho de ONSAGER⁴ publicado em 1936. A teoria de Onsager baseia-se num modêlo segundo o qual uma molécula do dielétrico é explicitamente fixada numa cavidade esférica e o restante das moléculas é considerado como um sistema homogêneo e contínuo, caracterizado pela constante dielétrica ma-

P. DEBYE, Phys. Z. 13: 97 (1912); "Polar Molecules", The Chemical Catalog Company, Inc., New York, 1929.

⁽²⁾ A. E. van ARKEL e J. L. SNOEK, Phys. Z. 33: 662 (1932); 35: 187 (1934); Trans. Faraday Soc. 30: 707 (1934).

⁽³⁾ P. COHEN HENRIQUEZ, Rec. trav. chim. 54: 574 (1935).

⁽⁴⁾ L. ONSAGER, J. Am. Chem. Soc. 58: 1486 (1936).

croscópica da substância. O ponto essencial da teoria de Onsager consiste na introdução do assim chamado *campo de reação* do dipolo. O campo inomogêneo originado do dipolo permanente de uma molécula polariza as moléculas circunvizinhas e esta polarização inomogênea da região que circunda o dipolo dá origem a um campo no próprio dipolo, que é o campo de reação. A teoria de ONSAGER foi ampliada e elaborada por BOTTCHER⁵ e vem detalhadamente descrita no excelente livro dêste Autor "Theory of Electric Polarisation". A teoria conduz à expressão

$$\mu_{0}^{2} = \frac{9 \ k \ T}{4 \ \pi \ N} \frac{M}{d} \quad \frac{(\varepsilon - n_{\infty}^{2}) \ (2 \ \varepsilon + n_{\infty}^{2})}{\varepsilon \ (n_{\infty}^{2} + 2)^{3}} \tag{1}$$

em que μ é o momento dipolar permanente da molécula, k a constante de Boltzmann, T a temperatura absoluta, N o número de Avogadro, M o peso molecular, d a densidade do líquido, ε a sua constante dielétrica e n_{∞} o índice de refração relativo à polarizabilidade total, extrapolado para um comprimento de onda infinito. Esta equação é atualmente a expressão mais aplicada no cálculo do momento dipolar a partir de medidas no estado líquido. Os resultados até agora obtidos por vários Autores concordam, de modo geral, com os valores calculados de medidas no estado gasoso e em soluções diluidas em solventes não polares.

Contràriamente à teoria de Onsager, que se baseia num modèlo eletrostático, outras teorias existem, que tratam o problema da constante dielétrica de líquidos polares pelo método da mecânica estatística. A primeira teoria estatística da polarização dielétrica é devida a KIRKWOOD⁶. Esta teoria trata a polarização de orientação pelo método estatístico e considera a polarização de deformação de maneira qualitativa. Uma aplicação mais completa dêste método

 ⁽⁵⁾ C. J. F. BÖTTCHER, Physica 5: 635 (1938); 6: 59 (1939); 9: 937 (1942);
 "Theory of Electric Polarisation", Elsevier Publishing Company, Amsterdam, 1952

⁽⁶⁾ J. G. KIRKWOOD, J. Chem. Phys. 4: 592 (1936); 7: 911 (1939).

foi dada por FROHLICH⁷, que trata a polarização total da matéria como um todo, sem separar arbitràriamente o efeito de orientação e o efeito de deformação. Apesar do valor incontestável destas teorias, têm elas atualmente, no cálculo do momento dipolar, aplicação muito restrita, devido principalmente à dificuldade em se determinar o fator que leva em conta a orientação mútua das moléculas, originada das fôrças de interação a pequena distância. A teoria de Kirkwood conduz, com a introdução de certas simplificações, à seguinte expressão

$$g\mu^{2} = \frac{9 \ k \ T}{4 \ \pi \ N} \quad \frac{M}{d} \left[\frac{(\varepsilon - 1) \ (2 \ \varepsilon + 1)}{9 \ \varepsilon} - \frac{n_{\infty}^{2} - 1}{n_{\infty}^{2} + 2} \right]$$
(2)

em que g é um fator relacionado às fôrças de interação a pequena distância que agem na orientação mútua das moléculas.

Na equação acima, μ difere do momento dipolar μ obtido no estado gasoso e é dado, com suficiente precisão, no caso de uma molécula esférica, pela expressão deduzida por ONSAGER

$$\mu = \mu_{\circ} \frac{(n_{\infty}^{\ast} + 2) (2 \varepsilon + 1)}{3 (2 \varepsilon + n_{\infty}^{\ast})}$$
(3).

O produto $\not{\mu\mu}^2$ corresponde, na teoria de Kirkwood, ao produto $\mu\mu$, em que μ é o momento dipolar da molécula e μ é o momento dipolar acrescido do momento elétrico médio induzido pela molécula na região circunvizinha, dentro de uma esfera de raio determinado. O resultado desta indução é um certo impedimento na rotação das moléculas circunvizinhas em relação à molécula considerada.

O fator g, designado por KIRKWOOD como parâmetro de correlação, é um índice do grau de rotação impedida das moléculas num líquido. Este parâmetro, que depende ùnicamente do número e da

⁽⁷⁾ H. FRÖHLICH, "Theory of Dielectrics", Clarendon Press, Oxford, 1949.

configuração das moléculas que circundam uma dada molécula, relaciona-se, devido à sua natureza, ao fenômeno da associação molecular. O fator g, igual à unidade, indica a ausência de uma correlação entre as orientações moleculares. Quando o valor de g é maior que a unidade, existem interações que tendem a orientar as moléculas de modo a aumentar o momento total (co-associação). O valor de g, menor que a unidade, implica em orientações em que o momento resultante é diminuido (anti-associação).

Partindo de modelos baseados nos estudos da estrutura de líquidos pelo método de raios-X, OSTER e KIRKWOOD⁸ calcularam o fator g no caso da água e dos alcoóis alifáticos normais C₁ a C₅. Os resultados obtidos apresentam uma concordância satisfatória com os valores observados e determinados pelas equações (2) e (3). Os valores observados de g são, no caso da água a 25°C, 2,68 e, no caso dos alcoóis, 2,94 a 3,43.

Mais recentemente, HARRIS e ALDER⁹ apresentaram uma teoria estatística da constante dielétrica de líquidos polares, que difere da teoria de Kirkwood no fato de que um cálculo preciso da polarização de distorção é introduzido. Algumas das aproximações utilizadas por Harris e Alder têm sido criticadas¹⁰ e a teoria encontrase ainda em desenvolvimento¹¹.

A teoria de Harris e Alder conduz à seguinte expressão

$$\varepsilon - 1 = \frac{4 \pi N}{V} \left(\frac{3 \varepsilon}{2 \varepsilon + 1} \right) \left(\frac{g \mu^2}{3 k T} \right) + (\varepsilon + 2) \left(\frac{n_{\infty}^2 - 1}{n_{\infty}^2 + 2} \right)$$
(4),

em que V é o volume molar e que pode ser mais fàcilmente comparada com a de Kirkwood, da seguinte maneira. Substituindo-se a equação de Lorentz-Lorenz, em têrmos da polarizabilidade α

⁽⁸⁾ G. OSTER e J. G. KIRKWOOD, J. Chem. Physics 11: 175 (1943).

⁽⁹⁾ F. E. HARRIS e B. J. ALDER, ibid. 21: 1031 (1953).

 ⁽¹⁰⁾ H. FRÖHLICH, *ibid.* 22: 1804 (1954); R. O. DAVIES e B. K. SCAIFE, *ibid.* 22: 148 (1954).

⁽¹¹⁾ F. E. HARRIS, ibid. 23: 1663 (1955).

$$\alpha = \frac{3 V}{4 \pi N} \frac{n_{\infty}^2 - 1}{n_{\infty}^2 + 2}$$

na equação (4), obtem-se

$$\varepsilon - 1 = \frac{4 \pi N}{V} \left[\left(\frac{3 \varepsilon}{2 \varepsilon + 1} \right) \frac{g \mu^2}{3 k T} + \frac{\varepsilon + 2}{3} \alpha \right]$$
(5),

expressão que se pode comparar com a de Kirkwood, escrita na forma

$$\varepsilon - 1 = \frac{4 \pi N}{V} \left(\frac{3 \varepsilon}{2\varepsilon + 1} \right) \left(\frac{g\mu^2}{3 k T} + \alpha \right)$$
(6).

Vê-se que a diferença reside inteiramente no têrmo relativo à polarização de distorção.

Revisões sôbre o assunto foram publicadas por WILSON¹², BROWN¹³ e, mais recentemente, por MANDEL¹⁴ e por BUCKIN-GHAM¹⁵, além das obras de LE Fèvre¹⁶, Smyth¹⁷, Smith¹⁸ e von HIPPEL 19.

⁽¹²⁾ J. N. WILSON, Chem. Rev. 25: 377 (1939).
(13) W. F. BROWN, Jr., J. Chem. Phys. 21: 1327 (1953).
(14) M. MANDEL, Bull. Soc. Chim. France 1018 (1955).
(15) A. D. BUCKINGHAM, J. Chem. Phys. 23: 2370 (1955).

⁽¹⁶⁾ R. J. W. LE FÈVRE, "Dipole Moments", 3a. ed., Methuen & Co., Ltd., London, 1953.

⁽¹⁷⁾ C. P. SMYTH, "Dielectric Behavior and Structure", McGraw-Hill Book Company, Inc., New York, 1955.

⁽¹⁸⁾ J. W. SMITH, "Electric Dipole Moments", Butterworths Scientific Publications, London, 1955.

⁽¹⁹⁾ A. R. von HIPPEL, "Dielectrics and Waves", John Wiley & Sons, Inc., New York, 1954.

II

PARTE EXPERIMENTAL

1. PREPARAÇÃO E PURIFICAÇÃO DAS SUBSTÂNCIAS

As substâncias usadas na presente investigação foram purificadas, de modo geral, por métodos químicos ou físicos apropriados, seguidos de destilações fracionadas à pressão atmosférica ou reduzida e, em alguns casos, em atmosfera de nitrogênio. As destilações fracionadas foram feitas através de uma coluna de cêrca de 120 cm de comprimento enchida com semi-hélices de vidro. A coluna foi isolada por uma capa de vidro, internamente prateada, em cujo espaço se fêz o vácuo. Externamente, instalou-se um sistema de aquecimento, controlado por meio de um transformador variável, destinado a compensar as perdas de calor. A aparelhagem foi construída de vidro "Pyrex", com esmerís normais, evitando-se o uso de borracha ou cortiça nas regiões em contacto com a substância. Nas operações sob pressão reduzida foram empregados dois instrumentos: um regulador de pressão descrito pelo autor 20 e um manostato cartesiano 21 .

A pureza das substâncias foi controlada por meio de provas analíticas específicas sempre que se suspeitou de uma determinada impureza. A análise dos índices de refração das diversas frações foi um elemento preliminar valioso na orientação do método de purificação empregado. Adotou-se, porém, como "critério de pureza", o método ebuliométrico introduzido por SWIETOSLAWSKI²²,

⁽²⁰⁾ S. MATHIAS, Ciência e Cultura 2: 61 (1950).

⁽²¹⁾ R. GILMONT, Anal. Chem. 23: 157 (1951).

⁽²²⁾ W. SWIETOSLAWSKI, "Ebulliometric Measurements", Reinhold Publishing Corporation, New York, 1945.

baseado na diferença entre as temperaturas de ebulição e de condensação e que vem adiante descrito.

Damos, a seguir, uma descrição sucinta de cada uma das substâncias usadas. As substâncias, cuja preparação não vem indicada, foram provenientes da *Eastman Kodak Company*, de Rochester, U.S.A., com exceção do 1,2-dibromoetano, produto de *Theodor Schuchardt*, de Munich, Alemanha.

Benzeno

O produto comercial (isento de tiofeno) foi secado com pentóxido de fósforo e destilado várias vêzes pela coluna. As frações médias apresentaram os seguintes valores: $n_{\rm D}^{25} = 1,4979$, temperatura de ebulição 77,0°C a 696,6 mm, grau de pureza $\triangle t = 0,00 \pm 0,02°C$.

A temperatura de ebulição a 696,6 mm, calculada da tabela de STULL²³, corresponde a 77,1°C e o índice de refração concorda com os valores indicados por TIMMERMANS²⁴.

Clorobenzeno

A substância foi secada com pentóxido de fósforo e, em seguida, submetida a uma destilação fracionada pela coluna. A fração média revelou o índice de refração $n_{\rm D}^{25} = 1,5218$ e o grau de pureza $\Delta t = 0,05 \pm 0,02^{\circ}$ C. O produto foi novamente secado com pentóxido de fósforo e redestilado pela coluna, apresentando a fração média os seguintes valores: $n_{\rm D}^{25} = 1,5218$, temperatura de ebulição 129,0°C a 704,7 mm e o grau de pureza $\Delta t = 0,00 \pm 0,02^{\circ}$ C.

⁽²³⁾ D. R. STULL, Ind. Eng. Chem. 39: 517 (1947).

⁽²⁴⁾ J. TIMMERMANS, "Physico-Chemical Constants of Pure Organic Compounds", Elsevier Publishing Company, Inc., New York, N. Y., 1950.

Os índices de refração a 25°C, para a linha *D*, indicados por TIMMERMANS, são 1,52208 e 1,52190. A temperatura de ebulição, calculada da tabela de Stull, corresponde a 129,4°C a 704,7 mm.

1,2-Dicloroetano

Submeteu-se preliminarmente o produto comercial a uma destilação fracionada pela coluna, após secagem com pentóxido de fósforo. A fração média revelou o índice $n_D^{25} = 1,4438$ e, pela reação com bromo, verificou-se a presença de compostos insaturados.

O produto foi então purificado pelo método indicado por BUCKLES e MILLS²⁵, tratando-se com ácido sulfúrico concentrado, adquirindo êste forte coloração amarelo-alaranjada. Repetiu-se o tratamento até o ácido sulfúrico não apresentar coloração. Lavou-se várias vêzes com água, secou-se com sulfato de cálcio anidro, filtrou-se e conservou-se o produto sôbre pentóxido de fósforo. Uma prova com bromo revelou ausência de compostos insaturados. O produto foi fracionado pela coluna, apresentando as três frações recolhidas o mesmo índice $n_D^{25} = 1,4449$. Uma nova destilação fracionada revelou o índice constante $n_D^{25} = 1,4450$. A fração usada nas medidas apresentou os seguintes valores: temperatura de ebulição $80,8°C a 700,9 mm e o grau de pureza <math>\Delta t = 0,00 \pm 0,02°C$.

Os índices de refração a 25°C indicados por TIMMERMANS são 1,44504, 1,4449 e 1,44507. A temperatura de ebulição, calculada do ponto de ebulição 83,5°C, indicado por TIMMERMANS, e da temperatura de ebulição a 400 mm da tabela de Stull, corresponde a 80,8°C a 700,9 mm*.

⁽²⁵⁾ R. E. BUCKLES e J. F. MILLS, J. Am. Chem. Soc. 75: 552 (1953).

^(*) O ponto de ebulição indicado na tabela de Stull é 82,4°C. Trata-se provàvelmente de um êrro tipográfico, que não pudemos verificar por falta da literatura original.

Ciclohexano

Após secagem com pentóxido de fósforo, foi o ciclohexano submetido a uma destilação fracionada. A fração média apresentou os seguintes valores: $n_{\rm D} = 1,4236$, temperatura de ebulição 78,0°C a 701,5 mm, grau de pureza $\triangle t = 0,00 \pm 0,02$ °C e a constante dielétrica $\varepsilon_{25} = 2,016$.

Os índices de refração a 25°C indicados por TIMMERMANS são 1,42366, 1,42358 e 1,42354. A temperatura de ebulição, calculada dos dados da tabela de Stull, é 78,0°C à pressão de 701,5 mm e a constante dielétrica a 25°C indicada por MARYOTT e SMITH²⁶ é 2,015.

1,2-Dibromoetano

O produto comercial foi submetido a uma solidificação fracionada e o produto da quarta solidificação foi filtrado, novamente solidificado e a fase líquida separada por filtração. O sólido obtido, depois de fundido, foi tratado com pentóxido de fósforo e filtrado três vêzes sucessivamente. O índice de refração revelou o valor: $n_{\rm D}^{25} = 1,5358$ e o grau de pureza $\triangle t = 0,17 \pm 0,02^{\circ}$ C. A constante dielétrica foi medida obtendo-se $\epsilon_{25} = 4,834$.

O filtrado da quarta solidificação foi então tratado com ácido sulfúrico concentrado, adquirindo êste uma ligeira coloração amarela. Repetiu-se o tratamento com ácido sulfúrico até êste apresentar-se incolor. Lavou-se em seguida várias vêzes com água e, por fim, com uma solução a 10% de carbonato de sódio. Secou-se o produto com cloreto de cálcio, filtrou-se e destilou-se na coluna sob pressão reduzida. A fração média passou a 76°C sob 142 mm e apresentou os seguintes valores: $n_{\rm p} = 1,5361$, temperatura de

⁽²⁶⁾ ARTHUR A. MARYOTT e EDGAR R. SMITH, "Table of Dielectric Constants of Pure Liquids", National Bureau of Standards Circular 514, Washington, 1951.

ebulição 128,7°C a 702,7 mm, grau de pureza $\triangle t = 0,03 \pm 0,02$ °C e constante dielétrica $\varepsilon_{25} = 4,806$.

O índice de refração a 25°C indicado por TIMMERMANS é 1,53580 e a temperatura de ebulição, calculada dos dados da tabela de Stull, é 128,7°C a 702,7 mm. O valor da constante dielétrica indicado na tabela do National Bureau of Standards²⁶ é 4,78.

Etilmercaptana

A etilmercaptana foi purificada pelo método descrito por ELLIS e REID²⁷, dissolvendo-se o produto numa solução de hidróxido de sódio a 20%, extraindo com uma pequena quantidade de benzeno e passando vapor d'água pela solução alcalina até esta tornar-se clara. Depois de resfriada, tratou-se a solução com ácido sulfúrico a 15%, até reação ligeiramente ácida, destilando-se diretamente a mercaptana separada. Esta foi secada com sulfato de cálcio anidro e submetida a uma destilação fracionada na coluna. A quarta fracão passou num intervalo de 0,05°C e revelou os seguintes índices: $n_{\rm D} = 1.4312$ e $n_{\rm D} = 1.4278$. O líquido relativo a esta fração foi novamente secado com sulfato de cálcio e redestilado pela coluna. A fração média passou num intervalo de 0,01°C e apresentou os seguintes valores: $n_{\rm D} = 1.4275$, temperatura de ebulição 32,9°C a 704,1 mm, grau de pureza $\Delta t= 0.02 \pm 0.02°C$ e $\epsilon_{25} = 6,667$.

Os índices de refração encontrados na literatura são os seguintes:

 $n^{19,8=}$ 1,43164
 M. J. Van Tussenbroeck, Tese, Delft (1929), in Timmermans, loc. cit.

 $n^{20=}$ 1,43055
 R. Nasini, Ber. 15: 2878 (1882).

 $n^{20=}$ 1,43119
 E. C. E. Hunter e J. R. Partington, J. Chem. Soc.

 $n^{20=}$ 1,43119
 E. C. E. Hunter e J. R. Partington, J. Chem. Soc.

(27) L. M. ELLIS, Jr. • E. EMMET REID, J. Am. Chem. Soc. 54: 1674 (1932).

n ²⁰ =	1,4313	R. L. Denyer, F. A. Fidler e R. A. Lowry, Ind. Eng.
		Chem. 41: 2727 (1949).
$n^{25}=$	1,4270	L. M. Ellis, Jr. e E. Emmet Reid, loc. cit.

Os valores indicados pelo American Petroleum Institute²⁸ são $n_{\rm D}^{20} = 1,43105$ e $n_{\rm D}^{25} = 1,42779$.

A temperatura de ebulição, calculada dos dados da tabeia de Stull, é 32,8°C a 704,1 mm.

Não tendo encontrado na literatura valores do índice de refração a 25°C em diversos comprimentos de onda, dados necessários para o cálculo da polarização eletrônica, decidimos determiná-los, obtendo os seguintes valores:

2	25	
~	<i>א</i>	
6678 Å	1,42418	
5893	1,42754	
5876	1,42759	
5461	1,43001	
5016	1,43342	
4713	1,43632	
4471	1,43915	
4358	1,44067	

⁽²⁸⁾ F. D. ROSSINI, K. S. PITZER, R. L. ARNETT, R. M. BRAUN e G. C. PIMENTEL, "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds", publicação do American Petroleum Institute, Carnegie Press, Carnegie Institute of Technology, Pittsburgh, Pennsylvania, 1953.

n-Propilmercaptana

A n-propilmercaptana foi preparada pela condensação do brometo de n-propila com tiouréia e subsequente saponificação do sal de tiurônio com uma solução 5N de hidróxido de sódio 29. O produto obtido foi purificado segundo o método descrito por ELLIS e REID²⁷ e, depois de secado com cloreto de cálcio, submetido a uma destilação fracionada na coluna em atmosfera de nitrogênio. A fração média passou num intervalo menor que 0,01°C e apresentou os seguintes valores: $n_{\rm D}^{25} = 1,4351$, temperatura de ebulição 65,3°C a 701,5 mm, grau de pureza $\triangle t = 0,00 \pm 0,02$ °C e $\varepsilon_{25} = 5,720$.

O índice de refração a 25°C, indicado por ELLIS e REID, é 1,4351 e por SELKER e KEMP³⁰ 1,4353. O valor anteriormente determinado pelo autor³¹ é $n_{\rm p} = 1,43511$ e o valor indicado pelo American Petroleum Institute 1,4351. A temperatura de ebulição, calculada dos dados da tabela de Stull, é 65,0°C a 701,5 mm.

Isopropilmercaptana

A substância foi purificada segundo o método de ELLIS e REID²⁷, secada com cloreto de cálcio e submetida a uma destilação fracionada em atmosfera de nitrogênio. A fração média revelou os seguintes valores: $n_{\rm p} = 1,4221$, temperatura de ebulição 49,8°C a 696,2 mm, grau de pureza $\triangle t = 0,00 \pm 0,02^{\circ}C$ e $\varepsilon_{25} = 5,952$.

O índice de refração indicado por ELLIS e REID é $n_{\rm D} = 1,4223$. O valor anteriormente determinado pelo autor é $n_{25} = 1,42154$ e o indicado pelo American Petroleum Institute é $n_p = 1,42251$.

 ⁽²⁹⁾ H. J. BACKER e N. D. DIJKSTRA, Rec. trav. chim. 51: 290 (1932).
 (30) M. L. SELKER e A. R. KEMP, Ind. Eng. Chem. 36: 17 (1944).

⁽³¹⁾ S. MATHIAS, J. Am. Chem. Soc. 72: 1897 (1950).

n-Butilmercaptana

A n-butilmercaptana foi purificada de acôrdo com o método de Ellis e Reid²⁷, secada com cloreto de cálcio e destilada pela coluna em atmosfera de nitrogênio. As frações médias foram conservadas sôbre cloreto de cálcio durante uma semana e novamente submetidas a uma destilação fracionada em atmosfera de nitrogênio. A fração média desta destilação revelou os seguintes valores: $n_{\rm D}^{25} = 1,4402$, temperatura de ebulição 95,7°C a 703,0 mm, grau de pureza $\Delta t = 0,00 \pm 0,02°C$ e $\epsilon_{25} = 5,073$.

O índice de refração a 25°C indicado por ELLIS e REID é 25 1,4401. O valor anteriormente determinado pelo autor é $n_D^{=}$ 1.44014 e o indicado pelo American Petroleum Institute 1,44034. Walls e Smyth³² dão os seguintes valores: $n_D^{=}$ 1,44025 e ε_{25} =4,952.

Isobutilmercaptana

Esta mercaptana não pôde ser satisfatòriamente purificada pelo método de Ellis e Reid²⁷ devido à pronunciada hidrólise do sal sódico. Empregou-se, assim, o método já descrito pelo autor³¹ e que consiste na transformação da mercaptana no seu sal plúmbico e sua recuperação por meio de ácido clorídrico. A mercaptana obtida foi secada com cloreto de cálcio e submetida a uma destilação fracionada em atmosfera de nitrogênio, sob pressão reduzida. A fração média revelou os seguintes valores: $n_{\rm D}^{25} = 1.4360$, temperatura de ebulição 40,2°C a 132,2 mm, grau de pureza $\Delta t = 0,02 \pm 0,02°C$ e $\epsilon_{25} = 4,961$.

O índice de refração anteriormente determinado pelo autor é $n_{\rm p}^{25} = 1,43582$ e o indicado pelo American Petroleum Institute, 1,4358.

⁽³²⁾ W. S. WALLS e C. P. SMYTH, J. Chem. Phys. 1: 337 (1933).

sec-Butilmercaptana

A substância foi preparada segundo o método descrito por BACKER e DIJKSTRA²⁹. O produto obtido foi secado com cloreto de cálcio e submetido a uma destilação fracionada em atmosfera de nitrogênio, sob pressão reduzida (131 mm). As frações médias foram novamente secadas com cloreto de cálcio e redestiladas pela coluna em atmosfera de nitrogênio a 158 mm. A terceira fração apresentou os seguintes valores: $n_{\rm D}^{25} = 1,4338$, temperatura de ebulição 35,5°C a 130 mm, grau de pureza $\triangle t = 0,05 \pm 0,02°C$ e $\epsilon_{25} = 5,466$.

O índice de refração a 25°C indicado por ELLIS e REID²⁷ é 1,4338. O valor anteriormente determinado pelo autor é 1,43385 e coincide com o valor indicado pelo American Petroleum Institute.

t-Butilmercaptana

A mercaptana foi purificada pelo método já descrito pelo autor³¹, secada com cloreto de cálcio e destilada pela coluna em atmosfera de nitrogênio. A fração média revelou os seguintes valores: $n_{\rm D}^{25} = 1,4200$, temperatura de ebulição $61,6^{\circ}$ C a 699,4 mm, grau de pureza $\Delta t = 0,00 \pm 0,02^{\circ}$ C e $\varepsilon_{25} = 5,341$.

O índice de refração anteriormente determinado pelo autor é 1,41984 e o valor indicado pelo American Petroleum Institute é 1,42007.

n-Amilmercaptana

A substância foi purificada pelo método de Ellis e Reid²⁷, secada com cloreto de cálcio e submetida a uma destilação fracionada em atmosfera de nitrogênio, sob pressão reduzida (44 mm). A terceira fração revelou os seguintes resultados: temperatura de ebulição 122,9°C a 697,5 mm, grau de pureza $\triangle t = 0,03°C \pm 0,02°C$, $\epsilon_{25} = 4,672$ e os seguintes índices de refração

25
n
у
1,44078
1,44391
1,44395
1,44928
1,45194
1,45457

O índice de refração indicado por ELLIS e REID²⁷ é $n_D^{25} = 1,4440$ e pelo American Petroleum Institute $n_D^{25} = 1,44439$.

n-Hexilmercaptana

O produto comercial foi diretamente submetido a uma destilação fracionada pela coluna em atmosfera de nitrogênio, sob pressão reduzida (32 mm). A terceira fração apresentou os seguintes valores: temperatura de ebulição 149,7°C a 698,6 mm, grau de pureza $\Delta t= 0,00 \pm 0,02$ °C, $\epsilon_{25}= 4,344$ e os seguintes índices de refração

λ	25 n X
6678 Å	1,44403
5893	1,44711
5876	1,44716
5016	1,45342
4713	1,45500
4471	1,45765

O índice de refração a 25°C indicado por ELLIS e REID²⁷ é 1,4473 e o indicado pelo American Petroleum Institute, 1,4471.

n-Heptilmercaptana

O produto comercial foi diretamente destilado pela coluna em atmosfera de nitrogênio, sob pressão reduzida (22 mm). A terceira fração revelou os seguintes valores: temperatura de ebulição 174,5°C a 696,2 mm, grau de pureza $\triangle t = 0,02 \pm 0,02°C$, $\varepsilon_{25} = 4,109$ e os seguintes índices de refração

	25
λ	т
	λ
6678 Å	1,44649
5893	1,44953
5876	1,44959
5016	1,45478
4713	1,45734
4471	1,45988

O índice de refração indicado por ELLIS e REID²⁷ é $n_D^{25} =$ 1,4498 e pelo American Petroleum Institute 1,4497.

Etilenomercaptana

A substância foi preparada pela saponificação do brometo de tiurônio correspondente³³. O produto obtido foi secado com cloreto de cálcio e destilado sob pressão reduzida, duas vêzes sucessivamente, num aparelho de Claisen. Submeteu-se, em seguida, a substância a uma destilação fracionada pela coluna, sob pressão reduzida (21 mm). A fração média revelou os seguintes valores:

⁽³³⁾ S. MATHIAS, Tese de doutoramento, São Paulo, 1942.

 d_{4}^{23} = 1,11907 g/ml, temperatura de ebulição 82,6°C a 92 mm, grau de pureza Δt = 0,09 ± 0,02°C, ϵ_{25} = 7,247 e os seguintes índices de refração

λ	25 n λ
6678 Å	1,55124
5893	1,55633
5876	1,55647
5461	1,56018
5016	1,56539
4713	1,56992
4471	1,57439

Os valores indicados por HALL e REID³⁴ são $d_4^{25} = 1,1192$ e $n_D = 1,5558$. O índice anteriormente determinado pelo autor³³ é $n_D = 1,5559$.

Dietilenosulfeto-dimercaptana

A substância, obtida na preparação da etilenomercaptana ³³ foi secada com cloreto de cálcio e destilada sob pressão reduzida, duas vêzes sucessivamente, num aparelho de Claisen. Foi, em seguida, submetida a uma destilação fracionada pela coluna, sob pressão de 5 mm. A fração média passou a 130°C e revelou os seguintes valores: $d_{4}^{25} = 1,18053$ g/ml, grau de pureza $\triangle t = 0,07 \pm 0,02°C$, $\varepsilon_{25} = 7,474$ e os seguintes índices de refração

(34) W. P. HALL e E. EMMET REID, J. Am. Chem. Soc. 65: 1466 (1943).

25 n)
1,58830
1,59371
1,59384
1,59780
1,60336
1,61292
1,61540

Ciclohexilmercaptana

Esta substância foi preparada pela saponificação do brometo de tiurônio correspondente, tratando-se o sal com uma solução de hidróxido de sódio em água e álcool etílico, segundo o método descrito por STANEK³⁵. O produto obtido foi secado com cloreto de cálcio e destilado pela coluna, em atmosfera de nitrogênio, sob pressão reduzida. A fração média apresentou os seguintes valores: temperatura de ebulição 78,0°C a 57 mm, grau de pureza $\triangle t = 0.03 \pm 0.02°$ C, $d_{4} = 0.94365$ g/ml, $\varepsilon_{25} = 5,420$ e os seguintes índices de refração

_	25
λ	$n \\ \lambda$ •
6678 Å	1,48746
5893	1,49099
5876	1,49105
5461	1,49358
5016	1,49711
4713	1,50008
4471	1,50311

(35) J. STANEK, Chem. Listy 46: 383 (1952); C. A. 47: 4296 (1953).

Benzilmercaptana

O produto comercial foi diretamente destilado pela coluna sob pressão reduzida (22 mm). A fração média apresentou os seguintes valores: temperatura de ebulição 195,9°C a 699,9 mm, grau de pureza $\triangle t = 0,02 \pm 0,02°C$, $\epsilon_{25} = 4,705$, $d_4 = 1,05088$ g/ml e os seguintes índices de refração

	25
λ	n
	λ
6678 Å	1,56720
5893	1,57357
5876	1,57372
5016	1,58500
4713	1,59079
4471	1,59653

Tiofenol

O produto comercial foi submetido a uma destilação fracionada pela coluna, sob pressão reduzida (47 mm). A fração média revelou os seguintes valores: temperatura de ebulição 165,4°C a 698,4 mm, grau de pureza $\triangle t= 0,02 \pm 0,02$ °C, $\varepsilon_{25}= 4,382, d_4 =$ 1,07234 g/ml e os seguintes índices de refração

λ	25 n
6678 Å	1,57959
5893	1,58696
5876	1,58718
5016	1,60042
4713	1,60733
4471	1,61430

Os valores indicados pelo American Petroleum Institute são os seguintes: $d_4 = 1,0724$ e $n_p = 1,5864$.

2. DETERMINAÇÃO DA TEMPERATURA DE EBULIÇÃO E DO GRAU DE PUREZA.

O ebuliômetro empregado nestas medidas foi construído em nosso laboratório e baseou-se no modêlo recomendado por SWIETOS-LAWSKI ³⁶ para a determinação do grau de pureza de pequenas quantidades de líquido. O aparelho permite a determinação simultânea das temperaturas de ebulição e de condensação com um êrro menor que 0,001°C. No presente caso, as medidas de temperatura foram feitas com termômetros do tipo Anschütz, cuja escala é dividida em 0,2°C. Com auxílio de uma lente, pôde-se fazer a leitura até 0,04°C e, no caso de leituras diferenciais, com o mesmo termômetro, até 0,02°C. Esta precisão é suficiente para o contrôle dos graus de pureza I a III da escala proposta por SWIETOSLAWSKI.

Grau de pureza	Diferença entre as temperaturas	
	de ebulição e de condensação	
Ι	1,00 0,10°C	
II	0,10 0,05	
III	0,050 - 0,020	
IV	0,020 0,005	
v	0,005 — 0,000	

A figura 1 mostra o ebuliômetro usado. Cêrca de 8 ml de liquido, introduzidos pela abertura A, são suficientes para encher a câmara de aquecimento B. Esta possui em sua superfície interna

⁽³⁶⁾ W. SWIETOSLAWSKI, "Ebulliometric Measurements", Reinhold Publishing Corp., New York, 1945, fig. 11, p. 19. Veja-se também W. E. BARR e V. J. ANHORN, Instruments 20: 822 (1947).

Fig. 1 — Ebuliômetro para a determinação do grau de pureza de líquidos.

entre as duas velocidades de refluxo (figura 2). A coluna F, contendo uma espiral de vidro, estabelece um fracionamento das impurezas e é aquecida externamente por um fio de níquel-crômo, ligado a um transformador variável. O aquecimento controlado da coluna destina-se a compensar as perdas de calor e a facilitar o pó de vidro fundido sôbre ela, destinado a facilitar a ebulição do líquido. O aquecedor consiste em um fio de níquel-crômo, representado pelos pontos, ligado a um transformador variável. O líquido em ebulição projeta-se na câmara C diretamente sôbre a cuba termométrica D. Esta é envolvida externamente por uma espiral de vidro, que facilita o escoamento e distribuição do líquido. A cuba termométrica é enchida com mercúrio até cêrca de 1 cm abaixo do bordo superior. O termômetro é fixado por meio de uma rolha de cortiça de modo a ficar suspenso no mercúrio, sem entrar em contacto direto com o vidro. O vapor condensado reflui, em parte, pelo conta-gôtas E. Éste, de construção exatamente igual ao conta-gôtas superior H, permite medir a velocidade de refluxo. Os conta-gôtas são padronizados de modo a permitir a comparação

Fig. 2 — Conta-gotas padronizado.

alcance do equilíbrio térmico. A câmara de condensação G é análoga à câmara de ebulição C e contém a cuba termométrica I, exatamente igual à cuba D, de modo a permitir a fixação do termômetro da mesma maneira em ambas as cubas. O aparelho inteiro, com exceção do refrigerante J e dos conta-gôtas E e H, foi protegido com amianto. O contrôle do superaquecimento é feito registrando-se a temperatura em função da velocidade de refluxo. Para cada líquido existe uma região de variação da velocidade de refluxo na qual a temperatura se mantém constante. Acima ou abaixo desta região, a temperatura varia. As temperaturas de ebulição e de condensação devem corresponder a velocidades de refluxo iguais e situadas dentro dessa região em que a temperatura se mantém constante com variação da velocidade de refluxo.

Nas medidas sob pressão atmosférica empregou-se um único termômetro, transferindo-o de uma cuba a outra. Nas medidas sob pressão reduzida, usaram-se dois termômetros, de modo a permitir uma leitura quase simultânea das temperaturas de ebulição e de condensação, uma vez alcançado o equilíbrio térmico. Dêste modo se reduz consideràvelmente o êrro proveniente da variação de pressão.

O êrro avaliado na temperatura de ebulição é menor que $0,05^{\circ}$ C e, na diferença entre as temperaturas de ebulição e de condensação, é da ordem de $\pm 0,02^{\circ}$ C.

3. DETERMINAÇÃO DA CONSTANTE DIELÉTRICA.

a) Descrição da aparelhagem usada.

A construção e montagem do aparelho destinado à medida da constante dielétrica basearam-se em parte nos trabalhos de DE Vos³⁷ e de FEW, SMITH e WITTEN ³⁸. Consiste o aparelho, de acôrdo com o esquema da figura 3, em um oscilador de freqüência fixa ligado a um outro de freqüência variável, pelo método heterodínico. A diferença de freqüência $\triangle v$ entre os dois osciladores é amplificada

⁽³⁷⁾ F. C. De VOS, Rec. trav. chim. 69: 1157 (1950).

⁽³⁸⁾ A. V. FEW, J. W. SMITH e L. B. WITTEN, Trans. Faraday Soc. 48: 211 (1952).

por um amplificador de audiofreqüência e conduzida ao Y do oscilógrafo. Um oscilador de audiofreqüência fornece o sinal, que é conduzido ao X do oscilógrafo. A superposição dos sinais fornecidos ao oscilógrafo resulta numa série de figuras de Lissajous, que

Fig. 3 — Esquema da aparelhagem para a medida da constante dielétrica.

se prestam admiràvelmente para a determinação do ponto em que o valor de $\triangle v$ é igual à freqüência fornecida ao X do oscilógrafo ou a um múltiplo ou sub-múltiplo dessa freqüência. Dentre as figuras que aparecem no oscilógrafo, pode-se escolher uma como referência ou ponto zero.

A fim de se alcançar uma estabilidade elevada, instalou-se a aparelhagem numa sala de temperatura constante e utilizou-se como fonte de corrente para os três osciladores e para o amplificador

Fig. 5 - Oscilador variavel.

um conjunto de acumuladores cuidadosamente controlados. A temperatura da sala foi mantida ligeiramente abaixo de 25°C, circunstância que se mostrou favorável ao ajuste "fino" da temperatura no termostato da cela dielétrica. A variação da temperatura do ambiente foi de cêrca de \pm 0,5°C.

No oscilador de freqüência fixa, cujo circuito vem representado na figura 4, utilizou-se um cristal de quartzo* com uma freqüência de oscilação de 999 kc/seg. O mesmo circuito faz a função de misturador ou conversor, graças à válvula 6J8-G, que se revelou excelente, dada a baixa interação entre as grades 1 e 3, ligadas respectivamente aos sinais provenientes do cristal de quartzo e do oscilador variável (C, figuras 4 e 5).

O circuito *LC* do oscilador variável (figura 5) foi montado numa caixa metálica separada. Ao condensador de precisão^{**} C_p , variável de 100 a 1150 $\mu\mu F$, ligou-se em paralelo a cela dielétrica C_o que, por sua vez, foi instalada juntamente com o termostato numa caixa metálica independente. Os potenciais altos do condensador de precisão e da cela foram ligados entre si por uma barra de latão, tão curta quanto possível e rígida. A blindagem desta conexão foi feita por meio de um tubo de latão de diâmetro próprio a reduzir tanto quanto possível a capacidade resultante da conexão (figura 10).

As figuras 6 e 7 mostram respectivamente os circuitos do oscilador de audiofreqüência e do amplificador de audiofreqüência. Note-se que metade da válvula 6SN7 foi utilizada no circuito do oscilador e a outra metade na do amplificador. A freqüência fixa do oscilador era de cêrca de 100 c/seg.

^(*) Cristal de quartzo tipo 180-B, n.º 2012, de fabricação da Sociedade Técnica Paulista, de São Paulo.

^(**) Condensador de precisão tipo 722-N da General Radio Company, de Cambridge, Massachusetts, Estados Unidos.

A cela dielétrica, representada esquemàticamente na figura 8, compõe-se essencialmente de um condensador formado por dois

Fig. 7 — Amplificador de audiofreqüência.

tubos concêntricos de latão, prèviamente niquelados e depois cromados*, com as seguintes dimensões:

^(*) O autor agradece a gentileza do Dr. H. S. BERCZELY, da Companhia Brasileira de Artefatos de Metais, sob cuja orientação se fêz a niquelação e a cromação das celas dielétricas.

comprimento do tubo externo	6,5 cm
comprimento do tubo interno	5,5 cm
espessura da parede dos tubos	1,125 mm
diâmetro externo do tubo interno	23,1 mm
diâmetro interno do tubo externo	24,1 mm

Os tubos foram rigidamente fixados por meio de seis pequenos cilindros de vidro Pyrex, exatamente encaixados em sulcos adrede preparados e cuidadosamente medidos com um micrômetro. Antes de se proceder à niquelação, foi soldado a cada tubo um fio de platina com um diâmetro de 1 mm. O condensador assim formado foi fixado dentro de dois tubos de vidro Pyrex concêntricos e a celacompletada como mostra a figura. Note-se que a construção desta cela apresenta algumas características importantes: (a) boa blindagem do potencial alto do condensador; (b) pequeno volume destinado ao líquido (8 ml); (c) ligações externas razoàvelmente distantes entre si e curtas; e (d) possibilidade de circulação do líquido termostático através do tubo de vidro interno, favorecendo o alcance rápido de uma temperatura homogênea no interior da cela.

A cela dielétrica, bem como os outros acessórios, foram fixados numa placa de baquelite, isolando-se o contacto do potencial alto com polistireno. A disposição das diversas peças no termostato achase indicada na figura 9.

Um ponto de essencial importância para a medida da constante dielétrica pelo método usado consiste na possibilidade de se remover o termostato do circuito, com todos os seus acessórios, isto é, removê-lo da caixa metálica que lhe serve de blindagem, e depois restituí-lo à mesma posição anterior, de modo a não alterar a capacidade do circuito. Éste resultado foi alcançado, como se verificou pela reprodutibilidade das medidas, graças a um sistema de encaixe que permite repor o termostato na sua posição anterior e graças ao sistema de contacto entre os potenciais altos do condensador de precisão e da cela dielétrica. Éste último vem representado na figura 10 e é constituído por um parafuso terminado em ponta, que se adapta exatamente na cavidade do contacto da cela.

A fim de diminuir a influência de vibrações externas sôbre o aparelho, foi o mesmo colocado em uma prancha de madeira compensada de uma polegada de espessura, apoiada na mesa do laboratório através de quatro peças construídas como indica a figura 11.
b) Sensibilidade do aparelho e calibração da cela dielétrica.

A estabilidade do aparelho foi estudada com a cela dielétrica contendo ar sêco. Dentre as figuras de Lissajous que aparecem no oscilógrafo, escolheu-se como referência a que corresponde ao símbolo do infinito. A figura se mostrou pràticamente estacionária e

Fig. 9 - Disposição das peças no termostato.

sua oscilação revelou-se inferior a um ciclo por segundo num amplo intervalo de tempo. Isto significa que a sensibilidade do ponto zero é pelo menos da ordem de 1/1.000.000, sensibilidade várias vêzes superior à do condensador de precisão, em que cada divisão da escala corresponde a 0,2 $\mu\mu F$. Com efeito, a uma variação de capaci-

Fig. 10 --- Contacto do potencial alto condensador-cela.

dade de 0,2 $\mu\mu F$ corresponde uma variação de freqüência de 43 ciclos por segundo. Éste resultado tornou necessária a construção de um dispositivo capaz de girar o "knob" do condensador de um ângulo extremamente pequeno, o que foi conseguido por meio de uma haste de vidro fixada ao mesmo. Com auxílio de uma lente, foi possível dividir visualmente o intervalo entre duas divisões em cinco partes e estimar o êrro da leitura em \pm 0,04 $\mu\mu F$. As variações de capacidade observadas no decorrer de uma medida, que em geral requereu de quatro a cinco horas, foram menores que 0,05 $\mu\mu F$.

Fig. 11 — Suporte destinado a diminuir a transmissão de vibrações mecanicas.

A umidade do ambiente foi medida por meio da diferença de temperatura entre dois termômetros, um dos quais com o bulbo molhado. Observou-se que o grau de umidade do ar se manteve pràticamente constante no intervalo de tempo em que se realizou cada medida. Não houve assim necessidade de se levar em conta êste fator. Entretanto, os dados colhidos num período de cêrca de seis meses permitiram observar o comportamento do aparelho em relação à variação da umidade do ar. Os gráficos representados nas figuras 12 e 13 referem-se a duas celas dielétricas usadas neste trabalho. As leituras no condensador, indicadas na ordenada, foram feitas com ar sêco na cela dielétrica. O primeiro gráfico refere-se à cela usada no período de 24.3.55 a 28.6.55 e o segundo à cela

Fig. 12 - Variação do ponto zero e do grau de umidade em função do tempo.

Fig. 13 --- Variação do ponto zero e do grau de umidade em função do tempo.

usada no período de 8.7.55 a 5.10.55. Vê-se que a variação máxima na leitura do condensador é da ordem de 2 $\mu\mu F$ no primeiro caso e de 1 $\mu\mu F$ no segundo, correspondendo respectivamente a uma variação no grau de umidade de 34% no primeiro caso e de 16% no segundo.

As celas dielétricas usadas neste trabalho foram calibradas por meio de líquidos cuja constante dielétrica é exatamente conhecida. Adotou-se para êste fim o seguinte método:

A capacidade da cela dielétrica pode ser dividida em duas partes: (a) a capacidade do condensador cilíndrico, acrescida da capacidade dos fios de platina em contacto com o líquido; (b) a capacidade das conexões desde a superfície do líquido até os bornes do condensador de precisão.

A figura 14 representa esquemàticamente o sistema em questão, indicando a parte assinalada por traços paralelos, C, a região da cela dielétrica em contacto com o líquido.

Indicando por C_1 a leitura no condensador de precisão C_p quando se tem ar sêco na cela dielétrica e por C' a capacidade proveniente das conexões $AE \ e \ BF$ (representada pela linha tracejada na figura 14), tem-se

Fig. 14 - Esquema da ligação condensador de precisão - cela dielétrica.

$$C_1 = \varepsilon_0 C + C' \tag{7}$$

em que ε_0 representa a constante dielétrica do ar sêco.

Anàlogamente, indicando por C_2 a leitura no condensador de precisão, quando a cela contém um líquido de constante dielétrica ε , tem-se

$$C_2 = \varepsilon \ C + C' \tag{8}.$$

A capacidade C' pode ser eliminada combinando-se as equações (7) e (8):

$$C_2 - C_1 = (\varepsilon - \varepsilon_0) C \tag{9}$$

de onde se deduz

$$C = \frac{C_2 - C_1}{\varepsilon - \varepsilon_0} \tag{10}.$$

Devido aos "efeitos de beirada", o valor de C varia com a constante dielétrica ³⁷ e esta variação pode ser estudada, determinando-se C por meio de alguns líquidos diferentes e com constante dielétrica apropriada.

Com os valores de C assim determinados, pode-se construir um gráfico representando C em função de ε e utilizá-lo no cálculo da constante dielétrica de líquidos, que é dada pela expressão

$$\varepsilon = \frac{C_2 - C_1}{C} + \varepsilon_0 \tag{11}$$

sendo ε_0 a constante dielétrica do ar sêco, a 25°C e 700 mm de pressão ³⁹, igual a 1,0005.

Para a calibração das duas celas dielétricas usadas no presente trabalho foram empregadas as três substâncias indicadas na tabela I. Os valores da constante dielétrica dêstes líquidos a 25°C são os indicados como padrões pelo National Bureau of Standards, de Washington ²⁶.

TABELA I

Líquido	٤ ₂₅	Cela A	Cela B
Benzeno	2,274	79,98 $_{\mu\mu}$ F	79,73 _{μμ} F
Clorobenzeno	5,621	80,08	79,76
1,2-Dicloroetano	10,36	80,24	79,89

c) Técnica da medida da constante dielétrica.

As observações sôbre a estabilidade do aparelho acima descritas levaram à adoção da seguinte técnica na medida da constante dielétrica dos líquidos estudados no presente trabalho.

Iniciou-se o contrôle da temperatura da sala cêrca de 24 horas antes de se proceder às medidas. A destilação final do líquido, prèviamente purificado pelos métodos já descritos, as medidas dos índices de refração das frações recolhidas, a determinação do grau de pureza por meio do ebuliômetro e a medida da constante dielé-

⁽³⁹⁾ ARTHUR A. MARYOTT e FLOYD BUCKLEY, "Table of Dielectric Constants and Electric Dipole Moments of Substances in the Gaseous State", National Bureau of Standards Circular 537, Washington, D. C., 1953.

O valor indicado nesta Tabela, (g - 1) 10⁶ = 536,4 ± 0,3, refere-se ao ar sêco isento de dioxido de carbono, a 20°C e 760 mm. As correções para 25°C e 700 mm, levando em conta o dioxido de carbono presente no ar, são inferiores a uma unidade na quinta decimal.

trica foram tôdas realizadas sucessiva ou concomitantemente num mesmo dia. Planejadas dêste modo, tôdas as medidas físicas se realizaram com líquidos recém-destilados, decorrendo na maioria dos casos apenas alguns minutos entre a condensação do vapor no refrigerante da coluna e a medida pròpriamente dita. Dêste modo se reduz grandemente a probabilidade de se introduzirem impurezas no líquido. O mesmo recipiente no qual se recolheu a fração destinada às medidas adaptou-se ao sistema de enchimento da cela dielétrica, de modo que o produto destilado foi diretamente transferido

à cela em ambiente sêco. O sistema usado para êste fim vem ilustrado na figura 15, em que A é uma seringa de vidro de cêrca de 100 ml; B, o termostato com a cela dielétrica; C, o recipiente contendo o líquido; D, um tubo de vidro contendo "drierite"; $E \in F$, colunas contendo carvão ativo; G, uma torneira de três vias; e H, um tubo de vidro ligado à bomba de vácuo.

O aparelho foi ligado cêrca de duas horas antes de se proceder à medida. Esta foi feita, lendo-se a escala do condensador, primeiramente com ar sêco na cela dielétrica, em seguida com o líquido e, por fim, novamente com ar sêco na cela. As medidas foram feitas a $25,00 \pm 0,03$ °C.

d) Medidas de contrôle.

A fim de verificar o comportamento da aparelhagem, procedeu-se à medida da constante dielétrica de dois líquidos, acêrca dos quais se conhecem várias medidas desta propriedade física. Um dêles, o ciclohexano, é mesmo indicado como líquido padrão pelo *National Bureau of Standards* A outra substância é o 1,2-dibromoetano, cuja constante dielétrica foi medida por vários autores.

Após cuidadosa purificação, a constante dielétrica foi por nós determinada com os seguintes resultados:

Ciclohexano	$\epsilon_{25} =$	2,016	±	0,001
1,2-Dibromoetano	$\epsilon_{25} =$	4,806	±	0,002

O valor indicado pelo National Bureau of Standards para o ciclohexano ²⁶ é ϵ_{25} = 2,015. Quanto ao 1,2-dibromoetano, os valores publicados divergem um tanto entre si. A tabela II reune as propriedades físicas de interêsse no presente caso e que se encontram na literatura. Incluímos na última linha os nossos valores a fim de compará-los com os dados existentes.

TABELA II

Algumas propriedades físicas do 1,2-dibromoetano

Temperatura de ebulição	n^{25} D	٤ ₂₅	Referência
131,70°C (760mm)	1,53580		1
131,4 — 132,0 (760)	1,53641	4,76	2
131,6 (760)		4,73	3
131,6 (760)		4,797**	4
		4,756	5
		4,823***	6
131,4 (760)*	1,5361	4,806	

(*) Calculado do valor 128,7°C (702,7 mm) pela regra de Craft.

(**) Calculado do valor a 20°C, 4,827, pelo coeficiente indicado por A. A. Maryott e E. R. Smith²⁸.

- (***) Calculado do valor a 18°C, 4,865, pelo coeficiente indicado por A. A. Maryott e E. R. Smith ²⁸.
- J. TIMMERMANS, "Physico-Chemical Constants of Pure Organic Compounds", Elsevier Publishing Company, Inc., 1950.
- (2) W. M. HESTON, Jr., E. J. HENNELLY e C. P. SMYTH, J. Am. Chem. Soc. 72: 2071 (1950).

(3) A. H. WHITE e S. O. MORGAN, J. Chem. Phys. 5: 655 (1937).

(4) D. E. EARP e S. GLASSTONE, J. Chem. Soc. (London) 1709 (1935).

(5) G. S. HOOPER e C. A. KRAUS, J. Am. Chem. Soc. 54: 2265 (1934).

(6) B. B. TURNER, Z physik. Chem. 35: 385 (1900). C. 1901, I, 7.

4. DETERMINAÇÃO DA DENSIDADE E DO ÍNDICE DE REFRAÇÃO.

As densidades foram determinadas por meio de picnômetros do tipo descrito por WIBAUT e colaboradores⁴⁰. A técnica empregada foi aproximadamente a que vem descrita por BAUER no "*Phy*sical Methods of Organic Chemistry", de A. WEISSBERGER⁴¹. As

⁽⁴⁰⁾ J. P. WIBAUT, H. HOOG, S. L. LANGEDIJK, J. OVERHOFF e J. SMITTEN-BERG, Rec. trav. chim. 58: 368 (1939).

⁽⁴¹⁾ N. BAUER, "Determination of Density", p. 256, in A. Weissberger, "Physical Methods of Organic Chemistry", Interscience Publishers, Inc., New York, 1949, vol. I, parte I, 2a. ed.

medidas foram feitas com picnômetros de cêrca de 12 e de 19 ml de capacidade, a 25,00 \pm 0,03°C. O êrro estimado é menor que 2 x 10⁻⁵ g/ml.

Os *indices de refração*, em vários comprimentos de onda, foram determinados por meio de um refratômetro de Pulfrich (Carl Zeiss, Jena, Alemanha) calibrado de acôrdo com o método descrito pelo autor³¹. As medidas foram feitas a 25,00 \pm 0,05°C e o êrro avaliado é da ordem de 1 x 10⁻⁴ e, nas medidas comparativas, de 3 x 10⁻⁵.

5. MEDIDAS DE TEMPERATURA E PRESSÃO.

Todos os termômetros usados no presente trabalho foram aferidos por comparação com termômetros padrões calibrados no National Bureau of Standards, de Washington. O laboratório possui dois dêsses termômetros padrões, divididos em $0,1^{\circ}$ C, abrangendo as regiões de -1 a 101° C e de 99 a 201° C respectivamente. Com auxílio de uma lente é possível estimar a leitura até $0,02^{\circ}$ C. Determinou-se o ponto triplo do deca-hidrato do sulfato de sódio, concordando o valor encontrado com a temperatura corrigida do padrão.

Nas destilações fracionadas foram usados termômetros do tipo Anschütz longo, isto é, com o início da escala cêrca de 10 cm distante da extremidade inferior do bulbo. Nas determinações das temperaturas de ebulição e do grau de pureza usaram-se termômetros do tipo Anschütz curto, isto é, com o início da escala cêrca de 2 cm. acima do bulbo. No termostato da cela dielétrica usou-se um termômetro diferencial do tipo Beckmann, cuidadosamente aferido.

A medida da pressão atmosférica foi feita por meio de um barômetro (Negretti & Zambra, Londres) calibrado no National Physical Laboratory, de Teddington, Inglaterra. A precisão da medida é de \pm 0,15 mm Hg. O barômetro foi controlado em nosso laboratório pela temperatura de ebulição da água, medida com o termômetro padrão no ebuliômetro de Swietoslawski. As pressões menores que a pressão atmosférica foram medidas por meio de manômetros construídos em nosso laboratório.

ш

DISCUSSÃO

Os resultados experimentais obtidos na presente investigação serão considerados na seguinte ordem: examinaremos, em primeiro lugar, as mercaptanas alifáticas normais; em seguida, as mercaptanas isômeras propílicas e butílicas; as dimercaptanas e, por fim, as mercaptanas cíclicas estudadas.

Examinaremos ainda, no final desta discussão, alguns aspectos do fator de correlação g.

1. MERCAPTANAS ALIFÁTICAS NORMAIS.

As tabelas III e IV reunem as propriedades físicas destas mercaptanas.

TABELA III

Temperatura de ebulição e grau de pureza de mercaptanas alifáticas normais

Mercaptana	Temperatura	Pressão	Grau de pureza	
	de ebulição		riangle t	
Etil	32,9°C	704,1 mm Hg	0,02°C	
Propil	65,3	701,5	0,00	
Butil	95,7	703,0	0,00	
Amil	122,9	697,5	0,03	
Hexil	149,7	698,6	0,00	
Heptil	174,5	696,2	0,02	

TABELA IV

Densidade, índice de refração e constante dielétrica de mercaptanas alifáticas normais

Mercaptana	d ²⁵ 4	n ²⁵ D	£25
Etil	0,83316°	1,4275	6,667
Propil	0,83598 ^b	1,4351	5,720
Butil	0,83679°	1,4402	5,073
Amil	0,83750 *	1,4439	4,672
Hexil	0,83826*	1,4471	4,344
Heptil	0,83891*	1,4495	4,109
(a) L. M. ELLIS	. Ir. e E. E. REID. <i>I</i> .	Am. Chem. Soc. 54: 16	74 (1932).

⁽b) S. MATHIAS, ibid 72: 1897 (1950).

Incluimos na tabela III o grau de pureza determinado pelo método ebulioscópico de Swietoslawski⁴². Éstes resultados mostram que foi possível alcançar o grau de pureza III da escala proposta por êste Autor e adotada por vários laboratórios_de padronização⁴³.

Calculando-se a refratividade molar R_{D} pela equação de Lorentz-Lorenz, obtêm-se os valores reunidos na tabela V.

Os valores relativos à octil e à nonilmercaptana * foram calculados a partir das medidas de ELLIS e REID²⁷, anteriormente analisadas pelo autor⁴⁴. Calculando-se o incremento do grupo CH₂ pela diferença entre dois membros sucessivos da série, $\triangle R_{p}$, ve-

⁽⁴²⁾ W. SWIETOSLAWSKI, "Ebulliometric Measurements", Reinhold Publishing Corporation, New York, 1945, cap V.

⁽⁴³⁾ W SWIETOSLAWSKI, loc. cit., p. 80.

⁽⁴⁴⁾ S. MATHIAS, Anais Acad. Bras. Ciênc. 18: 23 (1946).

^(*) Tratando-se de uma série homóloga, preferimos usar os valores de um único Autor, de preferência aos dados indicados pelo American Petroleum Institute²³, que representam a média de várias medidas realizadas por diversos Autores.

rifica-se a possível existência de um fenômeno de alternância, se bem que muito pouco pronunciada (figura 16).

TABELA V

Refratividade molar de mercaptanas alifáticas normais

Mercaptana	R^{25} (ml) D	$ extstyle{25}{D} (extstyle{ml})$
Etil	19,206	
Propil	23.777	4,571
D4:1	-0,117	4,639
Bull	28,410	4,631
Amil	33,047	4 647
Hexil	37,694	4,047
Heptil	42.329	4,635
Octil	46 008	4,669
ocini	40,558	4,647
Nonil	51,645	

Fig. 16 — Alternância do incremento $\triangle R$ 25 em mercaptanas alifáticas normais.

A existência desta fraca alternância não é, porém, fora de dúvida, pois a diferença máxima entre os valores de $\triangle R_{D}$ é de apenas 0,098 ml, valor que corresponde aproximadamente à ordem de grandeza do êrro experimental*. A possível existência dêste efeito de alternância na série das mercaptanas alifáticas normais concordaria com os resultados revelados por FAJANS⁴⁵ em outras séries de cadeias carbônicas alquílicas, particularmente em compostos orgânicos dos elementos do grupo IV do sistema periódico, de fórmula geral MR_4 . Outras séries de compostos orgânicos, como as três seguintes

$$R = \frac{R}{C_6H_{11}(CH_2)_3C(COOC_2H_5)_2}$$

$$R = CH_3COCHCOOC_2H_5$$

$$C_6H_5OR$$

em que R representa uma cadeia alquílica, revelam, de maneira indubitável, êste fenômeno de alternância relacionado à refratividade molar. Fajans atribui êste comportamento a uma polaridade alternada dos grupos CH_2 e formula êstes compostos na base da chamada teoria dos quantículos ⁴⁶. Seria de grande interêsse examinar outras séries de compostos orgânicos, como os simples haletos de radicais alifáticos normais. Entretanto, as medidas existentes sôbre êstes compostos não revelam um efeito de alternância. Convém, porém, observar que não existem ainda na série dos haletos orgânicos medidas de alta precisão feitas com substâncias de pureza controlada.

^(*) O êrro avaliado no valor da refratividade molar é de cêrca de 0,06%.

⁽⁴⁵⁾ K. FAJANS, Chem. Eng. News 27: 900 (1949). B. E. COOK, "Molar Reiraction and Alternating Polarity in Alkyl Chains", tese, Universidade de Michigan, Ann Arbor, 1948.

⁽⁴⁶⁾ Uma exposição sôbre a teoria dos quantículos encontra-se em Ephraim's "Inorgan'c Chemistry", obra editada por P. C. L. Thorne e E. R. Roberts, 6a. edição, Interscience Publishers Inc., New York, 1954, p. 58. Veja-se também S. Mathias, Selectar Chimica 9: 39 (1950).

Admitindo-se, contudo, a existência desta alternância nas mercaptanas alifáticas normais, estas poderiam ser formuladas como segue

$$(CH_3)^-(CH_2)^{2+}(SH)^-$$

 $(CH_3)^+(CH_2)^{2-}(CH_2)^{2+}(SH)^-$
 $(CH_3)^-(CH_2)^{2+}(CH_2)^{2-}(CH_2)^{2+}(SH)^-$
etc.

Nesta maneira de formular, os grupos entre parênteses achamse mùtuamente polarizados pelo campo elétrico adjacente.

Nos compostos estudados por FAJANS, a alternância seria provocada pelo grupo M^{4+} , em que M corresponde a C, Si ou Ge. A alternância é, nestes casos consideràvelmente mais pronunciada que nos compostos alifáticos normais, de fórmula geral RX, dada a intensidade mais elevada do campo elétrico dos grupos C^{4+} , $Si^{4+} \in$ Ge^{4+} , em relação aos grupos $(CH_2)^{2+}$.

Os dados da tabela IV mostram que, enquanto os valores da densidade e do índice de refração aumentam com o crescimento da cadeia carbônica, os valores da constante dielétrica diminuem. Esta diminuição da constante dielétrica com o aumento da cadeia carbônica é devida à diminuição do número de dipolos moleculares por unidade de volume com o aumento do tamanho da molécula⁴⁷. A figura 17 mostra a variação da constante dielétrica de mercaptanas alifáticas normais em função do número de dipolos por m1.

A curva indica que, à medida que a cadeia carbônica aumenta. o dipolo S-H se dilui num meio formado por cadeias de hidrocarbonetos. Extrapolando-se a curva para o eixo das ordenadas, que

⁽⁴⁷⁾ W. M. HESTON, Jr., E. J. HENNELLY e C. P. SMYTH, J. Am. Chem Soc-72: 2071 (1950).

Fig. 17 — Variação da constante dielétrica de mercaptanas alifáticas normais em função do número de dipolos por ml.

representa o número de dipolos por ml igual a zero, obtem-se c valor 2,3, que corresponde à ordem de grandeza da constante dielétrica de hidrocarbonetos elevados. As medidas de DORNTE e SMYTH⁴⁸, referentes a parafinas normais no estado líquido, concordam com êste resultado. Os valores obtidos a 25°C acham-se reunidos na tabela VI.

TABELA VI

Constante dielétrica de parafinas normais no estado líquido

Substância	ϵ_{25}
Pentano	1,836
Hexano	1,883
Heptano	1,919
Octano	1,942
Nonano	1,966
Decano	1,985
Undecano	2,000
Dodecano	2,008

A polarização eletrônica é definida pela expressão

$$P_{\rm E} = \frac{n_{\infty}^{\rm s} - 1}{n_{\infty}^{\rm s} + 2} \quad \frac{M}{d}$$
(12)

baseada na equação de Clausius-Mosotti, em que n_{∞} é o índice de refração medido na região do visível e extrapolado para um com-

⁽⁴⁸⁾ R. W. DORNTE e C. P. SMYTH, J. Am. Chem. Soc. 52: 3546 (1930).

primento de onda infinito. O valor de n_{∞} foi calculado pela expressão 49

$$n_{\infty}^{2} = \frac{(n_{3}^{2}\lambda_{3}^{2} - n_{4}^{2}\lambda_{4}^{2}) \quad (n_{2}^{2} - n_{1}^{2}) - (n_{1}^{2}\lambda_{1}^{2} - n_{2}^{2}\lambda_{2}^{2}) \quad (n_{4}^{2} - n_{3}^{2})}{(\lambda_{2}^{2} - \lambda_{1}^{2}) \quad (n_{4}^{2} - n_{3}^{2}) - (\lambda_{4}^{2} - \lambda_{3}^{2}) \quad (n_{2}^{2} - n_{1}^{2})} \quad (13)$$

empregando-se os índices de refração correspondentes aos seguintes comprimentos de onda

Os valores de $P_{\mathbf{z}}$, calculados pela equação (13) são pràticamente idênticos aos que se obtêm pelo método gráfico de WULFF⁵⁰ aplicado na equação (12).

Tendo $P_{\mathbf{E}}$ as dimensões de um volume, pareceu-nos de interêsse comparar o volume de uma única molécula, calculado a partir de $P_{\mathbf{E}}$, com o volume obtido empregando-se os modelos de Stuart e Briegleb*. O volume do modêlo foi determinado hidrostàticamente, medindo o volume da água deslocada por imersão. Admitindo-se a proporção 1,6 cm: 1 Å, obtêm-se os resutados indicados na tabela VII. Nesta tabela, v representa o volume calculado pela expressão

$$\frac{4}{3} \pi \alpha = \frac{P_E}{N} \tag{14}$$

e v' é o volume do modêlo reduzido às dimensões moleculares.

(50) P. WULFF, Z. physik. Chem. B 21: 368 (1933).

⁽⁴⁹⁾ R. J. W. Le FÈVRE, "Dipole Moments", 3a. edição, Methuen & Co., Ltd., London, 1953, p. 17.

^(*) Fabricados por E. LEYBOLD, Köln-Bayental, Alemanha. A proporção indicada pelo fabricante é 1,5 cm: 1 A.

TABELA VII

Polarização eletrônica e volume das moléculas de mercaptanas alifáticas normais

Mercaptana	P_(ml) E	v (Å ³)	v' (A ³)
Etil	18,628	31	28
Propil	23,103	38	36
Butil	27,632	46	44
Amil	32,157	53	53
Hexil	36,498	61	61
Heptil	41,234	68	70

Os resultados são surpreendentemente concordantes. Não se deve, entretanto, sobre-estimar tais resultados quando se leva em conta que os modelos de Stuart e Briegleb são necessàriamente aproximados. Por outro lado, a expressão de Clausius-Mosotti, baseada num modêlo esférico, é também uma expressão aproximada e a própria noção de volume, aplicada a uma molécula, é, pela sua natureza, uma noção vaga. Éstes dados mostram, curiosamente, até que ponto um modêlo rudimentar, construído de acôrdo com distâncias internucleares e ângulos interatômicos cuidadosamente selecionados, concorda com a equação de Clausius-Mosotti.

O momento dipolar das mercaptanas alifáticas normais foi calculado pela equação de Onsager⁴

$$\mu_{\tilde{\sigma}}^{2} = 4,89335 \times 10^{-38} \frac{M}{d} \quad \frac{(\varepsilon - n_{\infty}^{2})(2\varepsilon + n_{\infty}^{2})}{\varepsilon (n_{\infty}^{2} + 2)^{2}} \tag{15}$$

A quantidade n_{∞} , nesta equação, representa o índice de refração extrapolado em relação à polarizabilidade total. A determina-

ção desta quantidade envolve a medida do índice de refração na região do infra-vermelho, medida essa que apresenta sérias dificuldades experimentais. Entretanto, como foi mostrado por BOTTCHER⁵¹, existe uma certa vantagem em se usar para n_{∞} o valor do índice de refração relativo à polarizabilidade eletrônica, isto é, o valor que se obtém extrapolando-se para um comprimento de onda infinito os índices de refração medidos na região do visível (equação 13) ou então, simplesmente $n_{\rm D}$. Procedendo-se desta maneira, parece que as aproximações usadas na dedução da equação de Onsager tendem a se cancelar mùtuamente. No caso das mercaptanas alifáticas normais, n_{∞} , calculado pela equação 13 e $n_{\rm D}$ conduzem pràticamente ao mesmo valor do momento dipolar. A tabela VIII mostra êstes resultados.

TABELA VIII

Momento dipolar de mercaptanas alifáticas normais

Mercaptana	$\overset{\mu[n]}{\circ}$ D	$\mu \begin{bmatrix} n \\ \infty \end{bmatrix}$	$\Delta \mu_{\mathbf{e}}$
Etil	1,54 ₇ D	1,56 ₈ D	0,02 ₁ D
Propil	1,52 ₈	1,55 ₀	0,022
Butil	1,51 ₅	1,53 ₈	0,023
Amil	1,52 ₀	1,54 ₃	0,023
Hexil	1,51 ₆	1,546	0,03 ₀
Heptil	1,521	1,547	0,02 ₆

Não se encontra na literatura determinação alguma do momento dipolar de mercaptanas no estado líquido. Os poucos valores encontrados referem-se a uma única medida no estado gasoso e a algumas em solução benzênica. Estas últimas divergem um tanto entre si como se pode ver dos valores reunidos na tabela IX.

⁽⁵¹⁾ C. J. F. BÖTTCHER, "Theory of Electric Polarisation", Elsevier Publishing Company, Amsterdam, 1952, p. 324.

TABELA IX

Momento dipolar de mercaptanas alifáticas normais no estado líquido, em solução benzênica e no estado gasoso

M	ercaptan a	μ [liq.1	μ [sol.]	$\mu[gas.]$
	Etil	1,57 D	1,39* D 1,38 ^b	1,56° D
	Propil	1,55	1,52 1,33*	
	Butil	1,54	1,55 1,32* 1,48ª	
	Amil	1,54	1,50ª	
(a)	E. C. E. HUNT	TER e J. R. PART	INGTON, J. Chem. S	oc. (London), 2062
(b)	Y. L. WANG, Z. physik. Chem. B 45: 323 (1940).			

(c) M. KUBO, Sci. Pap. Phys. Chem. Res. Japan 29: 122 (1936).

(d) C. P. SMYTH e W. S. WALLS, J. Chem. Phys. 1: 337 (1933).

Sòmente no caso da etilmercaptana é possível comparar o valor obtido no estado líquido com o obtido no estado gasoso. A tabela IX mostra que êstes valores pràticamente coincidem. Quanto aos valores determinados em solução benzênica, os valores relativos ao estado líquido concordam com os nossos valores em solução benzênica ⁵², bem como com os de SMYTH e WALLS. Os valores de HUNTER e PARTINGTON e de WANG são, porém, mais baixos. Existem, entretanto, sérias dúvidas quanto aos valores indicados por HUNTER e PARTINGTON. Como já foi anteriormente assinalado ⁵², a polarização total determinada por êstes Autores diminui com aumento de temperatura, contràriamente à regra geral. Apesar do valor indicado por WANG concordar com o de HUNTER e PAR-TINGTON, parece-nos que as medidas referentes à etilmercaptana em solução benzênica devem ser repetidas.

⁽⁵²⁾ S. MATHIAS, J. Phys. Chem. 57: 344 (1953).

Examinando-se os dados da tabela VIII, vê-se que o momento dipolar das mercaptanas alifáticas normais no estado líquido pràticamente não varia com o aumento da cadeia carbônica. Éstes resultados conduzem ao valor médio $1,55 \pm 0,02$ *D*. O mesmo comportamento apresentam os brometos alifáticos normais no estado líquido. Das medidas de HESTON, HENNELLY e SMYTH⁴⁷ referentes aos compostos C₂ a C₁₀, C₁₂, C₁₄ e C₁₆, se deduz o valor médio $1,81 \pm 0,03$ *D*. Parece, entretanto, que o comportamento do momento dipolar em relação à variação da cadeia carbônica é diferente no estado gasoso. As medidas de GROVES e SUGDEN⁵³ revelam, no caso de cloretos, brometos, iodetos e cianetos de radicais alifáticos normais, um aumento do momento dipolar com o crescimento da cadeia carbônica (figura 18).

Assim, nas duas séries homólogas até agora investigadas, a dos brometos alifáticos por SMYTH e colaboradores e a das mercaptanas alifáticas estudadas neste trabalho, o momento dipolar no estado líquido é pràticamente independente do comprimento da cadeia normal. Comportamento análogo parece existir nas séries homólogas estudadas em solução benzênica.

Quanto ao comportamento do momento dipolar no estado gasoso, onde as fôrças de interação molecular são muito reduzidas, é difícil prever o que sucede no caso das mercaptanas alifáticas. Do ponto de vista elétrico, estas diferem consideràvelmente dos haletos correspondentes. Pode-se admitir que nos haletos, o dipolo C-X, causador do momento dipolar, se situa na direção da ligação química. No caso das mercaptanas, o vector resultante dos dipolos $C - S \in S - H$, que formam entre si um ângulo ⁵⁴ de 100°, tem uma situação diferente e deve influir de maneira diversa sôbre a cadeia carbônica. Mais comparáveis às mercaptanas, sob êste ponto de vista, são os alcoóis, cujo comportamento no estado gasoso

⁽⁵³⁾ L. G. GROVES e S. SUGDEN, J. Chem. Soc. (London) 158 (1937).

⁽⁵⁴⁾ N. SOLIMENE e B. P. DAILEY, J. Chem. Phys. 23: 124 (1955).

difere do dos haletos correspondentes. Com efeito, no caso dos alcoóis, o momento dipolar no estado gasoso é pràticamente independente do comprimento da cadeia.

Uma interpretação dêste comportamento encontra-se na obra de SMITH "Electric Dipole Moments" ⁵⁵. Analisando o efeito indutivo, êste Autor conclui que um radical introduzido junto ao eixo do dipolo, ou na sua proximidade, deveria aumentar o momento dipolar da molécula. Radicais simètricamente dispostos, mas distantes do eixo, deveriam aumentar ou diminuir o momento, segundo o ângulo formado entre as linhas que unem os radicais ao dipolo e o eixo do dipolo. Se o ângulo formado fôr menor que 55°, haveria um aumento do momento dipolar. No caso contrário, isto é, se o ângulo formado fôr maior que 55°, haveria uma diminuição do momento dipolar.

Nos alcoóis, o vector resultante dos dipolos C - O e O - Hforma com a direção da ligação C - O um ângulo provàvelmente próximo de 55°. Se a cadeia normal se achar disposta simètricamente ao redor desta ligação, é de se esperar uma variação desprezível do momento dipolar em relação ao aumento da cadeia carbônica. Por outro lado, a rotação dos grupos ao redor das ligações C - O e C - C dá origem a disposições dêstes grupos, que podem ser considerados como substituindo um dos átomos de hidrogênio do álcool metílico, que ora conduzem a um momento induzido no mesmo sentido do dipolo indutor, ora a um momento induzido em sentido oposto. O resultado médio seria a quase compensação dos dois efeitos opostos, o que concorda com o fato do momento dipolar ser pràticamente independente do comprimento da cadeia normal.

Segundo esta interpretação, o momento dipolar das mercaptanas alifáticas no estado gasoso seria independente do compri-

⁽⁵⁵⁾ J. W. SMITH, "Electric Dipole Moments", Butterworths Scientific Publications, London, 1955, pp. 172 c 195.

mento da cadeia carbônica. Entretanto, com exceção da etilmercaptana, não existem ainda medidas experimentais destas substâncias no estado gasoso. Está sendo montada em nosso laboratório uma aparelhagem destinada a tais medidas.

Tomando-se os valores de μ calculados pela equação de Onsager, como correspondendo ao momento dipolar no estado gasoso, é possível determinar, com aproximação, o valor do fator g da equação de Kirkwood

$$g\mu^{2} = 4,89335 \times 10^{-38} \frac{M}{d} \left[\frac{(\varepsilon - 1)(2\varepsilon + 1)}{9\varepsilon} - \frac{n_{\infty}^{2} - 1}{n_{\infty}^{2} + 2} \right]$$
(16)

com auxílio da expressão relativa ao campo de reação de Onsager

$$\mu = \mu_0 \frac{n_\infty^2 + 2}{3} \frac{2\varepsilon + 1}{2\varepsilon + n_\infty^2} \tag{3}$$

Os cálculos conduzem aos resultados reunidos na tabela X.

TABELA X

Fator g da equação de Kirkwood nas mercaptanas alifáticas normais

Mercaptana	μ	g
Etil	1,95 ₃ D	1,06
Propil	1,91 ₉	1,07
Butil	1,89 ₃	1,09
Amil	1,89 ₀	1,10
Hexil	1,882	1,11
Heptil	1,87 ₈	1,12

Éstes resultados devem ser considerados como aproximados, pois o valor de μ na expressão do campo de reação de Onsager deveria, em rigor, ser determinado no estado gasoso. A concordância, no caso da etilmercaptana, entre os momentos dipolares nos estados líquido e gasoso, justifica preliminarmente a admissão feita. Os dados da tabela X mostram que o fator g difere muito pouco da unidade, tendendo a aumentar com o crescimento da cadeia carbônica.

O fato de g diferir muito pouco da unidade revela a quase ausência de associação proveniente de ações intermoleculares. Estes resultados concordam com o comportamento geral das mercaptanas que, como é conhecido, não apresentam, de modo geral, associação molecular.

2. MERCAPTANAS ISÔMERAS PROPÍLICAS E BUTÍLICAS.

A refratividade e a polarização molar dêstes isômeros foram estudados pelo autor e formam objeto de duas publicações ³¹, ⁵². No presente trabalho êstes estudos são ampliados com a determinação do momento dipolar no estado líquido e em solução benzênica*.

A tabela XI mostra a temperatura de ebulição e o grau de pureza das substâncias, determinadas pelo método ebulioscópico de Swietoslawski. Vê-se que foi possivel obter as substâncias num grau de pureza que corresponde à ordem III da classificação de Swietoslawski. A densidade, o índice de refração e a constante dielétrica no estado líquido acham-se reunidos na tabela XII.

^(*) Como se depreende do que já foi dito anteriormente (pp. 9 e 59-60), o momento dipolar calculado pela equação de Onsager, relativa ao estado líquido, ou pela equação de Debye, no caso de soluções em solventes não polares, corresponde a um valor aproximado. Se bem que a ordem de grandeza dos erros introduzidos seja relativamente pequena, a incerteza nos valores do momento dipolar pode tornar-se significativa quando se comparam isômeros. Êstes, em geral, apresentam momentos dipolares que diferem muito pouco entre si. Estes resultados poderão ser melhor interpretados quando tivermos à nossa disposição valores determinados no estado gasoso.

TABELA XI

Temperatura de ebulição e grau de pureza das mercaptanas isômeras propílicas e butílicas

Mercaptana	Temperatura	Pressão	Grau de pureza
	de ebulição		Δt
n-Propil	65,3°C	701,5 mm H	g 0,00°C
i-Propil	49,8	696,2	0,00
n-Butil	95,7	703,0	0,00
i-Butil	40,2	132,2	0,02
s-Butil	35,5	130,0	0,05
t-Butil	61,6	699,4	0,00

TABELA XII

Densidade, índice de refração e constante dielétrica das mercaptanas isômeras propílicas e butílicas

Mercaptana	d^{25} 4	n ²⁵ , D	n ²⁵ ∞	£25
n-Propil	0,83598 -	1,4351	1,4210	5,720
i-Propil	0,80895*	1,4221	1,4076	5,952
n-Butil	0,83679 •	1,4402	1,4263	5,073
i-Butil	0,82880*	1,4360	1,4223	4,961
s-Butil	0,82456*	1,4338	1,4203	5,466
t-Butil	0,79426*	1,4200	1,4104	5,341

(a) S. MATHIAS, J. Am. Chem. Soc. 72: 1897 (1950).

Éstes resultados devem ser considerados como aproximados, pois o valor de μ na expressão do campo de reação de Onsager deveria, em rigor, ser determinado no estado gasoso. A concordância, no caso da etilmercaptana, entre os momentos dipolares nos estados líquido e gasoso, justifica preliminarmente a admissão feita. Os dados da tabela X mostram que o fator g difere muito pouco da unidade, tendendo a aumentar com o crescimento da cadeia carbônica.

O fato de g diferir muito pouco da unidade revela a quase ausência de associação proveniente de ações intermoleculares. Éstes resultados concordam com o comportamento geral das mercaptanas que, como é conhecido, não apresentam, de modo geral, associação molecular.

2. MERCAPTANAS ISÔMERAS PROPÍLICAS E BUTÍLICAS.

A refratividade e a polarização molar dêstes isômeros foram estudados pelo autor e formam objeto de duas publicações ³¹, ⁵². No presente trabalho êstes estudos são ampliados com a determinação do momento dipolar no estado líquido e em solução benzênica*.

A tabela XI mostra a temperatura de ebulição e o grau de pureza das substâncias, determinadas pelo método ebulioscópico de Swietoslawski. Vê-se que foi possivel obter as substâncias num grau de pureza que corresponde à ordem III da classificação de Swietoslawski. A densidade, o índice de refração e a constante dielétrica no estado líquido acham-se reunidos na tabela XII.

^(*) Como se depreende do que já foi dito anteriormente (pp. 9 e 59-60), o momento dipolar calculado pela equação de Onsager, relativa ao estado líquido, ou pela equação de Debye, no caso de soluções em solventes não polares, corresponde a um valor aproximado. Se bem que a ordem de grandeza dos erros introduzidos seja relativamente pequena, a incerteza nos valores do momento dipolar pode tornar-se significativa quando se comparam isômeros. Êstes, em geral, apresentam momentos dipolares que diferem muito pouco entre si. Êstes resultados poderão ser melhor interpretados quando tivermos à nossa disposição valores determinados no estado gasoso.

TABELA XI

Temperatura de ebulição e grau de pureza das mercaptanas isômeras propílicas e butílicas

Mercaptana	Temperatura	Pressão	Grau de pureza
	de ebulição		Δt
n-Propil	65,3°C	701,5 mm Hg	; 0,00°C
i-Propil	49,8	696,2	0,00
n-Butil	95,7	70 3,0	0,00
i-Butil	40,2	132,2	0,02
s-Butil	35,5	130,0	0,05
t-Butil	61,6	699,4	0,00

TABELA XII

Densidade, índice de refração e constante dielétrica das mercaptanas isômeras propílicas e butilicas

Mercaptana	$d^{25}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	n ²⁵ , D	n ²⁵ ∞	\$ ₂₅
n-Propil	0,83598*	1,4351	1,4210	5,720
i-Propil	0,80895*	1,4221	1,4076	5,952
n-Butil	0,83679*	1,4402	1,4263	5,073
i-Butil	0,82880*	1,4360	1,4223	4,961
s-Butil	0,82456*	1,4338	1,4203	5,466
t-Butil	0,79426ª	1,4200	1,4104	5,341

(a) S. MATHIAS, J. Am. Chem. Soc. 72: 1897 (1950).

Éstes dados mostram que, enquanto a densidade e o índice de refração diminuem nos isômeros em relação à cadeia normal, a constante dielétrica aumenta. Neste último caso, faz exceção a isobutilmercaptana.

O momento dipolar destas mercaptanas no estado líquido foi calculado pela equação de Onsager, empregando-se n_{∞} . O momento dipolar em solução benzênica foi determinado a partir dos dados da polarização molar publicados pelo autor ⁵². Neste cálculos, foram empregados os valores de P_{A+O} , isto é, a soma das polarizações molares de orientação e atômica.

Éstes resultados, com inclusão do fator g da equação de Kirkwood, acham-se reunidos na tabela XIII.

TABELA XIII

Momento dipolar no estado líquido e em solução benzênica das mercaptanas isômeras propílicas e butílicas

Mercaptana	$\mu(liq.)$	$\Delta \mu$	μ(sol.)	$\Delta \mu$	g
n-Propil	1,55 ₀ D	0,00	1,52 ₄ D	0,00	1,07
i-Propil	1,64 ₁	+0,091	1,55 ₆	+0,032	1,06
n-Butil	1,53 ₈	0,00	1,54 ₆	0,00	1,09
i-Butil	$1,52_{6}$	-0,012	1,53 ₈	-0,00 ₈	1,09
s-Butil	1,64 ₆	+0,108	1,580	+0,034	1,08
t-Butil	1,66 ₆	+0,12 ₈	1,59 ₈	$+0,05_{2}$	1,08

O momento dipolar da t-butilmercaptana concorda razoàvelmente com o valor 1,55 D determinado por LUMBROSO e DUMAS ⁵⁶ em solução benzênica a 25°C. Vê-se que o momento dipolar, tanto no estado líquido como em solução benzênica, aumenta ligeira-

(56) H. LUMBROSO e Mme G. DUMAS, Bull. Soc. Chim. France, 651 (1955).

mente com a ramificação da cadeia isômera em relação à cadeia normal, com exceção da isobutilmercaptana. As variações são um pouco mais pronunciadas no estado líquido.

Éste comportamento é análogo ao já observado no caso da refratividade ³¹ e da polarização molar ⁵² destas mercaptanas e dos haletos correspondentes. O comportamento peculiar da isobutilmercaptana também se mostra nos valores atribuídos à freqüência longitudinal da ligação C - S deduzidos do espectro Raman⁵⁷.

O valor de g, próximo da unidade, revela a ausência de associação molecular em todos os isômeros.

E' interessante comparar com os dados da tabela XIII os momentos dipolares dos brometos correspondentes, determinados no estado líquido, a 25°C, por HESTON, HENNELLY e SMYTH⁴⁷ e, em solução benzênica, a 20°C, por PARTS⁵⁸ (tabela XIV).

TABELA XIV

Momento dipolar no estado líquido e em solução benzênica dos brometos isômeros propílicos e butílicos

Brometo	$\mu(liq.)$	$\Delta \mu$	μ(sol.)	$\Delta \mu$
n-Propil	1,83 D	0,00	1,94 D	0,00
i-Propil	2,06	+0,23	2,09	+0,15
n-Butil	1.80	0.00	1.97	0.00
i-Butil	1,86	+0,06	1,97	0,00
s-Butil	2,10	+0,30	2,12	+0,15
t-Butil	2,39	+0,59	2,21	+0,24

⁽⁵⁷⁾ I. F. TROTTER e H. W. THOMPSON, J. Chem. Soc. (London), 485 (1946).

⁽⁵⁸⁾ A. PARTS, Z. physik. Chem. B 7: 327 (1930); B 12: 312 (1931).

Vê-se que o comportamento dos brometos é análogo ao das mercaptanas correspondentes. As diferenças, em relação aos compostos normais, são, no caso dos brometos, mais pronunciadas que nas mercaptanas. O momento dipolar da isobutilmercaptana é, entretanto, ligeiramente inferior ao do composto normal, o que não se dá no caso do brometo isobutílico.

A diminuição observada no momento da isobutilmercaptana, em relação ao composto normal, pode ser interpretada qualitativamente por uma análise do modêlo molecular. Examinando-se a molécula da isobutilmercaptana, construída com os modelos de Stuart e Briegleb (figura 19), verifica-se que, dentre as várias posições possíveis que os dois grupos metílicos podem ocupar por meio de rotação ao redor da ligação C - C, existe uma disposição na qual êstes grupos se situam na vizinhança do dipolo C - SH, de modo a formar um ângulo tal com o eixo do dipolo, que os momentos neles induzidos opor-se-iam ao do dipolo indutor, tendendo assim a reduzir o momento dipolar da molécula ⁵⁹. Não se observa uma situação análoga nos outros isômeros.

3. ETILENOMERCAPTANA E DIETILENOSULFETO-DIMERCAPTANA.

As propriedades destas duas substâncias acham-se reunidas na tabela XV. O momento dipolar foi determinado no estado líquido e em solução benzênica ⁶⁰. Em ambos os casos empregou-se o valor do índice de refração n_{∞} e, no cálculo em solução benzênica, seguiu-se o método de Halverstadt e Kumler ⁶¹.

70

⁽⁵⁹⁾ C. P. SMYTH, "Dielectric Behavior and Structure", McGraw-Hill Book Company, New York, 1955, p. 270.

⁽⁶⁰⁾ RENATO G. CECCHINI, Tese de doutoramento (em elaboração).

⁽⁶¹⁾ I. F. HALVERSTADT e W. D. KUMLER, J. Am. Chem. Soc. 64: 2988 (1942).

Fig. 19 — Fotografia do modêlo da isobutiltilmercaptana,

Fig. 20 — Fotografia do modêlo da etilenomercaptana na forma "gauche".

Fig. 21 — Fotografias de modelos da ciclohexilmercaptana, em que o grupo SH se acha ligado (a) na posição vertical e (b) na posição equatorial.

ь
TABELA XV

Propriedades da etilenomercaptana e dietilenosulfeto-dimercaptana

	HS-CH ₂ CH ₂ -SH	$(HS-CH_2CH_2)_2S$
Temperat. de ebulição	82,6°C (92 mm)	105°C (ca. 5mm)
Grau de pureza $ riangle t$	0,09°C	0,07°C
d^{25}_{A}	1,11907 g/ml	1,18053 g/ml
n^{25}	1,5563	1,5937
n ²⁵	1,5345	1,5705
P_{25}^{∞}	26,186 ml	42,918 ml
ε ₂₅	7,247	7,474
μ (estado líquido)	1,57 D	1,93 D
μ (solução benzênica)	1,50 D	1,87 D
g (Kirkwood)	1,10 D	1,11

Consideremos, em primeiro lugar, a etilenomercaptana. Os dados da tabela XV mostram que os valores do momento dipolar no estado líquido e em solução benzênica concordam razoàvelmente entre si e o valor do fator *g*, próximo da unidade, revela um pequeno impedimento nas rotações moleculares no estado líquido.

Do ponto de vista elétrico esta dimercaptana é mais complexa que as mercaptanas simples até aqui consideradas. A presença de dois grupos polares SH na molécula conduz a um sistema de difícil interpretação. Os diversos movimentos de rotação interna que a molécula possui, as distâncias internucleares, os ângulos de ligação e os quatro vectores que correspondem às ligações C - S eS - H devem ser levados em consideração. Admitindo-se uma rotação livre dos grupos CH_2SH ao redor do eixo C - C e dos grupos SH ao redor da ligação C - S, de acôrdo com a estrutura

em que m_1 e m_2 representam os momentos das ligações C - S e S - H respectivamente, $\theta \in \alpha$ os ângulos indicados, é possível calcular o momento dipolar da etilenomercaptana pela expressão ⁶²

$$\mu_{0} = \left[2 \left(m_{1}^{2} + m_{2}^{2} - m_{1}^{2} \cos_{2} \theta - m_{2}^{2} \cos^{2} \alpha \cos^{2} \theta + 2 m_{1}m_{2} \cos \alpha \sin^{2} \theta\right)\right]^{\frac{1}{2}}$$
(17).

Tomando-se os valores $m_1 = 0.9$ $m_2 = 0.68$ adotados por SMYTH ⁶³, $\theta = 110^\circ$ e $\alpha = 100$, valor êste determinado por SOLIME-NE e DAILEY ⁵⁴, pelo método de micro-ondas, no caso da metilmerraptana, obtém-se $\mu = 1.41$ *D*, valor menor que os determinados experimentalmente.

E' interessante comparar êste resultado com o que se obtém no caso dos 1,2-di-halogenoetanos, que têm sido extensamente estudados. Estas moléculas são mais simples que a etilenomercaptana, pois possuem dois vectores correspondentes às ligações polares em vez de quatro. Nos 1,2-di-halogenoetanos o momento dipolar calculado, admitindo-se uma rotação livre ao redor do eixo C - C, é consideràvelmente maior que o valor determinado experimentalmente.

Admitindo-se nestas moléculas uma rotação completamente livre, o momento dipolar seria independente da temperatura. Os resultados experimentais mostram, entretanto, que o momento dipolar dêstes di-halogenoetanos varia com a temperatura.

Uma interpretação satisfatória dêstes resultados foi recentemente apresentada por MIZUSHIMA⁶⁴, baseado em extensas investigações sôbre o momento dipolar, propriedades espectroscópicas e termodinâmicas dos 1,2-di-halogenoetanos. Éstes trabalhos reve-

⁽⁶²⁾ C. P. SMYTH, loc. cit., p. 369.

⁽⁶³⁾ C. P. SMYTH, loc. cit., p. 244.

⁽⁶⁴⁾ S. MIZUSHIMA, "Structure of Molecules and Internal Rotation", Academic Press Inc., New York, 1954, cap. I a III.

lam a existência de formas estério-isômeras, designadas por Mizushima como formas "gauche" e que se obtêm a partir da forma "trans" por uma rotação de 120°, conforme ilustram os seguintes modelos

A diferença de energia $\triangle E$ entre as formas "trans" e "gauche" é pràticamente nula no 1,2-dicloroetano e é de 0,7 kcal/mole no 1,2-dibromoetano, ambos no estado líquido. As formas "trans" são as mais estáveis. Não obstante serem ainda muito escassos os dados experimentais acêrca da etilenomercaptana, é plausível admitir nesta molécula a existência de formas "gauche". Poder-se-ia assim tentar interpretar o valor mais elevado determinado experimentalmente, em relação ao valor teórico calculado na base de uma rotação livre, analisando-se o modêlo molecular (figura 20).

À forma "trans" corresponde, por sua simetria, um momento dipolar nulo. A existência da forma "cis" é pouco provável, como se depreende dos trabalhos de Mizushima e do exame do modêlo molecular. Este revela, nesta posição, um impedimento estérico pronunciado. As formas "gauche" seriam as que principalmente contribuem para o momento da molécula. Examinando-se o modêlo na forma "gauche", verifica-se a possibilidade da formação de momentos mùtuamente induzidos pelos vectores resultantes dos momentos das ligações C - S e S - H. Éste efeito contribuiria, devido ao ângulo formado entre os dois vectores resultantes, para aumentar o momento dipolar da molécula e seria muito pouco pronunciado no caso de rotação livre ao redor do eixo C - C. O modêlo revela, com efeito, na forma "gauche", um certo impedimento na rotação dos grupos SH. O estudo da variação do momento dipolar em função da temperatura, medidas dos espectros Raman e infra-vermelho, seriam de grande valor no esclarecimento dêste problema.

Quanto à dietilenosulfeto-dimercaptana, verifica-se pela tabela XV que o momento dipolar no estado líquido é pràticamente igual ao determinado em solução benzênica. De tôdas as substâncias estudadas neste trabalho, esta é a que apresenta a constante dielétrica e o momento dipolar mais elevados. Também neste caso o valor do fator g, próximo da unidade revela um pequeno impedimento nas rotações moleculares no estado líquido.

4. MERCAPTANAS CÍCLICAS.

As propriedades das três mercaptanas cíclicas consideradas neste trabalho acham-se reunidas na tabela XVI.

TABELA XVI

Propriedades da ciclohexilmercaptana, benzilmercaptana e tiofenol

	Ciclohexil- mercaptana	Benzil- mørcaptana	Tiofenol
Temperatura de ebulição	78,0°C (57 mm)	195,9°C (699,9 mm)	165,4°C (698,4 mm)
Grau de pureza ∆t	0,03°C	0,02°C	0,02°C
d^{25}	0,94365 g/ml	1,05088 g/ml	1,07234 g/ml
4 n ²⁵	1,4910	1,5736	1,5870
n^{25}	1,4755	1,5466	1,5563
$\overset{oldsymbol{\infty}}{P^{25}}$	34,710 ml	37,456 ml	33,042 ml
Ε ε ₂₅	5,420	4,705	4,382
μ (estado líquido)	1,64 D	1,32 D	1,13 D
g (Kirkwood)	1,11	1,18	1,22

Vê-se que o momento dipolar diminui na ordem ciclohexil-, benzil-, fenil-, resultado que concorda com o comportamento dos cloretos correspondentes, para os quais existem medidas em solução benzênica (tabela XVII).

TABELA XVII

Momento dipolar do cloreto de ciclohexila, cloreto de benzila

e clorobenzeno em solução benzênica a 25°C

	ų	Lit.
Cloreto de ciclohexila	2,3 D	а
Cloreto de benzila	1,82	b
Clorobenzeno	1,57	с

(a) J. W. WILLIAMS, J. Am. Chem. Soc. 52: 1831 (1930).

(b) L. E. SUTTON, Proc. Roy Soc. A 133: 668 (1931).

(c) P. F. OESPER e C. P. SMYTH, J. Am. Chem. Soc. 64: 768 (1942).

O fator g aumenta na mesma ordem, indicando, no caso do tiofenol, uma ligeira co-associação no estado líquido.

O momento dipolar do tiofenol foi determinado em solução benzênica a 20°C por HUNTER e PARTINGTON⁶⁵ e por LUMBROSO e MARSCHALK⁶⁶ O valor encontrado pelos primeiros Autores, 1,33 D, é mais elevado que o valor indicado na tabela XVI, 1,13 D. Éste último valor concorda, entretanto, com o momento dipolar 1,19 D, determinado por LUMBROSO e MARSCHALK.

O momento dipolar da ciclohexilmercaptana é mais elevado que o das mercaptanas alifáticas normais e aproximadamente igual aos momentos da isopropilmercaptana e das mercaptanas butílicas secundária e terciária. Parece, assim, que às ligações do grupo SH ao anel ciclohexílico e a carbonos secundários e terciários em ca deias abertas, corresponde aproximadamente o mesmo momentc dipolar.

E' interessante observar que, segundo os dados existentes na literatura ⁶⁷, reunidos na tabela XVIII, a distância interatômica C -- S na ciclohexilmercaptana é aproximadamente igual à das mer-

⁽⁶⁵⁾ E. C. E. HUNTER e J. R. PARTINGTON, J. Chem. Soc. (London), 2812 (1932).

⁽⁶⁶⁾ H. LUMBROSO e C. MARSCHALK, J. Chim. Phys. 49: 385 (1952).

⁽⁶⁷⁾ P. W. ALLEN e L. E. SUTTON, Acta Cryst. 3: 46 (1950).

captanas alifáticas normais. O mesmo acontece no caso da ligação C - Cl, cuja distância interatômica apresenta a mesma ordem de grandeza nos compostos ciclohexílico e alifáticos. Note-se, entretanto, que, no caso do clorobenzeno, a distância interatômica C - Cl é distintamente menor que nos casos acima mencionados, fato que concorda com o valor mais baixo do momento dipolar no composto aromático.

TABELA XVIII

Distâncias interatômicas C - S e C - Cl

Metilmercaptana	1,82 A
Etilmercaptana	1,81
Ciclohexilmercaptana	1,87
Cloreto de metila	1,779 Å
Cloreto de etila	1,77
Cloreto de isopropila	1,75
Cloreto de t-butila	1,78
Cloreto de ciclohexila	1,77
Clorobenzeno	1,67

A estrutura do anel ciclohexílico tem sido objeto de numerosos trabalhos. Duas formas têm sido geralmente admitidas:

Os resultados experimentais acumulados até recentemente indicam que, pràticamente tôdas as moléculas do ciclohexano e de seus derivados de mono-substituição correspondem à forma simétrica *a*, nos estados gasoso e líquido ⁶⁸. Esta é a forma energèticamente mais estável.

No caso da ciclohexilmercaptana, parece que a estrutura mais provável, no estado líquido, é a que corresponde à forma a com o grupo SH ligado na posição equatorial (x). Examinando-se o modêlo molecular de Stuart-Briegleb (figura 21 a), verifica-se que, quando o grupo SH se acha ligado na posição vertical (ϵ), existe um impedimento pronunciado na rotação dêste grupo. Ligado na posição equatorial (figura 21 b), o grupo SH apresenta uma rotação livre. O ligeiro aumento no valor do momento dipolar da ciclohexilmercaptana, em relação ao valor das mercaptanas alifáticas normais, pode ser atribuído a momentos induzidos pelo vector resultante das ligações polares $C - S \in S - H$, que formam entre si um ângulo de 100°.

No caso da benzilmercaptana e do tiofenol, a presença do anel benzênico conduz a uma diminuição do momento dipolar. Verifica-se aqui o fato, observado em vários derivados de mono-substituição do benzeno, do momento dipolar apresentar um valor mais baixo que nos compostos alifáticos correspondentes. Tal comportamento é interpretado por vários Autores como o resultado de um efeito de mesomeria ou de ressonância ⁶⁹.

Na benzilmercaptana e no tiofenol, o efeito indutivo, que teria como resultado um aumento do momento dipolar, é superado pelo efeito mesomérico +M:

⁽⁶⁸⁾ O. HASSEL, Quart. Rev. 7: 221 (1953).

⁽⁶⁹⁾ Veja-se a êste respeito, C. K. INGOLD, "Structure and Mechanism in Organic Chemistry", Cornell University Press, Ithaca, New York, 1953, p. 102; R. J. W. LE FÈVRE, "Dipole Moments", Methuen & Co., Ltd., London, 1953, p. 99; C. P. SMYTH, "Dielectric Behavior and Structure", McGraw-Hill Book Company, Inc., New York, 1955, cap. X; J. W. SMITH, "Electric Dipole Moments", Butterworths Scientific Publications, London, 1955, p. 202; C. A. COULSON, "Valence", Clarendon Press, Oxford, 1952, p. 247.

$$Ar - X$$
 $(X = CH_2SH \text{ ou } SH).$

Esta tendência dos electrons se deslocarem, no estado normal da molécula, em direção ao núcleo benzênico, resultaria numa diminuição do momento dipolar, de acôrdo com o que se observa experimentalmente.

Segundo a sugestão de SUTTON 70, a diferença algébrica

$$\mu_{\text{aromático}} - \mu_{\text{alifático}}$$

seria, para um determinado grupo, uma medida do deslocamento eletrônico causado pelo efeito mesomérico. Pode-se assim calcular, a partir das medidas no estado líquido, o "momento mesomérico" do grupo SH, cujo valor é, seguindo a convenção dos sinais proposta por Sutton, -1,13 - (-1,55) = + 0,42 D. O momento mesomérico relativo ao grupo CH₂SH é -1,32 - (-1,55) = +0,23 D.

Examinando-se em conjunto os resultados obtidos no presente trabalho, pode-se concluir que, no caso das substâncias estudadas, a equação de Onsager conduz pràticamente aos mesmos valores do momento dipolar obtidos em solução benzênica (tabelas IX e XIII). Não existem, entretanto, medidas no estado gasoso em número suficiente para permitir uma comparação com os valores obtidos no estado líquido e em solução. O único valor determinado no estado gasoso, encontrado na literatura, refere-se à etilmercaptana e concorda com o obtido no estado líquido (tabela IX). As

⁽⁷⁰⁾ L. E. SUTTON, Proc. Roy. Soc. A 133: 668 (1931).

medidas desta substância em solução benzênica devem, entretanto, ser repetidas.

Em tôdas as substâncias estudadas no presente trabalho, o fator g da equação de Kirkwood é relativamente próximo da unidade. Éste resultado mostra que as rotações no estado líquido se acham muito pouco impedidas por fôrças intermoleculares, em concordância com o comportamento das mercaptanas que, como é conhecido, não apresentam o fenômeno da associação molecular. Entretanto, dentre os compostos estudados neste trabalho, o tiofenol parece revelar uma certa tendência, se bem que pouco pronunciada, para uma co-associação. E' interessante observar que a intensidade da absorção, medida na região do infra-vermelho, relativa à ligação SH, no estado líquido, diminui na ordem tiofenol, benzilmercaptana, n-butilmercaptana ⁷¹.

Até êste ponto, temos considerado o fator de correlação g segundo a teoria de Kirkwood. Entretanto, o fator g, calculado pela expressão de Harris e Alder ⁹

$$g\mu^{2} = 1,63112 \times 10^{-38} \frac{M}{d} \quad \frac{(2 \varepsilon + 1) (\varepsilon - n_{\infty}^{2})}{\varepsilon (n_{\infty}^{2} + 2)}$$
(18)

revela, em tôdas as substâncias estudadas neste trabalho, um valor menor que a unidade. Na tabela XIX acham-se reunidos os valores de $g^{1/2}\mu$ e de g, determinados pela equação (18), juntamente com os obtidos pela expressão de Kirkwood. Acham-se também incluídos os valores de μ , calculados pela expressão de Onsager, relativa ao campo interno (3).

(71) W. GORDY e S. C. STANFORD, J. Am. Chem. Soc. 62: 499 (1940).

TABELA XIX

O fator g segundo as expressões de Kirkwood e de Harris-Alder

Fórmula	Kirkwood		Harris	Harris-Alder		Onsager	
	$g^{1/2}$ µ	g	$g^{1/2}\mu$	g	μ	μ	
C_2H_5SH	2,01	1,06	1,75	0,80	1,95	1,57	
n-C ₃ S ₇ SH	1,99	1,07	1,73	0,81	1,92	1,55	
i-C ₃ H ₇ SH	2,09	1,06	1,82	0,81	2,02	1,64	
n-C ₄ H ₉ SH	1,97	1,09	1,71	0,81	1,89	1,54	
i-C ₄ H ₉ SH	1,95	1,09	1,69	0,82	1,87	1,53	
s-C ₄ H ₉ SH	2,11	1,08	1,83	0,81	2,03	1,65	
t-C ₄ H ₉ SH	2,12	1,08	1,85	0,82	2,04	1,67	
n-C ₅ H ₁₁ SH	1,98	1,10	1,71	0,82	1,89	1,54	
n-C ₆ H ₁₃ SH	1,98	1,11	1,71	0,82	1,88	1,55	
n-C ₇ H ₁₅ SH	1,99	1,12	1,71	0,82	1,88	1,55	
SH-CH ₂ CH ₂ -SH	2,20	1,10	1,82	0,75	2,10	1,57	
$(\text{HS-CH}_2\text{CH}_2)_2\text{S}$	2,78	1,11	2,26	0,73	2,64	1,93	
C ₆ H ₁₁ SH	2,18	1,11	1,84	0,79	2,08	1,64	
C ₆ H ₅ CH ₂ SH	1,85	1,18	1,50	0,77	1,70	1,32	
C ₆ H ₅ SH	1,61	1,22	1,29	0,78	1,46	1,13	

Êstes resultados mostram que, contràriamente à teoria de Kirkwood, o fator g, determinado pela expressão de Harris e Alder, indica, no caso das mercaptanas, uma anti-associação no estado líquido.

Observe-se que o valor mais elevado de g, calculado pela equação de Kirkwood, refere-se ao tiofenol e os valores mais baixos de g, calculados pela equação de Harris e Alder correspondem às dimercaptanas. Notemos, entretanto, que a teoria de Harris e Alder se acha ainda em elaboração e está sendo objeto de discussões e críticas. Por conseguinte, êstes resultados devem ser considerados como preliminares e qualquer conclusão acêrca dêles é ainda prematura. Uma análise do fator de correlação *g*, segundo estas teorias, no caso de outras substâncias, seria certamente de grande interêsse.

SUMÁRIO

1. Uma aparelhagem destinada à determinação da constante dielétrica de líquidos foi construída e montada em nosso laboratório.

 Foram estudadas várias mercaptanas no estado líquido e em solução benzênica. As substâncias foram obtidas em alto grau de pureza, controlada pelo método ebulioscópico de Swietoslawski.

3. O momento dipolar das mercaptanas alifáticas normais é, no estado líquido, pràticamente independente do comprimento da cadeia carbônica.

4. Nas mercaptanas isômeras propílicas e butílicas, as variações do momento dipolar são muito pouco pronunciadas. Estas variações se dão na mesma ordem que se observa na polarização molar dêstes isômeros.

5. O momento dipolar da etilenomercaptana é maior que o valor teòricamente calculado, admitindo-se uma rotação livre ao redor dos eixos $C - C \in C - S$.

6. Nas mercaptanas cíclicas estudadas, o momento dipolar diminui na ordem: ciclohexilmercaptana, benzilmercaptana e tiofenol.

7. O momento dipolar relativo ao grupo SH é maior quando êste grupo se acha ligado a uma cadeia alifática saturada do que quando ligado a um anel aromático. O efeito mesomérico é igual a +0,42 D.

8. No caso das mercaptanas alifáticas, o momento dipolar determinado no estado líquido apresenta, de modo geral, o mesmo valor que o determinado em solução benzênica.

9. Nos compostos estudados no presente trabalho, o valor do fator de correlação g, da equação de Kirkwood, indica um fraco impedimento na rotação das moléculas no estado líquido. Êste impedimento é um pouco mais pronunciado nas mercaptanas aromáticas.

SUMMARY

1. An apparatus for the determination of the dielectric constant of liquids is described.

2. A number of mercaptans were studied in the liquid state and in benzene solution. These substances were obtained in a high degree of purity, controlled by the ebullioscopic method described by Swietoslawski.

3. The dipole moment of the normal aliphatic mercaptans in the liquid state is practically independent from the length of the carbon chain.

4. In the case of the isomeric propyl and butyl mercaptans, slight variations of the dipole moment were observed. These variations are in the same order as in the molar polarisation of these isomers.

5. The dipole moment of ethylene mercaptane is higher than the theoretical value calculated on the basis of free rotation around the axis C - C and C - S.

6. In the case of the cyclic mercaptans studied in the present work, the dipole moment decreases in the order: cyclohexyl-, benzyl-, and benzenethiol.

7. When the SH group is linked to a saturated aliphatic chain, the dipole moment of this group is higher than in the case when it is linked to an aromatic ring. The mesomeric effect corresponds to +0.42 D.

8. In the case of the aliphatic mercaptans, the dipole moment determined in the liquid state has about the same value as determined in benzene solution.

9. The value of the correlation factor g, from Kirkwood's equation, indicates for the compounds studied in the present work a slight hindrance in the rotation of the molecules in the liquid state. This hindrance is somewhat more pronounced in the case of the aromatic mercaptans.

ERRATA

- Pág. 31 As cinco primeiras linhas devem ser intercaladas entre a Fig. 2 e a linha situada acima da referida figura.
- Pág. 52 O valor correto da densidade da etilmercaptana é 0,83147.